1
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers KJ, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Curr Biol 2024; 34:361-375.e9. [PMID: 38181793 DOI: 10.1016/j.cub.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Li HL, Shan SW, Stamer WD, Li KK, Chan HHL, Civan MM, To CH, Lam TC, Do CW. Mechanistic Effects of Baicalein on Aqueous Humor Drainage and Intraocular Pressure. Int J Mol Sci 2022; 23:ijms23137372. [PMID: 35806375 PMCID: PMC9266486 DOI: 10.3390/ijms23137372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that results from impeded fluid drainage. The increase in outflow resistance is caused by trabecular meshwork (TM) cell dysfunction and excessive extracellular matrix (ECM) deposition. Baicalein (Ba) is a natural flavonoid and has been shown to regulate cell contraction, fluid secretion, and ECM remodeling in various cell types, suggesting the potential significance of regulating outflow resistance and IOP. We demonstrated that Ba significantly lowered the IOP by about 5 mmHg in living mice. Consistent with that, Ba increased the outflow facility by up to 90% in enucleated mouse eyes. The effects of Ba on cell volume regulation and contractility were examined in primary human TM (hTM) cells. We found that Ba (1–100 µM) had no effect on cell volume under iso-osmotic conditions but inhibited the regulatory volume decrease (RVD) by up to 70% under hypotonic challenge. In addition, Ba relaxed hTM cells via reduced myosin light chain (MLC) phosphorylation. Using iTRAQ-based quantitative proteomics, 47 proteins were significantly regulated in hTM cells after a 3-h Ba treatment. Ba significantly increased the expression of cathepsin B by 1.51-fold and downregulated the expression of D-dopachrome decarboxylase and pre-B-cell leukemia transcription factor-interacting protein 1 with a fold-change of 0.58 and 0.40, respectively. We suggest that a Ba-mediated increase in outflow facility is triggered by cell relaxation via MLC phosphorylation along with inhibiting RVD in hTM cells. The Ba-mediated changes in protein expression support the notion of altered ECM homeostasis, potentially contributing to a reduction of outflow resistance and thereby IOP.
Collapse
Affiliation(s)
- Hoi-lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - King-kit Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
| | - Henry Ho-lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Mortimer M. Civan
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Chi-ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Chi-wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
- Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong
- Correspondence:
| |
Collapse
|
4
|
Callaghan B, Lester K, Lane B, Fan X, Goljanek-Whysall K, Simpson DA, Sheridan C, Willoughby CE. Genome-wide transcriptome profiling of human trabecular meshwork cells treated with TGF-β2. Sci Rep 2022; 12:9564. [PMID: 35689009 PMCID: PMC9187693 DOI: 10.1038/s41598-022-13573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2021] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Glaucoma is a complex neurodegenerative disease resulting in progressive optic neuropathy and is a leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the predominant form affecting 65.5 million people globally. Despite the prevalence of POAG and the identification of over 120 glaucoma related genetic loci, the underlaying molecular mechanisms are still poorly understood. The transforming growth factor beta (TGF-β) signalling pathway is implicated in the molecular pathology of POAG. To gain a better understanding of the role TGF-β2 plays in the glaucomatous changes to the molecular pathology in the trabecular meshwork, we employed RNA-Seq to delineate the TGF-β2 induced changes in the transcriptome of normal primary human trabecular meshwork cells (HTM). We identified a significant number of differentially expressed genes and associated pathways that contribute to the pathogenesis of POAG. The differentially expressed genes were predominantly enriched in ECM regulation, TGF-β signalling, proliferation/apoptosis, inflammation/wound healing, MAPK signalling, oxidative stress and RHO signalling. Canonical pathway analysis confirmed the enrichment of RhoA signalling, inflammatory-related processes, ECM and cytoskeletal organisation in HTM cells in response to TGF-β2. We also identified novel genes and pathways that were affected after TGF-β2 treatment in the HTM, suggesting additional pathways are activated, including Nrf2, PI3K-Akt, MAPK and HIPPO signalling pathways. The identification and characterisation of TGF-β2 dependent differentially expressed genes and pathways in HTM cells is essential to understand the patho-physiology of glaucoma and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Breedge Callaghan
- Genomic Medicine Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Karen Lester
- Genomic Medicine Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Brian Lane
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, M20 4BX, UK
| | - Xiaochen Fan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - David A Simpson
- The Wellcome - Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Carl Sheridan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Colin E Willoughby
- Genomic Medicine Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK. .,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
5
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
7
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Intracellular nonequilibrium fluctuating stresses indicate how nonlinear cellular mechanical properties adapt to microenvironmental rigidity. Sci Rep 2020; 10:5902. [PMID: 32246074 PMCID: PMC7125211 DOI: 10.1038/s41598-020-62567-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Living cells are known to be in thermodynamically nonequilibrium, which is largely brought about by intracellular molecular motors. The motors consume chemical energies to generate stresses and reorganize the cytoskeleton for the cell to move and divide. However, since there has been a lack of direct measurements characterizing intracellular stresses, questions remained unanswered on the intricacies of how cells use such stresses to regulate their internal mechanical integrity in different microenvironments. This report describes a new experimental approach by which we reveal an environmental rigidity-dependent intracellular stiffness that increases with intracellular stress - a revelation obtained, surprisingly, from a correlation between the fluctuations in cellular stiffness and that of intracellular stresses. More surprisingly, by varying two distinct parameters, environmental rigidity and motor protein activities, we observe that the stiffness-stress relationship follows the same curve. This finding provides some insight into the intricacies by suggesting that cells can regulate their responses to their mechanical microenvironment by adjusting their intracellular stress.
Collapse
|
9
|
Vollmer TR, Zhou EH, Rice DS, Prasanna G, Chen A, Wilson CW. Application of Cell Impedance as a Screening Tool to Discover Modulators of Intraocular Pressure. J Ocul Pharmacol Ther 2020; 36:269-281. [PMID: 32176566 DOI: 10.1089/jop.2019.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
Purpose: To identify new targets and compounds involved in mediating cellular contractility or relaxation in trabecular meshwork (TM) cells and test their efficacy in an ex vivo model measuring outflow facility. Methods: A low-molecular weight compound library composed of 3,957 compounds was screened for cytoskeletal changes using the Acea xCelligence impedance platform in immortalized human NTM5 TM cells. Hits were confirmed by 8-point concentration response and were subsequently evaluated for impedance changes in 2 primary human TM strains, as well as cross-reactivity in bovine primary cells. A recently described bovine whole eye perfusion system was used to evaluate effects of compounds on aqueous outflow facility. Results: The primary screen conducted was robust, with Z' values >0.5. Fifty-two compounds were identified in the primary screen and confirmed to have concentration-dependent effects on impedance in NTM5 cells. Of these, 9 compounds representing distinct drug classes were confirmed to modulate impedance in both human primary TM cells and bovine cells. One of these compounds, wortmannin, an inhibitor of phosphoinositide 3-kinase, increased outflow facility by 11%. Conclusions: A robust phenotypic assay was developed that enabled identification of contractility modulators in immortalized TM cells. The screening hits were translatable to primary TM cells and modulated outflow facility in an ex vivo perfusion assay.
Collapse
Affiliation(s)
- Thomas R Vollmer
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Enhua H Zhou
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Dennis S Rice
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Ganesh Prasanna
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Amy Chen
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Christopher W Wilson
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
10
|
The Ocular Hypotensive Efficacy of Topical Fasudil, a Rho-Associated Protein Kinase Inhibitor, in Patients With End-Stage Glaucoma. Am J Ther 2018; 24:e676-e680. [PMID: 26825486 DOI: 10.1097/mjt.0000000000000362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
To investigate the effects of topical administration of a selective Rho-associated kinase (ROCK) inhibitor, fasudil 0.5% and 1.2% in glaucomatous patients. In this interventional case series study, 4 eyes of 4 patients with unilateral end-stage primary open-angle glaucoma and no light perception vision were assigned to receive topical fasudil 0.5% (in 3 eyes) or 1.2% (in 1 eye) ophthalmic solution twice daily for 8 weeks. At weeks 1, 2, 3, 4, and 8, intraocular pressure (IOP) and adverse events were evaluated. Baseline mean IOP was 53.5 ± 3.4 mm Hg and mean IOP reductions of the last visit were -8.25 ± 1.2 mm Hg at 2 hours and -8.75 ± 2.2 mm Hg at 4 hours. Mean IOP reductions were clinically and statistically significant with 0.5% and 1.2% fasudil and peak effects occurred 2-4 hours after application (P = 0.0002). The largest IOP reductions were produced by 1.2% fasudil (up to -12 mm Hg). Conjunctival hyperemia was found in 1 patient with 1.2% fasudil. Topical administration of fasudil in end-stage primary open-angle glaucoma patients, caused reduction in IOP and was well tolerated. ROCK inhibitors could be considered as a candidate for glaucoma therapy in future.
Collapse
|
11
|
Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting Schlemm's Canal in the Medical Therapy of Glaucoma: Current and Future Considerations. Adv Ther 2017; 34:1049-1069. [PMID: 28349508 PMCID: PMC5427152 DOI: 10.1007/s12325-017-0513-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2017] [Indexed: 11/23/2022]
Abstract
Schlemm’s canal (SC) is a unique, complex vascular structure responsible for maintaining fluid homeostasis within the anterior segment of the eye by draining the excess of aqueous humour. In glaucoma, a heterogeneous group of eye disorders afflicting approximately 60 million individuals worldwide, the normal outflow of aqueous humour into SC is progressively hindered, leading to a gradual increase in outflow resistance, which gradually results in elevated intraocular pressure (IOP). By and large available antiglaucoma therapies do not target the site of the pathology (SC), but rather aim to decrease IOP by other mechanisms, either reducing aqueous production or by diverting aqueous flow through the unconventional outflow system. The present review first outlines our current understanding on the functional anatomy of SC. It then summarizes existing research on SC cell properties; first in the context of their role in glaucoma development/progression and then as a target of novel and emerging antiglaucoma therapies. Evidence from ongoing research efforts to develop effective antiglaucoma therapies targeting SC suggests that this could become a promising site of future therapeutic interventions.
Collapse
|
12
|
Li G, Mukherjee D, Navarro I, Ashpole NE, Sherwood JM, Chang J, Overby DR, Yuan F, Gonzalez P, Kopczynski CC, Farsiu S, Stamer WD. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur J Pharmacol 2016; 787:20-31. [PMID: 27085895 DOI: 10.1016/j.ejphar.2016.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2016] [Revised: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 12/23/2022]
Abstract
Visual impairment due to glaucoma currently impacts 70 million people worldwide. While disease progression can be slowed or stopped with effective lowering of intraocular pressure, current medical treatments are often inadequate. Fortunately, three new classes of therapeutics that target the diseased conventional outflow tissue responsible for ocular hypertension are in the final stages of human testing. The rho kinase inhibitors have proven particularly efficacious and additive to current therapies. Unfortunately, non-contact technology that monitors the health of outflow tissue and its response to conventional outflow therapy is not available clinically. Using optical coherence tomographic (OCT) imaging and novel segmentation software, we present the first demonstration of drug effects on conventional outflow tissues in living eyes. Topical netarsudil (formerly AR-13324), a rho kinase/ norepinephrine transporter inhibitor, affected both proximal (trabecular meshwork and Schlemm's Canal) and distal portions (intrascleral vessels) of the mouse conventional outflow tract. Hence, increased perfusion of outflow tissues was reliably resolved by OCT as widening of the trabecular meshwork and significant increases in cross-sectional area of Schlemm's canal following netarsudil treatment. These changes occurred in conjunction with increased outflow facility, increased speckle variance intensity of outflow vessels, increased tracer deposition in conventional outflow tissues and decreased intraocular pressure. This is the first report using live imaging to show real-time drug effects on conventional outflow tissues and specifically the mechanism of action of netarsudil in mouse eyes. Advancements here pave the way for development of a clinic-friendly OCT platform for monitoring glaucoma therapy.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Dibyendu Mukherjee
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Nicole E Ashpole
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jinlong Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | | | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Influence of Endothelin-1 in Aqueous Humor on Intermediate-Term Trabeculectomy Outcomes. J Ophthalmol 2016; 2016:2401976. [PMID: 26904271 PMCID: PMC4745626 DOI: 10.1155/2016/2401976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
Purpose. To investigate whether increased concentrations of ET-1 in aqueous humor of glaucoma patients influences surgical outcome of standard trabeculectomy with Mitomycin C. Methods. Retrospective chart review of 36 glaucoma patients with known ET-1 concentrations who had undergone trabeculectomy with Mitomycin C. Patients were divided into two groups based on their aqueous ET-1 concentration, a below-median (low ET-1) and an above-median (high ET-1) group. Postoperative IOP development, necessity of glaucoma medication, surgical success and complications, postoperative use of antifibrotics (5-FU), and number of additional glaucoma surgeries were compared between the groups. Results. Overall surgical success of trabeculectomy was comparable to published literature (90%, 81%, 76%, and 68% absolute success at 12, 24, 36, and 48 months after surgery). There was no difference between high and low ET-1 group in the postsurgical development of IOP, surgical success rate, or complication rate. There was no difference in postoperative scarring or indirect indicators thereof (e.g., number of 5-FU injections, needlings, suture lyses, or IOP lowering medications). Conclusion. In this set of patients, ET-1 in aqueous humor does not appear to have influenced surgical outcome of trabeculectomy with Mitomycin C. There is no indication of an increased likelihood of bleb fibrosis in patients with increased ET-1 concentrations.
Collapse
|
14
|
Daneshvar R, Amini N. Rho-Associated Kinase Inhibitors: Potential Future Treatments for Glaucoma. J Ophthalmic Vis Res 2015; 9:395-8. [PMID: 26539282 PMCID: PMC4598535 DOI: 10.4103/2008-322x.143384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Ramin Daneshvar
- Cornea Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Glaucoma, Khatam Eye Hospital, Mashhad, Iran
| | - Nima Amini
- Department of Health Sciences, California State University, Northridge, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
15
|
Roy Chowdhury U, Hann CR, Stamer WD, Fautsch MP. Aqueous humor outflow: dynamics and disease. Invest Ophthalmol Vis Sci 2015; 56:2993-3003. [PMID: 26024085 DOI: 10.1167/iovs.15-16744] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Cheryl R Hann
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
16
|
Sun J, Xiao Y, Wang S, Slepian MJ, Wong PK. Advances in Techniques for Probing Mechanoregulation of Tissue Morphogenesis. ACTA ACUST UNITED AC 2015; 20:127-37. [DOI: 10.1177/2211068214554802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
17
|
Pattabiraman PP, Maddala R, Rao PV. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling. J Cell Physiol 2014; 229:927-42. [PMID: 24318513 PMCID: PMC3965649 DOI: 10.1002/jcp.24524] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2013] [Accepted: 12/02/2013] [Indexed: 12/29/2022]
Abstract
Glaucoma, a prevalent blinding disease is commonly associated with increased intraocular pressure due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM). Although increased TM tissue contraction and stiffness in association with accumulation of extracellular matrix (ECM) are believed to be partly responsible for increased resistance to AH outflow, the extracellular cues and intracellular mechanisms regulating TM cell contraction and ECM production are not well defined. This study tested the hypothesis that sustained activation of Rho GTPase signaling induced by lysophosphatidic acid (LPA), TGF-β, and connective tissue growth factor (CTGF) influences TM cell plasticity and fibrogenic activity which may eventually impact resistance to AH outflow. Various experiments performed using human TM cells revealed that constitutively active RhoA (RhoAV14), TGF-β2, LPA, and CTGF significantly increase the levels and expression of Fibroblast Specific Protein-1 (FSP-1), α-smooth muscle actin (αSMA), collagen-1A1 and secretory total collagen, as determined by q-RT-PCR, immunofluorescence, immunoblot, flow cytometry and the Sircol assay. Significantly, these changes appear to be mediated by Serum Response Factor (SRF), myocardin-related transcription factor (MRTF-A), Slug, and Twist-1, which are transcriptional regulators known to control cell plasticity, myofibroblast generation/activation and fibrogenic activity. Additionally, the Rho kinase inhibitor-Y27632 and anti-fibrotic agent-pirfenidone were both found to suppress the TGF-β2-induced expression of αSMA, FSP-1, and collagen-1A1. Taken together, these observations demonstrate the significance of RhoA/Rho kinase signaling in regulation of TM cell plasticity, fibrogenic activity, and myofibroblast activation, events with potential implications for the pathobiology of elevated intraocular pressure in glaucoma patients.
Collapse
Affiliation(s)
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC. 27710
| |
Collapse
|
18
|
Abstract
Rho kinase (ROCK) inhibitors are a novel potential class of glaucoma therapeutics with multiple compounds currently in Phase II and III US Food and Drug Administration trials in the United States. These selective agents work by relaxing the trabecular meshwork through inhibition of the actin cytoskeleton contractile tone of smooth muscle. This results in increased aqueous outflow directly through the trabecular meshwork, achieving lower intraocular pressures in a range similar to prostaglandins. There are also animal studies indicating that ROCK inhibitors may improve blood flow to the optic nerve, increase ganglion cell survival, and reduce bleb scarring in glaucoma surgery. Given the multiple beneficial effects for glaucoma patients, ROCK inhibitors are certainly a highly anticipated emerging treatment option for glaucoma.
Collapse
Affiliation(s)
| | - Robert T Chang
- Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Gong H, Yang CYC. Morphological and hydrodynamic correlations with increasing outflow facility by rho-kinase inhibitor Y-27632. J Ocul Pharmacol Ther 2014; 30:143-53. [PMID: 24460021 DOI: 10.1089/jop.2013.0192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Abstract Rho-kinase inhibitors affect actomyosin cytoskeletal networks and have been shown to significantly increase outflow facility and lower intraocular pressure in various animal models and human eyes. This article summarizes common morphological changes in the trabecular meshwork induced by Rho-kinase inhibitors and specifically compares the morphological and hydrodynamic correlations with increased outflow facility by Rho-kinase inhibitor, Y-27632, in bovine, monkey, and human eyes under similar experimental conditions. Interspecies comparison has shown that morphological changes in the juxtacanalicular connective tissue (JCT) of these 3 species were different. However, these different morphological changes in the JCT, no matter if it's separation between the JCT and inner wall in bovine eyes, or separation between the JCT cells or between the JCT cells and their matrix in monkey eyes, or even no separation between the inner wall and the JCT but a more subtle expansion of the JCT in human eyes, appear to correlate with the increased percent change of outflow facility. More importantly, these different morphological changes all resulted in an increase in effective filtration area, which was positively correlated with increased outflow facility in all 3 species. These results suggest a link among changes in outflow facility, tissue architecture, and aqueous outflow pattern. Y-27632 increases outflow facility by redistributing aqueous outflow through a looser and larger area in the JCT.
Collapse
Affiliation(s)
- Haiyan Gong
- 1 Department of Ophthalmology, Boston University School of Medicine , Boston, Massachusetts
| | | |
Collapse
|
20
|
Abstract
Affecting 60 million patients, glaucoma is the second leading cause of blindness worldwide. Despite the availability of multiple medical and surgical treatments with effective intraocular pressure lowering, many patients still progress to become visually handicapped from glaucoma due to therapeutic failure. There is therefore a great need for novel therapies to improve the standard of care, and Rho kinase (ROCK) inhibitors represent a promising new class of drugs for treatment of glaucoma. ROCK inhibitors act by increasing facility of fluid outflow from the eye, thereby reducing intraocular pressure. ROCK inhibitors also have a vasodilatory effect on conjunctival vessels, which can lead to eye redness, a less than desirable cosmetic side effect for patients that would use this medication. Although there is promising data to support the clinical potential of this class of drug, the occurrence of conjunctival hyperemia remains a potential deterrent for use by patients. Studies are underway to assess alternative dosing strategies, delivery methods and prodrug formulations that may circumvent this unwanted side effect. This review provides an up-to-date account of the basic scientific data, as well as nonclinical and clinical studies to support use of ROCK inhibitors for treatment of glaucoma.
Collapse
Affiliation(s)
| | | | - Barbara Wirostko
- University of Utah, Moran Eye Center, Salt Lake City, UT 84132, USA
| |
Collapse
|
21
|
Challa P, Arnold JJ. Rho-kinase inhibitors offer a new approach in the treatment of glaucoma. Expert Opin Investig Drugs 2013; 23:81-95. [PMID: 24094075 DOI: 10.1517/13543784.2013.840288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Primary open-angle glaucoma (POAG) is a leading cause for worldwide blindness and is characterized by progressive optic nerve damage. The etiology of POAG is unknown, but elevated intraocular pressure (IOP) and advanced age have been identified as risk factors. IOP reduction is the only known treatment for glaucoma. Recently, drugs that inhibit rho-associated protein kinase (ROCK) have been studied in animals and people for their ability to lower IOP and potentially treat POAG. ROCK inhibitors lower IOP through a trabecular mechanism and may represent a new therapeutic paradigm for the treatment of POAG. AREAS COVERED Exploring the place that ROCK inhibitors may occupy in our treatment of POAG requires a thorough understanding of pathophysiology and treatment. This article summarizes current research on the incidence, proposed etiologies and mechanisms of action for this drug class. ROCK inhibitor research is presented and considered in light of the current standard of pharmacologic care. EXPERT OPINION ROCK inhibitors alter the cell shape and extracellular matrix (ECM) of the trabecular meshwork. Preclinical studies demonstrate that these drugs have the potential to become a new therapy for glaucoma. However, ROCK inhibitors can affect multiple cell types, and their utility can be proven only after clinical studies in patients.
Collapse
Affiliation(s)
- Pratap Challa
- Duke University, Ophthalmology , 2351 Erwin Road, Durham 27710 , USA
| | | |
Collapse
|
22
|
Yuan Y, Call MK, Yuan Y, Zhang Y, Fischesser K, Liu CY, Kao WWY. Dexamethasone induces cross-linked actin networks in trabecular meshwork cells through noncanonical wnt signaling. Invest Ophthalmol Vis Sci 2013; 54:6502-9. [PMID: 23963164 DOI: 10.1167/iovs.13-12447] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Dexamethasone (DEX) regulates aqueous humor outflow by inducing a reorganization of the cytoskeleton to form cross-linked actin networks (CLANs) in trabecular meshwork (TM) cells. Rho-associated protein kinase (ROCK) has been demonstrated to have an important role in this process, but the upstream components leading to its activation remain elusive. The purpose of the study is to demonstrate that noncanonical Wnt signaling mediates the DEX-induced CLAN formation in TM cells. METHODS The TM cells were treated with 100 nM DEX in low serum medium for over 7 days. The medium was changed every 3 days. The cells were harvested and subjected to molecular analysis for the expression of Wnt ligands. Stress fiber structures were revealed by Phalloidin staining. Lentivirus-based shRNA against noncanonical Wnt receptor (Ror2) was used to determine the role of noncanonical Wnt signaling in DEX-induced CLAN formation. RESULTS The DEX induced stress fiber rearrangement in TM cells. A noncanonical Wnt ligand (Wnt5a) was upregulated by DEX as demonstrated by Wnt ligand degenerate PCR, real-time quantitative PCR (qRT-PCR), and Western blotting. Knocking-down Ror2, the receptor of noncanonical Wnt signaling, abolished the effects of DEX on the TM cells. CONCLUSIONS Our data suggest that DEX induces the upregulation of noncanonical Wnt ligand Wnt5a. Recombinant WNT5a protein induces CLAN formation through the noncanonical Wnt receptor ROR2/RhoA/ROCK signaling axis. Given the similarities between DEX-induced ocular hypertension and primary open-angle glaucoma, our results provide a mechanism of action for applying ROCK inhibitor to treat primary open-angle glaucoma.
Collapse
Affiliation(s)
- Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 2013; 43:1357-67. [PMID: 24042317 DOI: 10.3892/ijo.2013.2100] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
Abstract
The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of TM with subsequent increase in outflow facility and, thereby, decrease intraocular pressure (IOP). ROCK inhibitors also serve as potent anti‑scarring agents via inhibition of transdifferentiation of tenon fibroblasts into myofibroblasts. Furthermore, the RhoA/ROCK pathway is involved in optic nerve neuroprotection. Inactivation of Rho/ROCK signaling increase ocular blood flow, improve retinal ganglion cell (RGC) survival and promote RGC axon regeneration. Considering the IOP modulation, potent bleb anti-scarring effect and neuroprotective properties of ROCK inhibitors, the Rho/ROCK pathway is an attractive target for anti-glaucoma therapy, and it may be used for human therapy in the near future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | |
Collapse
|
24
|
Synergistic protection of MLC 1 against cardiac ischemia/reperfusion-induced degradation: a novel therapeutic concept for the future. Future Med Chem 2013; 5:389-98. [PMID: 23495687 DOI: 10.4155/fmc.13.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular diseases are a major burden to society and a leading cause of morbidity and mortality in the developed world. Despite clinical and scientific advances in understanding the molecular mechanisms and treatment of heart injury, novel therapeutic strategies are needed to prevent morbidity and mortality due to cardiac events. Growing evidence reported over the last decade has focused on the intracellular targets for proteolytic degradation by MMP-2. Of particular interest is the establishment of MMP-2-dependent degradation of cardiac contractile proteins in response to increased oxidative stress conditions, such as ischemia/reperfusion. The authors' laboratory has identified a promising preventive therapeutic target using the classical pharmacological concept of synergy to target MMP-2 activity and its proteolytic action on a cardiac contractile protein. This manuscript provides an overview of the body of evidence that supports the importance of cardiac contractile protein degradation in ischemia/reperfusion injury and the use of synergy to protect against it.
Collapse
|
25
|
Yang CYC, Liu Y, Lu Z, Ren R, Gong H. Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes. Invest Ophthalmol Vis Sci 2013; 54:5859-70. [PMID: 23920374 DOI: 10.1167/iovs.12-10930] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To determine the effect of Y27632, a Rho-kinase inhibitor on aqueous outflow facility, flow pattern, and juxtacanalicular tissue (JCT)/trabecular meshwork (TM) morphology in human eyes. METHODS Sixteen enucleated human eyes were perfused with PBS plus glucose (GPBS) at 15 mm Hg to establish the baseline outflow facility. Six eyes were perfused for short-duration (30 minute) with either 50 μM Y27632 or GPBS (n = 3 per group). Ten eyes were perfused for long duration (3 hours) with either 50 μM Y27632 or GPBS (n = 5 per group). Outflow pattern was labeled using fluorescent microspheres, and effective filtration length (EFL) was measured. Morphologic changes and their relationship to EFL and facility were analyzed. RESULTS Outflow facility significantly increased after short-duration perfusion with Y27632 compared with its own baseline (P = 0.03), but did not reach statistical significance compared with its controls (P = 0.07). Outflow facility (P = 0.01) and EFL (P < 0.05) were significantly increased after long-duration perfusion with Y27632 compared with its controls. Increases in outflow facility and EFL demonstrated a positive correlation. Morphologically, the TM and JCT of high-tracer regions were more expanded compared with low-tracer regions. A significant increase in JCT thickness was found in the long-duration Y27632 group compared with its control group (10.0 vs. 8.0 μm, P < 0.01). CONCLUSIONS Y27632 increases outflow facility in human eyes. This increase correlates positively with an increase in EFL, which is associated with an increased expansion in the JCT. Our data suggest that EFL could serve as a novel parameter to correlate with outflow facility.
Collapse
Affiliation(s)
- Chen-Yuan Charlie Yang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
26
|
Lin HB, Cadete VJJ, Sawicka J, Wozniak M, Sawicki G. Effect of the myosin light chain kinase inhibitor ML-7 on the proteome of hearts subjected to ischemia-reperfusion injury. J Proteomics 2012; 75:5386-95. [PMID: 22749930 DOI: 10.1016/j.jprot.2012.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023]
Abstract
In the development of ischemia/reperfusion (I/R) injury, the role of the myosin light chain (MLC) phosphorylation has been given increased consideration. ML-7, a MLC kinase inhibitor, has been shown to protect cardiac function from I/R, however the exact mechanism remains unclear. Isolated rat hearts were perfused under aerobic conditions (controls) or subjected to I/R in the presence or absence of ML-7. Continuous administration of ML-7 (5 μM) from 10 min before onset of ischemia to the first 10 min of reperfusion resulted in significant recovery of heart contractility. Analysis of gels from two-dimensional electrophoresis revealed eight proteins with decreased levels in I/R hearts. Six proteins are involved in energy metabolism:ATP synthase beta subunit, cytochrome b-c1 complex subunit 1, 24-kDa mitochondrial NADH dehydrogenase, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, cytochrome c oxidase subunit, and succinyl-CoA ligase subunit. The other two proteins with decreased levels in I/R hearts are: peroxiredoxin-2 and tubulin. Administration of ML-7 increased level of succinyl-CoA ligase, key enzyme involved in the citric acid cycle. The increased level of succinyl-CoA ligase in I/R hearts perfused with ML-7 suggests that the cardioprotective effect of ML-7, at least partially, also may involve increase of energy production.
Collapse
Affiliation(s)
- Han-bin Lin
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
27
|
Tian B, Kaufman PL. Comparisons of actin filament disruptors and Rho kinase inhibitors as potential antiglaucoma medications. EXPERT REVIEW OF OPHTHALMOLOGY 2012; 7:177-187. [PMID: 22737177 PMCID: PMC3378243 DOI: 10.1586/eop.12.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Dynamics of the actin cytoskeleton in the trabecular meshwork play a crucial role in the regulation of trabecular outflow resistance. The actin filament disruptors and Rho kinase inhibitors affect the dynamics of the actomyosin system by either disrupting the actin filaments or inhibiting the Rho kinase-activated cellular contractility. Both approaches induce similar morphological changes and resistance decreases in the trabecular outflow pathway, and thus both have potential as antiglaucoma medications. Although the drugs might induce detrimental changes in the cornea following topical administration, lower drug concentrations in larger volumes as used clinically, but not higher drug concentrations in smaller volumes as used experimentally, could minimize corneal toxicity. Additionally, developments of trabecular meshwork-specific actin filament disruptors or Rho kinase inhibitors, prodrugs and new drug-delivery methods might avoid the drugs' toxicity to the cornea. Gene therapies with cytoskeleton-modulating proteins may mimic the effects of the cytoskeleton-modulating agents and have the potential to permanently decrease trabecular outflow resistance.
Collapse
Affiliation(s)
- Baohe Tian
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Paul L Kaufman
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
28
|
Lu Z, Zhang Y, Freddo TF, Gong H. Similar hydrodynamic and morphological changes in the aqueous humor outflow pathway after washout and Y27632 treatment in monkey eyes. Exp Eye Res 2011; 93:397-404. [PMID: 21669200 DOI: 10.1016/j.exer.2011.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2010] [Revised: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
Our previous studies in bovine eyes demonstrated that the structural correlate to the increase in outflow facility after either Rho-kinase inhibitor Y-27632 (Y27) treatment or washout appeared to be separation between the juxtacanalicular tissue (JCT) and inner wall (IW) of the aqueous plexus, the bovine equivalent of Schlemm's canal (SC). While these findings suggest that Y27 and washout may increase outflow facility through a similar mechanism, the anatomy of bovine outflow pathway differs considerably from both the human and monkey outflow pathway; however, only the human eye does not exhibit washout. In light of this, we compared the effects of Y27 and washout on outflow facility, hydrodynamic patterns of outflow, and the morphology of the IW and JCT in monkey eyes, given that their anatomy is closer to human eyes. Twelve freshly enucleated monkey eyes were used in this study. Eyes were perfused with Dulbecco's PBS containing 5.5 mM glucose (GPBS) to establish a baseline facility at 15 mmHg. Four eyes were perfused for a short-duration (30 min) as a control, 4 eyes for a long-duration (180 min) to induce washout, and 4 eyes with GPBS+50 μM Y27 for 30 min. All eyes were then perfused with fluorescent microspheres (0.5 μm; 0.002%) to label the hydrodynamic patterns of outflow and then perfusion-fixed. Confocal images of frontal sections were taken along the IW of SC. The total length (TL) and the tracer-decorated length (FL) of the IW were measured to calculate the average percent effective filtration length (PEFL = FL/TL). Sections with SC were examined by light and electron microscopy. The TL of the IW and the length exhibiting separation (SL) in the JCT were measured to calculate the average percent separation length (PSL = SL/TL). Outflow facility increased 149.2% (p < 0.01) from baseline after washout during long-duration perfusion, and 114.9% (p = 0.004) after Y27 treatment, but did not change significantly after short-duration perfusion in control eyes (p = 0.46). Distribution of the tracer labeling appeared punctate along the IW of control eyes, while a more uniform pattern was observed after washout and Y27 treatment. PEFL in washout (83.4 ± 2.1%) and Y27 treated eyes (82.5 ± 1.6%) was 3.4-fold larger compared to controls (24.2 ± 4.2%, P < 0.001). The JCT appeared distended with loss of connections between JCT cells and between JCT cells and their extracelluar matrix in eyes with washout or after Y-27 treatment. PSL in the JCT was 2.3-fold larger in washout eyes (77.4 ± 3.3%) and 2.2-fold larger in Y27 treated eyes (75.2 ± 5.3%) versus controls (33.5 ± 5.3%, p = 0.001). Significant positive correlations were found between outflow facility and PEFL, facility and PSL and between PEFL and PSL. Our data demonstrated that similar hydrodynamic and morphological changes occurred in the aqueous humor outflow pathway of monkey eyes after induction of washout and Y27 treatment. Both Y27 and washout increase outflow facility by redistributing aqueous outflow through a larger area in the JCT. These hydrodynamic changes are likely driven by morphologic changes associated with a decrease in cell-cell and cell-matrix connections in the JCT.
Collapse
Affiliation(s)
- Zhaozeng Lu
- Huashan Hospital of Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
29
|
Abstract
Endothelin, the most potent vasoactive peptide known to date, has been suggested to play a potential role in the pathogenesis of open-angle glaucoma. Open-angle glaucoma is the most common optic nerve head neuropathy and is associated with a loss of retinal ganglion cells and visual field damage. Although an increased intraocular pressure is a major risk factor for glaucomatous optic neuropathy, other factors such as a reduced ocular blood flow play an important role for appearance of the disease. Thus, treatment of glaucoma is focused on lowering of intraocular pressure and preventing the occurrence or progression of glaucomatous optic neuropathy. Endothelin participates in the regulation of intraocular pressure by an effect on trabecular outflow, the main route for aqueous humour outflow from the eye. Trabecular outflow is modulated by trabecular meshwork contractility which is affected by endothelin. In addition to the effects of endothelin in the anterior part of the eye, the vasoconstrictor causes a decrease in ocular blood flow followed by pathological changes in the retina and the optic nerve head which is assumed to contribute to the degeneration of retinal ganglion cells. In sum, inhibition of endothelin signalling leads to lowering of intraocular pressure and exerts neuroprotective effects. Thus, endothelin antagonism in the eye represents a promising approach for pharmacological treatment of glaucoma.
Collapse
Affiliation(s)
- Rita Rosenthal
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Freie Universität and Humboldt-Universität Berlin, Berlin, Germany
| | | |
Collapse
|
30
|
|
31
|
Lee S, Zeiger A, Maloney JM, Kotecki M, Van Vliet KJ, Herman IM. Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:194115. [PMID: 21386441 DOI: 10.1088/0953-8984/22/19/194115] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/30/2023]
Abstract
Pericytes physically surround the capillary endothelium, contacting and communicating with associated vascular endothelial cells via cell-cell and cell-matrix contacts. Pericyte-endothelial cell interactions thus have the potential to modulate growth and function of the microvasculature. Here we employ the experimental finding that pericytes can buckle a freestanding, underlying membrane via actin-mediated contraction. Pericytes were cultured on deformable silicone substrata, and pericyte-generated wrinkles were imaged via both optical and atomic force microscopy (AFM). The local stiffness of subcellular domains both near and far from these wrinkles was investigated by using AFM-enabled nanoindentation to quantify effective elastic moduli. Substratum buckling contraction was quantified by the normalized change in length of initially flat regions of the substrata (corresponding to wrinkle contour lengths), and a model was used to relate local strain energies to pericyte contractile forces. The nature of pericyte-generated wrinkling and contractile protein-generated force transduction was further explored by the addition of pharmacological cytoskeletal inhibitors that affected contractile forces and the effective elastic moduli of pericyte domains. Actin-mediated forces are sufficient for pericytes to exert an average buckling contraction of 38% on the elastomeric substrata employed in these in vitro studies. Actomyosin-mediated contractile forces also act in vivo on the compliant environment of the microvasculature, including the basement membrane and other cells. Pericyte-generated substratum deformation can thus serve as a direct mechanical stimulus to adjacent vascular endothelial cells, and potentially alter the effective mechanical stiffness of nonlinear elastic extracellular matrices, to modulate pericyte-endothelial cell interactions that directly influence both physiologic and pathologic angiogenesis.
Collapse
Affiliation(s)
- Sunyoung Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
32
|
Russ PK, Kupperman AI, Presley SH, Haselton FR, Chang MS. Inhibition of RhoA signaling with increased Bves in trabecular meshwork cells. Invest Ophthalmol Vis Sci 2009; 51:223-30. [PMID: 19628742 DOI: 10.1167/iovs.09-3539] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Blood vessel epicardial substance (Bves) is a novel adhesion molecule that regulates tight junction (TJ) formation. TJs also modulate RhoA signaling, which has been implicated in outflow regulation. Given that Bves has been reported in multiple ocular tissues, the authors hypothesize that Bves plays a role in the regulation of RhoA signaling in trabecular meshwork (TM) cells. METHODS Human TM cell lines NTM-5 and NTM-5 transfected to overexpress Bves (NTM-w) were evaluated for TJ formation, and levels of occludin, cingulin, and ZO-1 protein were compared. Assays of TJ function were carried out using diffusion of sodium fluorescein and transcellular electrical resistance (TER). Levels of activated RhoA were measured using FRET probes, and phosphorylation of myosin light chain (MLC-p), a downstream target of RhoA, was assessed by Western blot analysis. RESULTS Overexpression of Bves led to increased TJ formation in NTM-5 cells. Increased TJ formation was confirmed by increased occludin, cingulin, and ZO-1 protein. Functionally, NTM-w cells showed decreased permeability and increased TER compared with NTM-5 cells, consistent with increased TJ formation. NTM-w cells also exhibited decreased levels of active RhoA and lower levels of MLC-p than did NTM-5 cells. These findings support a TJ role in RhoA signaling. CONCLUSIONS Increased Bves in TM cells leads to increased TJ formation with decreased RhoA activation and decreased MLC-p. This is the first report of a regulatory pathway upstream of RhoA in TM cells. In TM tissue, RhoA has been implicated in outflow regulation; thus, Bves may be a key regulatory molecule in aqueous outflow.
Collapse
Affiliation(s)
- Patricia K Russ
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Wade NC, Grierson I, O'Reilly S, Hoare MJ, Cracknell KPB, Paraoan LI, Brotchie D, Clark AF. Cross-linked actin networks (CLANs) in bovine trabecular meshwork cells. Exp Eye Res 2009; 89:648-59. [PMID: 19540832 DOI: 10.1016/j.exer.2009.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2009] [Revised: 05/14/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023]
Abstract
A cytoskeletal feature of human trabecular meshwork (HTM) cells in vitro and ex vivo is the presence of cross-linked actin networks (CLANs) that are abundant in a proportion of TM cells exposed to dexamethasone (DEX) and also in cells from glaucoma patients. We wished to determine whether CLANs were present in the bovine trabecular meshwork (BTM), whether they were similarly induced by dexamethasone and whether the structures were comparable to CLANs in HTM cells. Cultures of HTM and BTM cells and ex vivo dissections of BTM tissue were stained with phalloidin (F-actin) and propidium iodide (nuclei) and imaged by confocal microscopy, thereafter being subjected to image analysis. Some CLAN-like structures were identified in ex vivo BTM tissue cultured with and without DEX. However we found that BTM cells in culture produced abundant CLANs when exposed to DEX; comparable to the best response from HTM cells. The CLANs were of similar dimensions and morphology to those found in human cells and they had a similar half life of 2 or 3 days following the removal of DEX. This work demonstrates that BTM cells provide a suitable model for future investigations of CLAN formation and function. BTM cultures are sufficiently hardy to thrive in low serum and serum-free conditions so we were able to show that aqueous humor stimulates CLAN formation in the target cells. Future research is directed at identifying the aqueous component(s) responsible for CLAN production.
Collapse
Affiliation(s)
- N C Wade
- Unit of Ophthalmology, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ramos RF, Sumida GM, Stamer WD. Cyclic mechanical stress and trabecular meshwork cell contractility. Invest Ophthalmol Vis Sci 2009; 50:3826-32. [PMID: 19339745 DOI: 10.1167/iovs.08-2694] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Ocular pulse decreases outflow facility of perfused anterior segments. However, the mechanism by which conventional outflow tissues respond to cyclic intraocular pressure oscillations is unknown. The purpose of the present study was to examine responses of trabecular meshwork (TM) cells to cyclic biomechanical stress in the presence and absence of compounds known to affect cell contractility. METHODS To model flow in the juxtacanalicular region of the TM and to measure changes in transendothelial flow, human TM cell monolayers on permeable filters were perfused at a constant flow rate until reaching a stable baseline pressure and then were exposed to cyclic stress with an average amplitude of 2.7 mm Hg peak to peak at a 1-Hz frequency for 2 hours in the presence or absence of compounds known to affect cell contractility (isoproterenol, Y27632, pilocarpine, and nifedipine). Pressure was recorded continuously. Immunocytochemistry staining was used to determine filamentous actin stress fiber content, whereas Western blot analysis was used to measure the extent of myosin light chain (p-MLC) phosphorylation and ratio of filamentous to globular actin. RESULTS Human TM cells respond to cyclic pressure oscillations by increasing mean intrachamber pressure (decreasing hydraulic conductivity) (126.13% +/- 2.4%; P < 0.05), a response blocked in the presence of Y27632, a rho-kinase inhibitor (101.35 +/- 0.59; P = 0.234), but not isoproterenol, pilocarpine, or nifedipine. Although mechanical stress appeared to have no effect, Y27632 decreased phosphorylated myosin light chain, filamentous/globular actin ratio, and stress fiber formation in TM cells. CONCLUSIONS Human TM cells respond to cyclic mechanical stress by increasing intrachamber pressure. Pulse-mediated effects are blocked by Y27632, implicating a role for Rho-kinase-mediated signaling and cellular contractility in ocular pulse-associated changes in outflow facility.
Collapse
Affiliation(s)
- Renata F Ramos
- Biomedical Engineering Graduate Program, University of Arizona, Tucson, AZ 85711, USA
| | | | | |
Collapse
|
36
|
Yu M, Chen X, Wang N, Cai S, Li N, Qiu J, Brandt CR, Kaufman PL, Liu X. H-1152 effects on intraocular pressure and trabecular meshwork morphology of rat eyes. J Ocul Pharmacol Ther 2009; 24:373-9. [PMID: 18665808 DOI: 10.1089/jop.2008.0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The aim of this study was to elucidate the effects of the Rho-kinase inhibitor, H-1152, on cultured human trabecular meshwork (HTM) cells, TM morphology, and intraocular pressure (IOP) in rats. METHODS Cultured HTM cells were treated with H-1152. Changes in cell morphology and the organization of the actin cytoskeleton and focal adhesions were evaluated by microscopy and immunofluorescence. H-1152 was administered topically to the eyes of conscious rats, and IOP was measured with a commercially available tonometer before and after treatment. The eyes were enucleated 1 h after treatment, fixed, and processed for morphologic analysis by light and electron microscopy. RESULTS Exposure of the cultured HTM cells to 20 microM of H-1152 induced elongation and separation of cells, deterioration, and loss of actin stress fibers and focal adhesions within 2 h. Topical administration of H-1152 resulted in a significant decrease in IOP from 0.5 to 6 h, with the maximum IOP reduction of 28.1% at 1 h post-treatment (P < 0.001; n = 10). H-1152 caused an expansion of the intercellular spaces and loss of extracellular material in the juxtacanalicular region of the TM in rat eyes. CONCLUSIONS The IOP-lowering effect of H-1152 in rat eyes is likely due to changes in TM-cell morphology, the actin cytoskeleton, and cellular adhesions in the conventional outflow pathway. H-1152 has potential as a new antiglaucoma medication.
Collapse
Affiliation(s)
- Man Yu
- Torsten Wiesel Research Institute, West China Eye Center & Ophthalmic Laboratories, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The role of the actomyosin system in regulating trabecular fluid outflow. Exp Eye Res 2008; 88:713-7. [PMID: 18793636 DOI: 10.1016/j.exer.2008.08.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/06/2023]
Abstract
Abnormally high resistance to aqueous humor drainage via the trabecular meshwork and Schlemm's canal is highly correlated with the development of primary open-angle glaucoma. Contractility of the actomyosin system in the trabecular cells or inner wall endothelium of Schlemm's canal is an important factor in the regulation of outflow resistance. Cytoskeletal agents, affecting F-actin integrity or actomyosin contractility, or gene therapies, employing overexpression of caldesmon or Rho-A inhibition, can decrease outflow resistance in the drainage pathway. In this review, we discuss the mechanisms underlying these and similar effects on trabecular outflow resistance in living animals and/or in cultured ocular anterior segments from enucleated animal or human eyes.
Collapse
|
38
|
Ramachandran C, Satpathy M, Mehta D, Srinivas SP. Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells. Curr Eye Res 2008; 33:169-76. [PMID: 18293188 DOI: 10.1080/02713680701837067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. METHODS Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. RESULTS Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. CONCLUSIONS Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.
Collapse
|
39
|
Renieri G, Choritz L, Rosenthal R, Meissner S, Pfeiffer N, Thieme H. Effects of endothelin-1 on calcium-independent contraction of bovine trabecular meshwork. Graefes Arch Clin Exp Ophthalmol 2008; 246:1107-15. [PMID: 18401592 DOI: 10.1007/s00417-008-0817-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2008] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Endothelin-1 (ET-1) is known to induce contraction of trabecular meshwork (TM) and is probably involved in the pathogenesis of glaucoma. Calcium (Ca(2+))-independent contraction has been shown in TM, and its inhibition may represent an interesting way of influencing outflow facility, and thus intraocular pressure (IOP). This study investigates the role of ET-1 and its receptors ET-A and ET-B (ET-AR and ET-BR) in TM Ca(2+)-independent contractility. METHODS Isometric tension measurements of bovine TM (BTM) strips were performed using a force-length transducer system. Intra- and extracellular Ca(2+) buffering was achieved by means of EGTA and BAPTA-AM. Under Ca(2+)-free conditions, ET-1-induced contractility of TM was assessed also in the presence of the specific inhibitors for ET-AR and ET-BR, BQ123 and BQ788 respectively. In order to clarify the intracellular mediators of Ca(2+)-independent contractility induced by ET-1, TM contraction was further measured in the presence of Y-27632, a selective inhibitor of Rho-associated kinases (ROCKs). The expression of ROCK1 and of its activating protein RhoA in BTM cells was investigated using western blot analysis. RESULTS ET-1 induced a significant contraction of native BTM after intra- and extracellular Ca(2+)-depletion (45% +/- 8% of the maximally inducible contraction). Both endothelin receptor inhibitors BQ123 and BQ788 significantly reduced TM Ca(2+)-independent contraction in response to ET-1 (8.4 +/- 3.3% and 20.3 +/- 4.8% respectively). In the presence of the ROCK inhibitor Y-27632, ET-1-induced contraction of TM under Ca(2+)-free conditions was almost completely abolished (4.3% +/- 1.7%, p < 0.001). A clear signal for RhoA at 24 kDa and ROCK1 at 160 kDa could be detected in lysates of native tissue and cultured BTM cells with western blot. CONCLUSIONS This study shows evidence that a significant portion of ET-1-induced contraction of TM is Ca(2+)-independent. In this contraction pathway, both ET-AR and ET-BR are involved with RhoA and its kinases as intracellular mediators. Ca(2+)-independent contraction of TM in response to ET-1 may represent a specific target to modulate IOP.
Collapse
Affiliation(s)
- Giulia Renieri
- Department of Ophthalmology, Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55101, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Chapter 13 Outflow Signaling Mechanisms and New Therapeutic Strategies for the Control of Intraocular Pressure. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
41
|
Toris CB, Camras CB. Chapter 8 Aqueous Humor Dynamics II. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
42
|
The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes. Exp Eye Res 2007; 86:271-81. [PMID: 18155193 DOI: 10.1016/j.exer.2007.10.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2007] [Revised: 09/11/2007] [Accepted: 10/25/2007] [Indexed: 11/24/2022]
Abstract
Rho-kinase inhibitor Y-27632 (Y-27) affects actomyosin cytoskeletal networks and has been shown to significantly increase outflow facility (C) in enucleated porcine and rabbit eyes, as well as in vivo monkey eyes without obvious toxicity. The mechanisms underlying these responses remain largely unknown. In this study, we investigate how Y-27 affects aqueous humor C, the hydrodynamic patterns of outflow, and the morphology of the inner wall (IW) and juxtacanalicular connective tissue (JCT). 12 bovine eyes were perfused at 15 mmHg with Dulbecco's PBS containing 5.5 mM glucose (DPBS) to establish stable baseline C. The anterior chamber was exchanged and perfused with DPBS containing 50 microM Y-27 in 7 eyes, while 5 eyes received DPBS alone. Eyes were then perfused with DPBS containing fluorescent microspheres (0.5 microm; 0.002% v/v) at a fixed volume to deliver equivalent amounts of tracer to label the hydrodynamic filtration patterns. All eyes were perfusion-fixed with Karnovsky's fixative. Radial and frontal sections were prepared in all quadrants and confocal images were taken along the IW of the aqueous plexus (AP). The total length (TL) and filtration length (FL) of the IW were measured in > or =16 images/eye, and the average percent effective filtration length (PEFL=FL/TL) was calculated. Sections with AP were processed and examined by light and electron microscopy. The TL of the IW and length exhibiting JCT/IW separation (SL) were measured in > or =16 micrographs/eye, and the average percent separation length (PSL=SL/TL) was also calculated. After Y-27 treatment, C increased from 1.54+/-0.34 (+/-SEM) to 2.36+/-0.54 microL/min per mmHg (58.2+/-18.9%) while control eyes changed from 1.67+/-0.41 to 1.71+/-0.39 microl/min per mmHg (6.0+/-9.3%) and the percent changes between the Y-27-treated and control eyes were significant (p=0.03). Control eyes showed segmental distribution of tracer in the trabecular meshwork tending to cluster near collector channel ostia, whereas Y-27-treated eyes showed a more uniform pattern and extensive labeling along the IW. In Y-27-treated eyes, PEFL was 3-fold larger (57.6+/-3.7%) compared to control eyes (18.2+/-4.5%; p<0.001). Light microscopic examination revealed that, with Y-27, the IW and JCT were significantly distended compared to control eyes, with discernible separation between the IW and JCT. PSL was 2.8-fold larger in Y-27-treated eyes (59.3+/-3.6%) than in controls (20.8+/-2.0%; p<0.001). A significant positive correlation was found between PEFL and PSL (p=0.003) suggesting that as connectivity between the JCT and IW decreases the available area for aqueous humor drainage increases along the AP. Our study also demonstrates a significant positive correlation between C and the PSL (p=0.01), a finding identical to what we reported to occur during the "washout" effect in bovine eyes. Our data suggests the structural correlate to the increase in C and PEFL after Y-27-treatment is physical separation between the JCT and IW. The increase in C after Y-27-treatment may share a similar mechanism comparable with the washout effect that occurs in bovine eyes. Overall, these findings support our hypothesis that JCT/IW connectivity influences local outflow hydrodynamics that regulate C, and suggest that strategies targeting JCT/IW connectivity are promising anti-glaucoma therapies to reduce IOP.
Collapse
|
43
|
Rosenthal R, Choritz L, Zorn R, Münzer G, Fromm M, Pfeiffer N, Thieme H. Endothelin receptor B in trabecular meshwork. Exp Eye Res 2007; 85:482-91. [PMID: 17669399 DOI: 10.1016/j.exer.2007.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2007] [Revised: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1), the most potent vasoconstrictor known to date, seems to be involved in the pathogenesis of primary open angle glaucoma. ET-1 was found in different tissues of the eye and in high concentrations in the aqueous humour. The effects of ET-1 are mediated by two receptors, ET-A receptor (ET-AR) and ET-B receptor (ET-BR), which are both expressed in bovine trabecular meshwork (TM). ET-1 induced contraction of TM predominantly by activation of ET-AR. This study analyzes the role of ET-BR in TM function and investigates the synthesis of ET-1 by human TM (HTM) cells. The effect of IRL-1620, a specific ET-BR agonist, on contractility of bovine TM (BTM) was investigated with a force length transducer system. The effect of this agonist on intracellular free Ca(2+) [Ca(2+)](i) was examined using the Ca(2+)-sensitive dye fura-2AM. The expression of the ET-AR and ET-BR was investigated in cultured HTM cells using Western blot and PCR methods. With PCR methods the expression of prepro-endothelin-1 (ppET-1) and isoforms of endothelin-1 converting enzyme (ECE-1) in cultured HTM cells was analyzed. Activation of ET-BR by IRL-1620 (5 x 10(-7)M) results in contraction of native BTM (41% of the carbachol value) and also in a transient increase in [Ca(2+)](i) in cultured BTM and HTM cells (365 and 273% of the basal level, respectively). IRL-1620 also induced contraction in native BTM under intra- and extracellularly Ca(2+)-free conditions. A clear signal for ET-AR at 40 kDa and ET-BR at 35 kDa could be detected in membrane lysates of cultured HTM cells. PCR analysis further confirmed the existence of ET-AR and ET-BR in these cells. Furthermore, RT-PCR revealed that neither ppET-1 nor one of the ECE-1 isoforms was expressed in cultured HTM cells. This study presents evidence for the expression of a functional ET-BR in bovine and human TM. Currently, there is no evidence for ET-1 synthesis in HTM cells. Further investigations are necessary to clarify the physiological function of ET-BR in TM and the source of ET-1 at this tissue.
Collapse
Affiliation(s)
- Rita Rosenthal
- Institut für Klinische Physiologie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Rho kinase (ROCK1 and ROCK2) is a serine/threonine kinase that serves as an important downstream effector of Rho GTPase, and plays a critical role in regulating the contractile tone of smooth muscle tissues in a calcium-independent manner. Several lines of experimental evidence indicate that modulating ROCK activity within the aqueous humor outflow pathway using selective inhibitors could achieve very significant benefits for the treatment of increased intraocular pressure in patients with glaucoma. The rationale for such an approach stems from experimental data suggesting that both ROCK and Rho GTPase inhibitors can increase aqueous humor drainage through the trabecular meshwork, leading to a decrease in intraocular pressure. In addition to their ocular hypotensive properties, inhibitors of both ROCK and Rho GTPase have been shown to enhance ocular blood flow, retinal ganglion cell survival and axon regeneration. These properties of the ROCK and Rho GTPase inhibitors indicate that targeting the Rho GTPase/ROCK pathway with selective inhibitors represents a novel therapeutic approach aimed at lowering increased intraocular pressure in glaucoma patients.
Collapse
Affiliation(s)
- Vasantha P Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.
| | | |
Collapse
|