1
|
Cheung JKW, Li KK, Zhou L, To CH, Lam TC. Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR). Int J Mol Sci 2024; 25:10644. [PMID: 39408973 PMCID: PMC11476992 DOI: 10.3390/ijms251910644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism in the early stages of myopia. In this study, a data-independent acquisition (SWATH-MS) was combined with targeted LC-ESI-MS/MS to identify and quantify the relative protein changes in the vitreous during the normal growth period (4, 7, 14, 21 and 28 days old) in the chick model. Chicks were raised under normal growing conditions (12/12 h Dark/light cycle) for 28 days, where ocular measurements, including refractive and biometric measurements, were performed on days 4 (baseline), 7, 14, 21 and 28 (n = 6 chicks at each time point). Extracted vitreous proteins from individual animals were digested and pooled into a left eye pool and a right pool at each time point for protein analysis. The vitreous proteome for chicks was generated using an information-dependent acquisition (IDA) method by combining injections from individual time points. Using individual pool samples, SWATH-MS was employed to quantify proteins between each time point. DEPs were subsequently confirmed in separate batches of animals individually on random eyes (n = 4) using MRMHR between day 7 and day 14. Refraction and vitreous chamber depth (VCD) were found to be significantly changed (p < 0.05, n = 6 at each time point) during the period. A comprehensive vitreous protein ion library was built with 1576 non-redundant proteins (22987 distinct peptides) identified at a 1% false discovery rate (FDR). A total of 12 up-regulated and 26 down-regulated proteins were found across all time points compared to day 7 using SWATH-MS. Several DEPs, such as alpha-fetoprotein, the cadherin family group, neurocan, and reelin, involved in structural and growth-related pathways, were validated for the first time using MRMHR under this experimental condition. This study provided the first comprehensive spectral library of the vitreous for chicks during normal growth as well as a list of potential growth-related protein biomarker candidates using SWATH-MS and MRMHR during the emmetropization period.
Collapse
Affiliation(s)
- Jimmy Ka-Wai Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Yuan J, Li L, Fan Y, Xu X, Huang X, Shi J, Zhang C, Shi L, Wang Y. Effects of artificial light with different spectral compositions on refractive development and matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2 expression in the sclerae of juvenile guinea pigs. Eur J Histochem 2024; 68:3982. [PMID: 38934084 PMCID: PMC11228571 DOI: 10.4081/ejh.2024.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Artificial light can affect eyeball development and increase myopia rate. Matrix metalloproteinase 2 (MMP-2) degrades the extracellular matrix, and induces its remodeling, while tissue inhibitor of matrix MMP-2 (TIMP-2) inhibits active MMP-2. The present study aimed to look into how refractive development and the expression of MMP-2 and TIMP-2 in the guinea pigs' remodeled sclerae are affected by artificial light with varying spectral compositions. Three weeks old guinea pigs were randomly assigned to groups exposed to five different types of light: natural light, LED light with a low color temperature, three full spectrum artificial lights, i.e. E light (continuous spectrum in the range of ~390-780 nm), G light (a blue peak at 450 nm and a small valley 480 nm) and F light (continuous spectrum and wavelength of 400 nm below filtered). A-scan ultrasonography was used to measure the axial lengths of their eyes, every two weeks throughout the experiment. Following twelve weeks of exposure to light, the sclerae were observed by optical and transmission electron microscopy. Immunohistochemistry, Western blot and RT-qPCR were used to detect the MMP-2 and TIMP-2 protein and mRNA expression levels in the sclerae. After four, six, eight, ten, and twelve weeks of illumination, the guinea pigs in the LED and G light groups had axial lengths that were considerably longer than the animals in the natural light group while the guinea pigs in the E and F light groups had considerably shorter axial lengths than those in the LED group. Following twelve weeks of exposure to light, the expression of the scleral MMP-2 protein and mRNA were, from low to high, N group, E group, F group, G group, LED group; however, the expression of the scleral TIMP-2 protein and mRNA were, from high to low, N group, E group, F group, G group, LED group. The comparison between groups was statistically significant (p<0.01). Continuous, peaks-free or valleys-free artificial light with full-spectrum preserves remodeling of scleral extracellular matrix in guinea pigs by downregulating MMP-2 and upregulating TIMP-2, controlling eye axis elongation, and inhibiting the onset and progression of myopia.
Collapse
Affiliation(s)
- Jianbao Yuan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing; Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Linfang Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Yi Fan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Xinyu Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Xiaoqiong Huang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Jiayu Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Chuanwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Lixin Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Yuliang Wang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| |
Collapse
|
3
|
Chen YY, Tsai TH, Liu YL, Lin HJ, Wang IJ. The impact of light properties on ocular growth and myopia development. Taiwan J Ophthalmol 2024; 14:143-150. [PMID: 39027063 PMCID: PMC11253990 DOI: 10.4103/tjo.tjo-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of this article is to comprehensively review the effect of environmental lighting on ocular growth and refractive status in both animal and clinical studies, with an emphasis on the underlying mechanisms. This review was performed by searching research articles and reviews utilizing the terms "myopia," "light therapy," "axial length," "refractive error," and "emmetropization" in PubMed datasets. The review was finalized in December 2023. In the animal studies, high lighting brightness, illumination periods aligning with circadian rhythm, and color contrast signals including multiple wavelengths all help regulate ocular growth against myopia. Long wavelengths have been found to induce myopia in chicks, mice, fish, and guinea pigs, whereas shorter wavelengths lead to hyperopia. In contrast, red light has been observed to have a protective effect against myopia in tree shrews and rhesus monkeys. Apart from wavelength, flicker status also showed inconsistent effects on ocular growth, which could be attributed to differences in ocular refractive status, evolutionary disparities in retinal cone cells across species, and the selection of myopia induction models in experiments. In the clinical studies, current evidence suggests a control effect with red light therapy. Although the lighting conditions diverge from those in animal experiments, further reports are needed to assess the long-term effects. In conclusion, this review encompasses research related to the impact of light exposure on myopia and further explores the retinoscleral signaling pathway in refractive development. The aim is to establish a theoretical foundation for optimizing environmental factors in lighting design to address the epidemic of childhood myopia.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Franz-Odendaal TA. The elusive scleral cartilages: Comparative anatomy and development in teleosts and avians. Anat Rec (Hoboken) 2023. [PMID: 37943147 DOI: 10.1002/ar.25345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
The sclera of all vertebrate eyes is comprised of connective tissue, with some organisms developing cartilage within this tissue. A review of the cartilages that have been described in the vertebrate sclera and their anatomical relationships is discussed together with their potential homology. Incorrect terminology erroneously implies similarity in location, development, morphology, and evolution, which may lead some scientists to assume all cartilages in orbit are the same elements when reading the literature. Therefore, new terminology to distinguish the different types of cartilage associated with the vertebrate eye is proposed. The scleral cartilages that are likely homologous to one another and which are situated in the sclera, should be termed scleral cartilages sensu stricto, while other cartilages in the sclera should be termed ocular cartilages. Some of the cartilages also ossify, and these bones should be distinguished from the scleral ossicles. The plasticity of the scleral tissue layer and its range of morphologies from fibrous to cartilaginous connective tissue across different vertebrate lineages are also described. This review also highlights several gaps in our understanding of the vertebrate scleral cartilages, in particular.
Collapse
|
5
|
Single-cell atlas of keratoconus corneas revealed aberrant transcriptional signatures and implicated mechanical stretch as a trigger for keratoconus pathogenesis. Cell Discov 2022; 8:66. [PMID: 35821117 PMCID: PMC9276680 DOI: 10.1038/s41421-022-00397-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
Keratoconus is a common ectatic corneal disorder in adolescents and young adults that can lead to progressive visual impairment or even legal blindness. Despite the high prevalence, its etiology is not fully understood. In this study, we performed single-cell RNA sequencing (scRNA-Seq) analysis on 39,214 cells from central corneas of patients with keratoconus and healthy individuals, to define the involvement of each cell type during disease progression. We confirmed the central role of corneal stromal cells in this disease, where dysregulation of collagen and extracellular matrix (ECM) occurred. Differential gene expression and histological analyses revealed two potential novel markers for keratoconus stromal cells, namely CTSD and CTSK. Intriguingly, we detected elevated levels of YAP1 and TEAD1, the master regulators of biomechanical homeostasis, in keratoconus stromal cells. Cyclical mechanical experiments implicated the mechanical stretch in prompting protease production in corneal stromal cells during keratoconus progression. In the epithelial cells of keratoconus corneas, we observed reduced basal cells and abnormally differentiated superficial cells, unraveling the corneal epithelial lesions that were usually neglected in clinical diagnosis. In addition, several elevated cytokines in immune cells of keratoconus samples supported the involvement of inflammatory response in the progression of keratoconus. Finally, we revealed the dysregulated cell-cell communications in keratoconus, and found that only few ligand-receptor interactions were gained but a large fraction of interactional pairs was erased in keratoconus, especially for those related to protease inhibition and anti-inflammatory process. Taken together, this study facilitates the understanding of molecular mechanisms underlying keratoconus pathogenesis, providing insights into keratoconus diagnosis and potential interventions.
Collapse
|
6
|
Modulation of the Physical Properties of 3D Spheroids Derived from Human Scleral Stroma Fibroblasts (HSSFs) with Different Axial Lengths Obtained from Surgical Patients. Curr Issues Mol Biol 2021; 43:1715-1725. [PMID: 34698138 PMCID: PMC8929070 DOI: 10.3390/cimb43030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
In the current study, to elucidate the pathological characteristics of myopic scleral stroma, three-dimensional (3D) cultures of human scleral stroma fibroblasts (HSSFs) with several axial lengths (AL, 22.80–30.63 mm) that were obtained from patients (n = 7) were examined. Among the three groups of ALs, <25 mm (n = 2), 25–30 mm (n = 2), and >30 mm (n = 3), the physical properties of the 3D HSSFs spheroids with respect to size and stiffness, the expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6 and fibronectin (FN) by qPCR and immunohistochemistry (IHC), and the mRNA expression of ECM metabolism modulators including hypoxia-inducible factor 1A (HIF 1A), HIF 2A, lysyl oxidase (LOX), tissue inhibitor of metalloproteinase (TIMP) 1–4, and matrix metalloproteinase (MMP) 2, 9, and 14 as well as several endoplasmic reticulum (ER) stress-related factors were compared. In the largest AL group (>30 mm), the 3D HSSFs spheroids were (1) significantly down-sized and less stiff compared to the other groups, and (2) significant changes were detected in the expression of some ECMs (qPCR; the up-regulation of COL1 and COL4, and the down-regulation of FN, IHC; the up-regulation of COL1 and FN, and down-regulation of COL4). The mRNA expressions of ECM modulators and ER stress-related genes were also altered with increasing AL length (up-regulation of HIF2A, MMP2, XBP1, and MMP14, down-regulation of LOX, TIMP 2 and 3, GRP78, GRP94, IRE1, and ATF6). In addition, a substantial down-regulation of some ER stress-related genes (ATF4, sXPB1 and CHOP) was observed in the 25–30 mm AL group. The findings presented herein suggest that small and stiffer 3D HSSFs spheroids in the largest AL group may accurately replicate the pathological significance of scleral thinning and weakening in myopic eyes. In addition, the modulation of several related factors among the different AL groups may also provide significant insights into our understanding of the molecular mechanisms responsible for causing myopic changes in the sclera.
Collapse
|
7
|
She M, Li B, Li T, Hu Q, Zhou X. Modulation of the ERK1/2-MMP-2 pathway in the sclera of guinea pigs following induction of myopia by flickering light. Exp Ther Med 2021; 21:371. [PMID: 33732344 PMCID: PMC7903414 DOI: 10.3892/etm.2021.9802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
It has been shown that flickering light can affect the development of eyeballs. However, the exact mechanism remains unclear. The ERK1/2-MMP-2 pathway is a classic pathway involved in the modulation of the extracellular matrix (ECM) in cancer tissues. However, to the best of our knowledge, the role of this pathway in modulating the scleral ECM in myopia has not been previously examined. The present study aimed to determine the effects of the ERK1/2-MMP-2 pathway on the formation of flickering light-induced myopia (FLM). Guinea pigs were raised under illumination at a flash rate of 0.5 Hz for 6 weeks to induce FLM. Peribulbar injections of dimethylsulfoxide or PD98059 (an inhibitor of phospho-ERK1/2) were administered starting at the third week of FLM modeling. Refraction was measured prior to and following treatments. The thickness of the posterior sclera (PS) was measured under a light microscope following H&E staining. The mRNA levels of MMP-2 were detected by the reverse transcription-quantitative PCR assay. The expression levels of MMP-2 and ERK1/2 were assayed by western blot and immunohistochemical analyses. Following 6 weeks of treatment, the refraction of the FLM group became more myopic compared with that of the control group, while PD98059 treatment inhibited the changes noted in the refraction. A marked reduction in the thickness of PS was observed in the FLM group, while PD98059 inhibited the remodeling of PS. In addition, the expression levels of MMP-2 and protein levels of phospho-ERK1/2 were increased in the FLM group, while PD98059 significantly inhibited MMP-2 mRNA and protein levels. These results indicated that ERK1/2-MMP-2 may be involved in the formation of FLM in guinea pigs by regulating the remodeling of PS.
Collapse
Affiliation(s)
- Man She
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Bing Li
- Central Laboratory, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Qianqian Hu
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
8
|
Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ. Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother 2021; 133:111092. [PMID: 33378986 DOI: 10.1016/j.biopha.2020.111092] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
This review provides insights into the mechanism underlying the pathogenesis of myopia and potential targets for clinical intervention. Although the etiology of myopia involves both environmental and genetic factors, recent evidence has suggested that the prevalence and severity of myopia appears to be affected more by environmental factors. Current pharmacotherapeutics are aimed at inhibiting environmentally induced changes in visual input and subsequent changes in signaling pathways during myopia pathogenesis and progression. Recent studies on animal models of myopia have revealed specific molecules potentially involved in the regulation of eye development. Among them, the dopamine receptor plays a critical role in controlling myopia. Subsequent studies have reported pharmacotherapeutic treatments to control myopia progression. In particular, atropine treatment yielded favorable outcomes and has been extensively used; however, current studies are aimed at optimizing its efficacy and confirming its safety. Furthermore, future studies are required to assess the efficacy of combinatorial use of low-dose atropine and contact lenses or orthokeratology.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Camille Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Justine Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lillian Chien
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Shih
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Luke L K Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, KLN, Hong Kong, China.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Oral Bovine Milk Lactoferrin Administration Suppressed Myopia Development through Matrix Metalloproteinase 2 in a Mouse Model. Nutrients 2020; 12:nu12123744. [PMID: 33291388 PMCID: PMC7762016 DOI: 10.3390/nu12123744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies have reported an association between myopia development and local ocular inflammation. Lactoferrin (LF) is an iron-binding protein present in saliva, tears, and mother’s milk. Furthermore, sequestering iron by LF can cause its antibacterial property. Moreover, LF has an anti-inflammatory effect. We aimed to determine the suppressive effect of LF against the development and progress of myopia using a murine lens-induced myopia (LIM) model. We divided male C57BL/6J mice (3 weeks old) into two groups. While the experimental group was orally administered LF (1600 mg/kg/day, from 3-weeks-old to 7-weeks-old), a similar volume of Ringer’s solution was administered to the control group. We subjected the 4-week-old mice to −30 diopter lenses and no lenses on the right and left eyes, respectively. We measured the refraction and the axial length at baseline and 3 weeks after using a refractometer and a spectral domain optical coherence tomography (SD-OCT) system in both eyes. Furthermore, we determined the matrix metalloproteinase-2 (MMP-2) activity, and the amount of interleukin-6 (IL-6), MMP-2, and collagen 1A1 in the choroid or sclera. The eyes with a minus lens showed a refractive error shift and an axial length elongation in the control group, thus indicating the successful induction of myopia. However, there were no significant differences in the aforementioned parameters in the LF group. While LIM increased IL-6 expression and MMP-2 activity, it decreased collagen 1A1 content. However, orally administered LF reversed these effects. Thus, oral administration of LF suppressed lens-induced myopia development by modifying the extracellular matrix remodeling through the IL-6–MMP-2 axis in mice.
Collapse
|
10
|
Zhang Y, Azmoun S, Hang A, Zeng J, Eng E, Wildsoet CF. Retinal defocus and form-deprivation induced regional differential gene expression of bone morphogenetic proteins in chick retinal pigment epithelium. J Comp Neurol 2020; 528:2864-2873. [PMID: 32452548 DOI: 10.1002/cne.24957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
We previously reported bidirectional gene expression regulation of the Bone Morphogenetic Proteins (BMP2, 4, and 7) in chick retinal pigment epithelium (RPE) in response to imposed optical defocus and form-deprivation (FD). This study investigated whether there are local (regional) differences in these effects. 19-day old White-Leghorn chicks wore monocular +10 or - 10 D lenses, or diffusers (FD) for 2 or 48 hr, after which RPE samples were collected from both eyes, from a central circular zone (3 mm radius), and 3 mm wide annular mid-peripheral and peripheral zones in all cases. BMP2, 4, and 7 gene expression levels in RPE from treated and fellow control eyes were compared as well as differences across zones. With the +10 D lens, increased expression of both BMP2 and BMP4 genes was observed in central and mid-peripheral zones but not the peripheral zone after 2 and 48 hr. In contrast, with the -10 D lens BMP2 gene expression was significantly decreased in all three zones after 2 and 48 hr. Similar patterns of BMP2 gene expression were observed in all three zones after 48 hr of FD. Smaller changes were recorded for BMP4 and BMP7 gene expression for both myopia-inducing treatments. That optical defocus- and FD-induced changes in BMP gene expression in chick RPE show treatment-dependent local (regional) differences suggest important differences in the nature and contributions of local retinal and underlying RPE regions to eye growth regulation.
Collapse
Affiliation(s)
- Yan Zhang
- School of Optometry, University of California, Berkeley, California, USA
| | - Sara Azmoun
- School of Optometry, University of California, Berkeley, California, USA
| | - Abraham Hang
- School of Optometry, University of California, Berkeley, California, USA
| | - Jiexi Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Emily Eng
- School of Optometry, University of California, Berkeley, California, USA
| | | |
Collapse
|
11
|
Ding X, Fu D, Ge S, Guan Q, Chen M, Yu Z. DNA methylation and mRNA expression of IGF-1 and MMP-2 after form-deprivation myopia in guinea pigs. Ophthalmic Physiol Opt 2020; 40:491-501. [PMID: 32495406 DOI: 10.1111/opo.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/04/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE The molecular mechanism of form-deprivation myopia is unclear. This study was aimed to investigate the roles of scleral DNA methylation and mRNA expression of IGF-1 and MMP-2 in a guinea pig model of form-deprivation myopia. METHODS Seventy 2-week-old male guinea pigs were assigned to three groups: (1) zero week group that was used to collect baseline data; (2) monocular deprivation treatment (MDT) group, in which a thin slice of opaque latex glove was placed over the right eyes of the animals for four weeks, and the left eyes were untreated and served as the monocular contralateral control (MCC) group; (3) control group (CG), in which the animals grew four weeks, but received no manipulation. Animals in each group were evenly divided for DNA methylation assay and quantitative PCR (qPCR). After eye enucleation, the sclerae were harvested for DNA methylation assay and qPCR. The DNA methylation pattern in the promoter and exon regions of IGF-1 and MMP-2, along with the mRNA expression level of them, were determined by base-specific cleavage and mass spectrometry and qPCR, respectively. RESULTS After four weeks of form-deprivation, DNA methylation at 4/8 cytosine-guanine sites in the IGF-1 promoter was significantly lower in the MDT eyes than in the MCC or CG eyes. In addition, the level of IGF-1 mRNA was moderately higher in MDT eyes compared to the MCC eyes and CG eyes. DNA methylation at 4/14 cytosine-guanine sites in the MMP-2 gene was very low, and no significant change was observed between the MDT eyes and the MCC or CG ones. However, the level of MMP-2 mRNA in MDT eyes was significant higher compared with MCC eyes and CG eyes, with an increase of 217% and 222%, respectively. CONCLUSIONS In our guinea pig model of form-deprivation myopia, the methylation of four cytosine-guanine sites in the IGF-1 gene promoter was significantly lower in the sclera after four weeks of MDT, and the transcription level of scleral IGF-1 was moderately higher. Hence, the IGF-1 gene methylation might play a role in the pathogenesis of form-deprivation myopia in guinea pigs. The level of MMP-2 mRNA in the sclera of MDT eyes was significantly higher, but not regulated by the methylation pathway, as the methylation status of MMP-2 was unchanged.
Collapse
Affiliation(s)
- Xuan Ding
- Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Fu
- Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shichao Ge
- Department of Research & Development, Shanghai Benegene Biotechnology Inc., Shanghai, China
| | - Qinghua Guan
- Department of Research & Development, Shanghai Benegene Biotechnology Inc., Shanghai, China
| | - Minjie Chen
- Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Yu
- Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
12
|
Hu DN, Yao S, Iacob CE, Giovinazzo J, Rosen RB, Grossniklaus HE, Sassoon J. Quantitative Study of Human Scleral Melanocytes and Their Topographical Distribution. Curr Eye Res 2020; 45:1563-1571. [PMID: 32397839 DOI: 10.1080/02713683.2020.1767789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE While fibroblasts constitute the main cell component of the sclera, the purpose of the present study was to investigate the cell densities of melanocytes at different regions of the sclera, and to compare them with associated scleral fibroblast densities in human donor eye sections. METHODS . Paraffin-embedded sections of sclera from 21 human eyes were stained with hematoxylin-eosin (H&E) and immunohistochemical staining (S-100/AEC). Scleral melanocyte and fibroblast numbers were counted in different regions of the sclera. The relationship between the melanocyte density and iris pigmentation was also analyzed. RESULTS . Melanocytes were found in the posterior region of the sclera, especially around the vessels and nerves in emmissarial canals, whereas no or rare melanocytes were found in equatorial and anterior regions. In H&E sections, melanocyte densities in eyes with light-colored irides were significantly less than in eyes with medium or dark-colored irides (P < .05). In S-100-stained sections, more melanocytes could be detected than those in the H&E sections in light-colored eyes (P < .05), but not in medium or dark-colored eyes (P > .05). The numbers of scleral fibroblasts were relatively stable in different regions. In the posterior scleral region, the numbers of fibroblasts were slightly higher than the number of melanocytes, however, this differences were not statistically significant (P > .05). CONCLUSION . Notable numbers of melanocytes were present in the posterior sclera suggesting that these cells may play a role in ocular physiology and in the pathogenesis of various disorders of the sclera.
Collapse
Affiliation(s)
- Dan-Ning Hu
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Shen Yao
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Codrin E Iacob
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Jerome Giovinazzo
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA
| | - Richard B Rosen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai , New York, NY, USA.,Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA
| | | | - Jodi Sassoon
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| |
Collapse
|
13
|
Tkatchenko TV, Tkatchenko AV. Pharmacogenomic Approach to Antimyopia Drug Development: Pathways Lead the Way. Trends Pharmacol Sci 2019; 40:833-852. [PMID: 31676152 DOI: 10.1016/j.tips.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Myopia is the most common eye disorder in the world which is caused by a mismatch between the optical power of the eye and its excessively long axial length. Recent studies revealed that the regulation of the axial length of the eye occurs via a complex signaling cascade, which originates in the retina and propagates across all ocular tissues to the sclera. The complexity of this regulatory cascade has made it particularly difficult to develop effective antimyopia drugs. The current pharmacological treatment options for myopia are limited to atropine and 7-methylxanthine, which have either significant adverse effects or low efficacy. In this review, we focus on the recent advances in genome-wide studies of the signaling pathways underlying myopia development and discuss the potential of systems genetics and pharmacogenomic approaches for the development of antimyopia drugs.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Kato M, Sato K, Habuta M, Fujita H, Bando T, Morizane Y, Shiraga F, Miyaishi S, Ohuchi H. Localization of the ultraviolet-sensor Opn5m and its effect on myopia-related gene expression in the late-embryonic chick eye. Biochem Biophys Rep 2019; 19:100665. [PMID: 31463372 PMCID: PMC6709407 DOI: 10.1016/j.bbrep.2019.100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies show that exposure to ultraviolet (UV) light suppresses ocular elongation, which causes myopia development. However, the specific mechanisms of this process have not been elucidated. A UV-sensor, Opsin 5 (Opn5) mRNA was shown to be present in extraretinal tissues. To test the possibility that UV-signals mediated by Opn5 would have a direct effect on the outer connective tissues of the eye, we first examined the expression patterns of a mammalian type Opn5 (Opn5m) in the late-embryonic chicken eye. Quantitative PCR showed Opn5m mRNA expression in the cornea and sclera. The anti-Opn5m antibody stained a small subset of cells in the corneal stroma and fibrous sclera. We next assessed the effect of UV-A (375 nm) irradiation on the chicken fibroblast cell line DF-1 overexpressing chicken Opn5m. UV-A irradiation for 30 min significantly increased the expression of Early growth response 1 (Egr1), known as an immediate early responsive gene, and of Matrix metalloproteinase 2 (Mmp2) in the presence of retinal chromophore 11-cis-retinal. In contrast, expression of Transforming growth factor beta 2 and Tissue inhibitor of metalloproteinase 2 was not significantly altered. These results indicate that UV-A absorption by Opn5m can upregulate the expression levels of Egr1 and Mmp2 in non-neuronal, fibroblasts. Taken together with the presence of Opn5m in the cornea and sclera, it is suggested that UV-A signaling mediated by Opn5 in the extraretinal ocular tissues could influence directly the outer connective tissues of the chicken late-embryonic eye. Opsin 5 (Opn5) is a non-visual ultraviolet-A (UV-A) absorbing photopigment. We found an Opn5 (Opn5m) is present in cornea and sclera of late-embryonic chick. UV-A absorption by Opn5m upregulated Egr1 and Mmp2 expression in chick fibroblasts. UV-A signaling via Opn5m may have a direct effect on the ocular fibroblasts.
Collapse
Key Words
- Chicken
- Egr1
- Egr1, Early growth response 1
- Fibroblasts
- Gapdh, Glyceraldehyde-3-phosphate dehydrogenase
- MAP kinase, mitogen-activated protein kinase
- Mmp2
- Mmp2, Matrix metalloproteinase 2
- Opn5, Opsin 5
- Opn5m, mammalian type Opn5
- Opsin 5
- Tgfb2, Transforming growth factor beta 2
- Timp2, Tissue inhibitor of metalloproteinase 2
- UV, ultraviolet
- UV-A, ultraviolet-A
- UV-Absorbing pigment
- cAMP, cyclic adenosine monophosphate
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Mutsuko Kato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Miyaishi
- Department of Legal Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Zhang Y, Phan E, Wildsoet CF. Retinal Defocus and Form-Deprivation Exposure Duration Affects RPE BMP Gene Expression. Sci Rep 2019; 9:7332. [PMID: 31089149 PMCID: PMC6517395 DOI: 10.1038/s41598-019-43574-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
In the context of ocular development and eye growth regulation, retinal defocus and/or image contrast appear key variables although the nature of the signal(s) relayed from the retina to the sclera remains poorly understood. Nonetheless, under optimal visual conditions, eye length is brought into alignment with its optical power to achieve approximate emmetropia, through appropriate adjustment to eye growth. The retinal pigment epithelium (RPE), which lies between the retina and choroid/sclera, appears to play a crucial role in this process. In the investigations reported here, we used a chick model system to assess the threshold duration of exposure to lens-imposed defocus and form-deprivation necessary for conversion of evoked retinal signals into changes in BMP gene expression in the RPE. Our study provides evidence for the following: 1) close-loop, optical defocus-guided (negative and positive lenses) bidirectional BMP gene expression regulation, 2) open-loop, form-deprivation (diffusers)-induced down-regulation of BMP gene expression, and 3) early, transient up-regulation of BMP gene expression in response to both types of lens and diffuser applications. The critical exposure for accurately encoding retinal images as biological signals at the level of the RPE is in the order of minutes to hours, depending on the nature of the visual manipulations.
Collapse
Affiliation(s)
- Yan Zhang
- School of Optometry, University of California, Berkeley, Berkeley, CA, USA.
| | - Eileen Phan
- School of Optometry, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
16
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Cause and Effect Relationship between Changes in Scleral Matrix Metallopeptidase-2 Expression and Myopia Development in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1754-1767. [DOI: 10.1016/j.ajpath.2018.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/21/2018] [Accepted: 04/06/2018] [Indexed: 12/29/2022]
|
18
|
Seleem AA, Sultan ARS, Said A, Shahat MM, Moustafa MA. Localization of connective tissue growth factor (CTGF) and transforming growth factor beta-2 (TGF-β2) during eye development of four species of birds. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1475861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Amin A. Seleem
- Biology Department, Faculty of Science and Arts, Taibah University, Allula, Kingdom of Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Ahmed Said
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed M. Shahat
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohsen A. Moustafa
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
19
|
Hammer CL, Franz-Odendaal TA. Towards understanding the dose and timing effect of hydrocortisone treatment on the scleral ossicle system within the chicken eye. J Anat 2017; 232:270-282. [PMID: 29210090 DOI: 10.1111/joa.12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2017] [Indexed: 10/18/2022] Open
Abstract
Previous work, almost four decades ago, showed that hydrocortisone (HC) treatment reduces the number of skeletogenic condensations that give rise to the scleral ossicles in the chicken eye. The scleral ossicles are a ring of overlapping intramembranous bones, the sclerotic ring, and are present in most reptiles, including birds. The scleral condensations that give rise to the scleral ossicles are induced by a series of overlying thickenings (or papillae) of the conjunctival epithelium. Here, we further explore the effects of altering the dosage and timing of HC treatment on the morphology and number of skeletogenic condensations and conjunctival papillae. We show that high doses can completely obliterate the entire sclerotic ring. Significantly, the reduction in papillae number we observed was less extreme than that of the scleral condensations, indicating that additional factors contribute to the observed skeletogenic condensation loss. Via immunohistochemical analyses, we show that HC treatment alters the spatial expression pattern of several extracellular matrix components (tenascin-C, decorin and procollagen I) and also alters the vasculature network within the sclera. This research provides important insights into understanding the role of the scleral tissue components in ossicle development within the vertebrate eye.
Collapse
|
20
|
Jia Y, Yue Y, Hu DN, Chen JL, Zhou JB. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases. Biomed Rep 2017; 7:573-578. [PMID: 29188062 DOI: 10.3892/br.2017.1004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
Abstract
The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyzed using the Spearmans correlation test. The levels of TGF-β2 were identified to be positively correlated with the levels of TIMP-1 and TIMP-3 (TIMP-1: r=0.334; P=0.007; TIMP-3: r=0.309; P=0.012). The levels of MMP-2, MMP-3 and TIMP-2 did not significantly correlate with TGF-β2 levels (P>0.05). A positive correlation was identified between TGF-β2 and TIMPs in the aqueous humor of human eyes with elongated axial length. It appears that TGF-β2 stimulates the expression of TIMPs as a compensatory reaction to the development of high myopia.
Collapse
Affiliation(s)
- Yan Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China.,Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai Fudan University, School of Medicine, Shanghai 201102, P.R. China
| | - Yu Yue
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Dan-Ning Hu
- Departments of Ophthalmology and Pathology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Ji-Li Chen
- Department of Ophthalmology, Shibei Hospital, Shanghai 200435, P.R. China
| | - Ji-Bo Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
21
|
Xi LYY, Yip SP, Shan SW, Summers-Rada J, Kee CS. Region-specific differential corneal and scleral mRNA expressions of MMP2, TIMP2, and TGFB2 in highly myopic-astigmatic chicks. Sci Rep 2017; 7:11423. [PMID: 28900109 PMCID: PMC5595952 DOI: 10.1038/s41598-017-08765-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Myopia and astigmatism, two common refractive errors frequently co-exist, are affecting vision at all working distances in the affected populations worldwide. Eyeballs having these refractive errors are known to exhibit abnormal eye shape at the anterior and posterior eye segments, but whether the outer coats of these abnormal eyeballs, cornea anteriorly and sclera posteriorly, are regulated by region-specific molecular mechanism remains unclear. Here we presented the changes in mRNA expression levels of three genes (MMP2, TIMP2, and TGFB2), all known to participate in extracellular matrix organization, at five regions of the cornea and sclera in chickens developing high myopia and astigmatism induced by form deprivation. We found that, compared to normal chicks, the highly myopic-astigmatic chicks had significantly higher expression of all three genes in the superior sclera (Mann-Whitney tests, all p ≤ 0.05), as well as higher TIMP2 expression in the central cornea and nasal sclera (Mann-Whitney tests, both p ≤ 0.05). Strikingly, the superior scleral region stood out as showing the strongest and most widespread correlations between mRNA expression and biometry parameters including axial and astigmatic components (r = + 0.52~ + 0.85, all p < 0.05). These results imply that local molecular mechanism may manipulate the eye shape remodeling across the globe during refractive-error development.
Collapse
Affiliation(s)
- Lisa Yan-Yan Xi
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Jody Summers-Rada
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Chea-Su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.
| |
Collapse
|
22
|
Jia Y, Hu DN, Sun J, Zhou J. Correlations Between MMPs and TIMPs Levels in Aqueous Humor from High Myopia and Cataract Patients. Curr Eye Res 2016; 42:600-603. [PMID: 28402202 DOI: 10.1080/02713683.2016.1223317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To study the relationships between matrix metalloproteinases (MMP)-2, MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3 aqueous humor levels in patients with high myopia or cataract. MATERIALS AND METHODS MMPs and TIMPs protein levels in 65 aqueous humor samples collected from patients with high myopia or cataract during cataract or clear lens extraction surgery were measured with the Luminex xMAP Technology. The relationship between MMPs and TIMPs levels was analyzed with Spearman's correlation test. RESULTS MMP-2 levels, but not MMP-3 levels, were increased in the aqueous humor from high-myopia patients. Levels of TIMP-1, -2, and -3 were positively and very significantly correlated with the MMP-2 levels (TIMP-1: r=0.626, p < 0.001; TIMP-2: r = 0.545, p < 0.001; TIMP-3: r = 0.439, p < 0.001). TIMP-2 and-3 levels did not significantly correlate with MMP-3 levels (TIMP-2: r = 0.175, p > 0.05; TIMP-3: r = 0.127, p > 0.05) and TIMP-1 levels only marginally correlated with MMP-3 levels (r = 0.278, 0.01< P < 0.05). CONCLUSIONS Compared to the present findings with the relationship of MMPs and TIMPs in other fields of medicine, our results are consistent with the homeostasis hypothesis that the increase of TIMPs serves as a compensation reaction to inhibit the excessive degradation caused by the increase of MMPs and limits the development of myopia.
Collapse
Affiliation(s)
- Yan Jia
- a Department of Ophthalmology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai , P. R. China
| | - Dan-Ning Hu
- b Departments of Ophthalmology and Pathology , New York Eye and Ear Infirmary of Mount Sinai , New York , NY USA
| | - Jing Sun
- a Department of Ophthalmology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai , P. R. China
| | - Jibo Zhou
- a Department of Ophthalmology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai , P. R. China
| |
Collapse
|
23
|
Zhang Y, Raychaudhuri S, Wildsoet CF. Imposed Optical Defocus Induces Isoform-Specific Up-Regulation of TGFβ Gene Expression in Chick Retinal Pigment Epithelium and Choroid but Not Neural Retina. PLoS One 2016; 11:e0155356. [PMID: 27214233 PMCID: PMC4877072 DOI: 10.1371/journal.pone.0155356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This study investigated the gene expression of TGFβ isoforms and their receptors in chick retina, retinal pigment epithelium (RPE), and choroid and the effects of short-term imposed optical defocus. METHODS The expression of TGFβ isoforms (TGF-β1, 2, 3) and TGFβ receptors (TGFBR1, 2, 3) was examined in the retina, RPE, and choroid of young White-Leghorn untreated chicks (19 days-old). The effects on the expression of the same genes of monocular +10 and -10 D defocusing lenses, worn for either 2 or 48 h by age-matched chicks, were also examined by comparing expression in treated and untreated fellow eyes. RNA was purified, characterized and then reverse transcribed to cDNA. Differential gene expression was quantified using real-time PCR. RESULTS All 3 isoforms of TGFβ and all 3 receptor subtypes were found to be expressed in all 3 ocular tissues, with apparent tissue-dependent differences in expression profiles. Data are reported as mean normalized expression relative to GAPDH. Sign-dependent optical defocus effects were also observed. Optical defocus did not affect retinal gene expression but in the RPE, TGF-β2 expression was significantly up-regulated with +10 D lenses, worn for either 2 h (349% increase ± 88%, p < 0.01) or 48 h (752% increase ± 166%, p < 0.001), and in the choroid, the expression of TGF-β3 was up-regulated with -10 D lenses, worn for 48 h (147% increase ± 9%, p < 0.01). CONCLUSIONS The effects of short term exposure to optical defocus on TGFβ gene expression in the RPE and choroid, which were sign-dependent and isoform specific, provide further supporting evidence for important roles of members of the TGFβ family and these two tissues in local signal cascades regulating ocular growth.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Eye Disease & Development, Vision Science Program & School of Optometry, University of California, Berkeley, California, United States of America
| | - Suravi Raychaudhuri
- Center for Eye Disease & Development, Vision Science Program & School of Optometry, University of California, Berkeley, California, United States of America
| | - Christine F. Wildsoet
- Center for Eye Disease & Development, Vision Science Program & School of Optometry, University of California, Berkeley, California, United States of America
| |
Collapse
|
24
|
Gao TT, Long Q, Yang X. Complement factors C1q, C3 and C5b-9 in the posterior sclera of guinea pigs with negative lens-defocused myopia. Int J Ophthalmol 2015; 8:675-80. [PMID: 26309860 DOI: 10.3980/j.issn.2222-3959.2015.04.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the expression of complement factors in the posterior scleral fibroblasts of guinea pigs with negative lens-defocused myopia. METHODS Eighteen guinea pigs were assigned randomly to two groups: the negative lens-defocused group (NLD group, n=9) and the normal control without treatment group (NC group, n=9). The effect of myopic induction was compared in three subgroups: eyes treated with a -10.00 D negative lens in the NLD group (NL group), eyes treated with a plano (0 D) lens in the NLD group (PL group), and untreated right eyes in the NC group (NC group). The following analyses were conducted at four weeks: examination of the refractive error via retinoscopy, assessment of complement C5b-9 expression in the posterior scleral fibroblasts using immunohistochemistry, and measurements of complement C1q and C3 protein levels in the posterior sclera by Western blot. RESULTS After an induction period of four weeks, a significant myopic shift was detected in the eyes of the NL group, relative to that of the PL and NC groups (P<0.05). Data analysis showed a significant increase in the percentage of C5b-9 immunopositive fibroblasts in the posterior sclera of the NL group eyes, compared to the PL group (q=11.50, P<0.001). Significantly higher levels of C1q (q=4.94, P=0.01) and C3 (q=4.07, P=0.03) protein were detected in the posterior sclera of NL group eyes, compared to the PL group. There were no significant difference between the PL and NC groups for C5b-9 (q=2.44, P=0.10), C1q (q=1.55, P=0.53) and C3 (q=0.98, P=0.77) in the posterior sclera. CONCLUSION The data from present study provide evidence of the up-regulation of C5b-9, C1q and C3 in the posterior scleral fibroblasts in a NLD myopic animal model. The results suggest that the complement system may be involved in the development of myopia.
Collapse
Affiliation(s)
- Ting-Ting Gao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xue Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
25
|
Zhu H, Wang J, Cui J, Fan X. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts. Toxicol Ind Health 2014; 32:1042-51. [PMID: 25147305 DOI: 10.1177/0748233714545837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid in response to three myopiagenic conditions. Vision Res 2014; 102:52-63. [PMID: 25072854 DOI: 10.1016/j.visres.2014.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
Abstract
We examined gene expression in tree shrew choroid in response to three different myopiagenic conditions: minus lens (ML) wear, form deprivation (FD), and continuous darkness (DK). Four groups of tree shrews (n=7 per group) were used. Starting 24 days after normal eye opening (days of visual experience [DVE]), the ML group wore a monocular -5D lens for 2 days. The FD group wore a monocular translucent diffuser for 2 days. The DK group experienced continuous darkness binocularly for 11 days, starting at 17 DVE. An age-matched normal group was examined at 26 DVE. Quantitative PCR was used to measure the relative (treated eye vs. control eye) differences in mRNA levels in the choroid for 77 candidate genes. Small myopic changes were observed in the treated eyes (relative to the control eyes) of the ML group (-1.0±0.2D; mean±SEM) and FD group (-1.9±0.2D). A larger myopia developed in the DK group (-4.4±1.0D) relative to Normal eyes (both groups, mean of right and left eyes). In the ML group, 28 genes showed significant differential mRNA expression; eighteen were down-regulated. A very similar pattern occurred in the FD group; twenty-seven of the same genes were similarly regulated, along with five additional genes. Fewer expression differences in the DK group were significant compared to normal or the control eyes of the ML and FD groups, but the pattern was similar to that of the ML and FD differential expression patterns. These data suggest that, at the level of the choroid, the gene expression signatures produced by "GO" emmetropization signals are highly similar despite the different visual conditions.
Collapse
Affiliation(s)
- Li He
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, United States
| | - Michael R Frost
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, United States.
| | - John T Siegwart
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, United States
| | - Thomas T Norton
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, United States
| |
Collapse
|
27
|
He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Exp Eye Res 2014; 123:56-71. [PMID: 24742494 PMCID: PMC4155741 DOI: 10.1016/j.exer.2014.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/20/2014] [Accepted: 04/03/2014] [Indexed: 01/19/2023]
Abstract
Gene expression in tree shrew choroid was examined during the development of minus-lens induced myopia (LIM, a GO condition), after completion of minus-lens compensation (a STAY condition), and early in recovery (REC) from induced myopia (a STOP condition). Five groups of tree shrews (n = 7 per group) were used. Starting 24 days after normal eye-opening (days of visual experience [DVE]), one minus-lens group wore a monocular -5 D lens for 2 days (LIM-2), another minus-lens group achieved stable lens compensation while wearing a monocular -5 D lens for 11 days (LIM-11); a recovery group also wore a -5 D lens for 11 days and then received 2 days of recovery starting at 35 DVE (REC-2). Two age-matched normal groups were examined at 26 DVE and 37 DVE. Quantitative PCR was used to measure the relative differences in mRNA levels in the choroid for 77 candidate genes that were selected based on previous studies or because a whole-transcriptome analysis suggested their expression would change during myopia development or recovery. Small myopic changes were observed in the treated eyes of the LIM-2 group (-1.0 ± 0.2 D; mean ± SEM) indicating eyes were early in the process of developing LIM. The LIM-11 group exhibited complete refractive compensation (-5.1 ± 0.2 D) that was stable for five days. The REC-2 group recovered by 1.3 ± 0.3 D from full refractive compensation. Sixty genes showed significant mRNA expression differences during normal development, LIM, or REC conditions. In LIM-2 choroid (GO), 18 genes were significantly down-regulated in the treated eyes relative to the fellow control eyes and 10 genes were significantly up-regulated. In LIM-11 choroid (STAY), 10 genes were significantly down-regulated and 12 genes were significantly up-regulated. Expression patterns in GO and STAY were similar, but not identical. All genes that showed differential expression in GO and STAY were regulated in the same direction in both conditions. In REC-2 choroid (STOP), 4 genes were significantly down-regulated and 18 genes were significantly up-regulated. Thirteen genes showed bi-directional regulation in GO vs. STOP. The pattern of differential gene expression in STOP was very different from that in GO or in STAY. Significant regulation was observed in genes involved in signaling as well as extracellular matrix turnover. These data support an active role for the choroid in the signaling cascade from retina to sclera. Distinctly different treated eye vs. control eye mRNA signatures are present in the choroid in the GO, STAY, and STOP conditions. The STAY signature, present after full compensation has occurred and the GO visual stimulus is no longer present, may participate in maintaining an elongated globe. The 13 genes with bi-directional expression differences in GO and STOP responded in a sign of defocus-dependent manner. Taken together, these data further suggest that a network of choroidal gene expression changes generate the signal that alters scleral fibroblast gene expression and axial elongation rate.
Collapse
Affiliation(s)
- Li He
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA.
| | - Michael R Frost
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| | - John T Siegwart
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| | - Thomas T Norton
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| |
Collapse
|
28
|
Hammond DS, Wallman J, Wildsoet CF. Dynamics of active emmetropisation in young chicks--influence of sign and magnitude of imposed defocus. Ophthalmic Physiol Opt 2013; 33:215-26. [PMID: 23662956 DOI: 10.1111/opo.12056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/09/2013] [Indexed: 12/01/2022]
Abstract
PURPOSE Young eyes compensate for the defocus imposed by spectacle lenses by changing their rate of elongation and their choroidal thickness, bringing their refractive status back to the pre-lens condition. We asked whether the initial rate of change either in the ocular components or in refraction is a function of the power of the lenses worn, a result that would be consistent with the existence of a proportional controller mechanism. METHODS Two separate studies were conducted; both tracked changes in refractive errors and ocular dimensions. Study A: To study the effects of lens power and sign, young chicks were tracked for 4 days after they were fitted with positive (+5, +10 or +15 D) or negative (-5, -10, -15 D) lenses over one eye. In another experiment, biometric changes to plano, +1, +2 and +3 D lenses were tracked over a 24 h treatment period. Study B: Normal emmetropisation was tracked from hatching to 6 days of age and then a defocusing lens, either +6 D or -7 D, was fitted over one eye and additional biometric data collected after 48 h. RESULTS In study A, animals treated with positive lenses (+5, +10 or +15 D) showed statistical similar initial choroid responses, with a mean thickening 24 μm h(-1) over the first 5 h. Likewise, with the low power positive lenses, a statistically similar magnitude of choroidal thickening was observed across groups (+1 D: 46.0 ± 7.8 μm h(-1); +2 D: 53.5 ± 9.9 μm h(-1); +3 D 53.3 ± 24.1 μm h(-1)) in the first hour of lens wear compared to that of a plano control group. These similar rates of change in choroidal thickness indicate that the signalling response is binary in nature and not influenced by the magnitude of the myopic defocus. Treatments with -5, -10 and -15 D lenses induced statistically similar amounts of choroidal thinning, averaging -70 ± 15 μm after 5 h and -96 ± 45 μm after 24 h. Similar rates in inner axial length changes were also seen with these lens treatments until compensation was reached, once again indicating that the signalling response is not influenced by the magnitude of hyperopic defocus. In study B, after 48 h of +6 D lens treatment, the average refractive error and choroidal changes were found to be larger in magnitude than expected if perfect compensation had taken place, with a + 2.4 D overshoot in refractive compensation. CONCLUSION Taken together, our results with both weak and higher power positive lenses suggest that eye growth is guided more by the sign than by the magnitude of the defocus, and our results for higher power negative lenses support a similar conclusion. These behaviour patterns and the overshoot seen in Study B are more consistent with the behaviour of a bang-bang controller than a proportional controller.
Collapse
Affiliation(s)
- David S Hammond
- National Health and Medical Research Council Centre for Clinical Eye Research, Discipline of Optometry and Vision Science, Flinders Medical Centre and Flinders University of South Australia, Adelaide, Australia.
| | | | | |
Collapse
|
29
|
Effects of imposed defocus of opposite sign on temporal gene expression patterns of BMP4 and BMP7 in chick RPE. Exp Eye Res 2013; 109:98-106. [PMID: 23428741 DOI: 10.1016/j.exer.2013.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/15/2013] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Abstract
This study investigated the effects of imposed optical defocus on the expression patterns of bone morphogenetic protein 4 and 7 (BMP4, BMP7) in chick retinal pigment epithelium (RPE), as indicators of roles in postnatal eye growth regulation. BMP4 and BMP7 gene and protein expression patterns were characterized for retina, RPE and choroid tissues of young normal White-Leghorn chickens. The effects of short-term (2 and 48 h) exposure to monocular +10 and -10 diopter (D) lenses on RPE gene expression of BMP4 and BMP7 were also examined. Tissues from both treated and fellow eyes as well as from eyes of age-matched untreated birds were included in the latter experiment. Of ocular tissues comprising the posterior wall of the chick eye, RPE showed the highest expression of BMP4 and BMP7 mRNA, compared to retina and choroid. Western blots and immunohistochemistry confirmed the expression of BMP4 and BMP7 protein in all layers - retina, RPE, choroid and sclera. With imposed defocus, both BMP4 and BMP7 showed bidirectional changes in expression in RPE, however, with different temporal patterns. With +10 D lenses, BMP4 gene expression was up-regulated after both 2 and 48 h of treatment, while BMP7 expression was up-regulated only after 48 h of lens wear. With -10 D lenses, both BMP4 and BMP7 showed down-regulation of gene expression for both 2 and 48 h treatment durations. With the -10 D lens treatment applied for 48 h, gene expression for both BMP4 and BMP7 was also down-regulated in contralateral fellows of treated eyes compared to eyes of untreated chicks. The rapid changes in gene expression in chick RPE observed for both BMP4 and BMP7, up or down according to the sign of imposed optical defocus, resemble similar trends reported for BMP2. Further studies are needed to confirm the roles of BMPs as ocular growth modulators, as suggested by these data. The data also suggest a role for the RPE as a conduit for relaying growth modulatory retinal signals.
Collapse
|
30
|
Assessment of the association of matrix metalloproteinases with myopia, refractive error and ocular biometric measures in an Australian cohort. PLoS One 2012; 7:e47181. [PMID: 23077567 PMCID: PMC3471969 DOI: 10.1371/journal.pone.0047181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Extracellular matrix proteins have been implicated in protein remodelling of the sclera in refractive error. The matrix metalloproteinases (MMPs) falling into the collagenase (MMP1, MMP8, MMP13), gelatinase (MMP2, MMP9) and stromelysin (MMP3, MMP10, MMP11) functional groups are particularly important. We wished to assess their association with myopia, refractive error and ocular biometric measures in an Australian cohort. A total of 543 unrelated individuals of Caucasian ethnicity were genotyped including 269 myopes (≤−1.0D) and 274 controls (>−1.0D). Tag single nucleotide polymorphisms (SNPs) (n = 53) were chosen to encompass these eight MMPs. Association tests were performed using linear and logistic regression analysis with age and gender as covariates. Spherical equivalent, myopia, axial length, anterior chamber depth and corneal curvature were the phenotypes of interest. Initial findings indicated that the best p values for each trait were 0.02 for myopia at rs2274755 (MMP9), 0.02 for SE at both rs3740938 (MMP8) and rs131451 (MMP11), 0.01 for axial length at rs11225395 (MMP8), 0.01 for anterior chamber depth at rs498186 (MMP1) and 0.02 at rs10488 (MMP1). However, following correction for multiple testing, none of these SNPs remained statistically significant. Our data suggests that the MMPs in the collagenase, gelatinase and stromelysin categories do not appear to be associated with myopia, refractive error or ocular biometric measures in this cohort.
Collapse
|
31
|
Gallego P, Martínez-García C, Pérez-Merino P, Ibares-Frías L, Mayo-Iscar A, Merayo-Lloves J. Scleral changes induced by atropine in chicks as an experimental model of myopia. Ophthalmic Physiol Opt 2012; 32:478-84. [PMID: 22978746 DOI: 10.1111/j.1475-1313.2012.00940.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 08/02/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the effects of intravitreal atropine on scleral growth in the form-deprived chick as an experimental model of myopia. METHODS Five groups of five chicks were studied from day 0-12 post-hatching. One group remained untreated (C), and four were form-deprived by monocular light diffusers to induce myopia. Two groups (RL and A) wore diffusers for 9 days, and the other two groups (D and D + A) wore diffusers throughout the study. Group D received no further treatment (myopia positive control). Groups A and D + A received intravitreal injections of atropine for days 9-12. Measurements of refractive error and axial length were performed on days 0, 9, and 12. Sclera changes were assessed in cartilaginous and fibrous layers by histological analysis. RESULTS All form-deprived eyes had a myopic refractive error on day 9. All atropine-treated groups were hyperopic on day 12. The effect of atropine was most evident in Group D + A in which diffusers were maintained throughout treatment and changes in refractive error were statistically significant. The observed changes in axial length were in line with the changes in refractive error. The scleral fibrous layer thickness increased, and the sceral cartilaginous layer underwent a slight thinning compared to Group D, the myopia positive control. CONCLUSIONS If the signals that induce growth remain during atropine treatment, morphological changes in sclera are produced: the scleral fibrous layer thickened, and the sceral cartilaginous layer thinned. These changes resulted in refractive error recovery, and the ocular growth was stopped. The data suggested the atropine was acting throughout the scleral fibrous layer.
Collapse
Affiliation(s)
- Patricia Gallego
- Department of Cell Biology, Histology and Pharmacology, School of Medicine, University of Valladolid, Valladolid, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Huang J, Hung LF, Smith EL. Effects of foveal ablation on the pattern of peripheral refractive errors in normal and form-deprived infant rhesus monkeys (Macaca mulatta). Invest Ophthalmol Vis Sci 2011; 52:6428-34. [PMID: 21693598 PMCID: PMC3176001 DOI: 10.1167/iovs.10-6757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/12/2011] [Accepted: 05/23/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. The purpose of this study was to determine whether visual signals from the fovea contribute to the changes in the pattern of peripheral refractions associated with form deprivation myopia in monkeys. METHODS. Monocular form-deprivation was produced in 18 rhesus monkeys by securing diffusers in front of their treated eyes between 22 ± 2 and 155 ± 17 days of age. In eight of these form-deprived monkeys, the fovea and most of the perifovea of the treated eye were ablated by laser photocoagulation at the start of the diffuser-rearing period. Each eye's refractive status was measured by retinoscopy along the pupillary axis and at 15° intervals along the horizontal meridian to eccentricities of 45°. Control data were obtained from 12 normal monkeys and five monkeys that had monocular foveal ablations and were subsequently reared with unrestricted vision. RESULTS. Foveal ablation, by itself, did not produce systematic alterations in either the central or peripheral refractive errors of the treated eyes. In addition, foveal ablation did not alter the patterns of peripheral refractions in monkeys with form-deprivation myopia. The patterns of peripheral refractive errors in the two groups of form-deprived monkeys, either with or without foveal ablation, were qualitatively similar (treated eyes: F = 0.31, P = 0.74; anisometropia: F = 0.61, P = 0.59), but significantly different from those found in the normal monkeys (F = 8.46 and 9.38 respectively, P < 0.05). CONCLUSIONS. Central retinal signals do not contribute in an essential way to the alterations in eye shape that occur during the development of vision-induced axial myopia.
Collapse
Affiliation(s)
- Juan Huang
- From the College of Optometry, University of Houston, Houston, Texas; and
- the Vision CRC, Sydney, Australia
| | - Li-Fang Hung
- From the College of Optometry, University of Houston, Houston, Texas; and
- the Vision CRC, Sydney, Australia
| | - Earl L. Smith
- From the College of Optometry, University of Houston, Houston, Texas; and
- the Vision CRC, Sydney, Australia
| |
Collapse
|
33
|
Su J, Wall ST, Healy KE, Wildsoet CF. Scleral reinforcement through host tissue integration with biomimetic enzymatically degradable semi-interpenetrating polymer network. Tissue Eng Part A 2010; 16:905-16. [PMID: 19814587 DOI: 10.1089/ten.tea.2009.0488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enzymatically degradable semi-interpenetrating polymer networks (edsIPNs) were explored for their biocompatibility and ability to promote new scleral tissue growth, as a means of reinforcing the posterior wall of the eye. The edsIPNs comprised thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid), customizable peptide crosslinkers cleavable by matrix metalloproteinases, and interpenetrating linear poly(acrylic acid)-graft-peptide chains to engage with cell surface receptors. Rheological studies revealed an increase in stiffness at body temperature; the complex shear modulus |G*| was 14.13 +/- 6.13 Pa at 22 degrees C and 63.18 +/- 12.24 Pa at 37 degrees C, compatible with injection at room temperature. Primary chick scleral fibroblasts and chondrocytes cultured on edsIPN increased by 15.1- and 11.1-fold, respectively, over 11 days; both exhibited delayed onset of exponential growth compared with the cells plated on tissue culture polystyrene. The edsIPN was delivered by retrobulbar injection (100 microL) to nine 2-week-old chicks to assess biocompatibility in vivo. Ocular axial dimensions were assessed using A-scan ultrasonography over 28 days, after which eyes were processed for histological analysis. Although edsIPN injections did not affect the rate of ocular elongation, the outer fibrous sclera showed significant thickening. The demonstration that injectable biomimetic edsIPNs stimulate scleral fibrous tissue growth represents proof-of-principle for a novel approach for scleral reinforcement and a potential therapy for high myopia.
Collapse
Affiliation(s)
- James Su
- Vision Science Group, School of Optometry, University of California, Berkeley, CA 94720-2020, USA
| | | | | | | |
Collapse
|
34
|
Mathis U, Schaeffel F. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study. Exp Eye Res 2010; 90:780-90. [PMID: 20350541 DOI: 10.1016/j.exer.2010.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 01/29/2010] [Accepted: 03/21/2010] [Indexed: 11/19/2022]
Abstract
In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in choroid or sclera, or on the number of TGF-beta2 (active and latent form) expressing amacrine cells. This result did not change when the two identified populations of TGF-beta2 expressing amacrine cells (one calbindin-positive and the other CRABP-positive) were separately considered. Also no modulation was seen in choroid, although an earlier study had found changes in TGF-beta2 mRNA after lens treatment. The lack of any visually-induced changes in retina or choroid suggests that TGF-beta may not represent a key molecule in the retino-choroidal signalling cascade although it has previously been shown to have a primary role in scleral remodelling.
Collapse
Affiliation(s)
- Ute Mathis
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, Calwerstrasse 7/1, 72076 Tübingen, Germany
| | | |
Collapse
|
35
|
Goodall N, Kisiswa L, Prashar A, Faulkner S, Tokarczuk P, Singh K, Erichsen JT, Guggenheim J, Halfter W, Wride MA. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging. Exp Eye Res 2009; 89:511-21. [DOI: 10.1016/j.exer.2009.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 01/04/2023]
|
36
|
Su J, Iomdina E, Tarutta E, Ward B, Song J, Wildsoet CF. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera. Exp Eye Res 2008; 88:445-57. [PMID: 19109950 DOI: 10.1016/j.exer.2008.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 10/07/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (Gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) a strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a -10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent "proof of principle" that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye.
Collapse
Affiliation(s)
- James Su
- Vision Science Group, School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res 2008; 88:458-66. [PMID: 19046968 DOI: 10.1016/j.exer.2008.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 09/21/2008] [Accepted: 10/23/2008] [Indexed: 12/22/2022]
Abstract
A visually evoked signalling cascade, which begins in the retina, transverses the choroid, and mediates scleral remodelling, is considered to control eye growth. The ubiquitous cytokine TGF-beta has been associated with alterations in ocular growth, where alterations in scleral TGF-beta isoforms mediate the scleral remodelling that results in myopia. However, while the TGF-beta isoforms have been implicated in the scleral change during myopia development, it is unclear whether alterations in retinal and choroidal isoforms constitute part of the retinoscleral cascade. This study characterised the retinal and choroidal TGF-beta isoform profiles and TGF-beta2 activation during different stages of myopia development, as induced by form deprivation, in a mammalian model of eye growth. Using quantitative real-time PCR, the mRNA for all three mammalian isoforms of TGF-beta was detected in tree shrew retina and choroid. Distinct tissue-specific isoform profiles were observed for the retina (TGF-beta1:TGF-beta2:TGF-beta3=20:2085:1) and choroid (TGF-beta1:TGF-beta2:TGF-beta3=16:23:1), which remained constant over the development period under investigation. The active and latent pools of retinal TGF-beta2 were quantified using ELISA with the majority (>94%) of total TGF-beta2 found in the latent form. Unlike previous scleral data showing early and continuous decreases in TGF-beta isoform expression during myopia development, the levels of the three isoforms remained within normal ranges for retinal (TGF-beta1, -14 to +14%; TGF-beta2, -2 to +20%; TGF-beta3, -10 to +26%) and choroidal (TGF-beta1, -19 to +21%; TGF-beta2, -26 to +8%; TGF-beta3, -11 to +28%) tissues during myopia development (induction times of 3h, 7h, 11h, 24h, and 5 days). A 40% decrease in retinal TGF-beta2 activation was observed after 5 days of myopia development, however, there was no functional correlate of altered TGF-beta2 activity, as assessed by the retinal ERG response. Overall, these data highlight the specific nature of TGF-beta isoform expression, which reflects the differences in tissue structure and function. While TGF-beta isoforms are involved in scleral regulation during myopia development in mammals, they do not have a primary role in the retinal and choroidal signals. Thus, the regulation of eye growth via the retinoscleral cascade involves more than one factor, which is likely to be tissue-specific in nature.
Collapse
Affiliation(s)
- Andrew Ian Jobling
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
38
|
Shelton L, Rada JS. Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts. Exp Eye Res 2006; 84:314-22. [PMID: 17123515 PMCID: PMC2583333 DOI: 10.1016/j.exer.2006.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/29/2006] [Accepted: 10/04/2006] [Indexed: 01/02/2023]
Abstract
In order to understand the effect of mechanical strain on scleral extracellular matrix remodeling, human scleral fibroblasts were subjected to equibiaxial stretch in vitro and the expression of proteoglycans, metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were evaluated. Isolated human scleral fibroblasts were seeded onto flexible bottom culture plates, and subjected to a cyclic stretch regimen of 15% equibiaxial stretch for 45 s followed by 15s of rest for 6-48 h in the presence of 35SO4. Newly synthesized proteoglycans were measured in the medium by CPC precipitation of radiolabelled glycosaminoglycans. MMP-2 activity and expression levels were measured in the medium by, Western blot, gel zymography and real-time PCR. Steady state levels of TIMP-2 mRNA and membrane-type MMP, MT1-MMP (MMP-14) mRNA were measured in the cell layer using real-time PCR. The predominant gelatinolytic enzyme secreted by scleral fibroblasts was the pro-enzyme form of MMP-2 (ProMMP-2). Mechanical stretch resulted in a significant increase of ProMMP-2 after 12 and 48 h (+76.28%, p<0.05; +19.56%, p<0.01, respectively). Mechanical stretch significantly increased the production of the active form of MMP-2 (ActiveMMP-2) after 48 h (+59.72%, p<0.05) and decreased levels of TIMP-2 mRNA (-22%, p<0.05). The rate of scleral proteoglycan synthesis and the steady state levels of MMP-2 and MMP-14 mRNA were not significantly affected by mechanical stretch. These results suggest that mechanical strain stimulates the activation of MMP-2 by scleral fibroblasts, possibly through increased levels of ProMMP-2 and reduced levels of TIMP-2. Increased levels of ActiveMMP-2 in the sclera would be expected to contribute to scleral extracellular matrix degradation, scleral thinning and possible ocular ectasia.
Collapse
Affiliation(s)
- Lilian Shelton
- Department of Cell Biology, University of Oklahoma Health Science Center, 940 Stanton L. Young Boulevard, BMSB, Room 553, Oklahoma City, OK 73103, USA.
| | | |
Collapse
|