1
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Ren C, Liu W, Yin X, Zhang B, Lu P. Renin-Angiotensin System Inhibitor Usage and Age-Related Macular Degeneration among Hypertensive Patients: Results from the National Health and Nutrition Examination Survey, 2005-2008. J Ophthalmol 2020; 2020:4252031. [PMID: 32676201 PMCID: PMC7333042 DOI: 10.1155/2020/4252031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess whether renin-angiotensin system inhibitor (RASI) utilization is associated with age-related macular degeneration (AMD) prevalence among hypertensive patients. METHODS A US population-based, cross-sectional study was conducted. 3,023 hypertensive participants aged 40 years and older with gradable retinal images and ascertained RASI usage in the National Health and Nutrition Examination Survey (NHANES), 2005-2008, were finally enrolled into the study. RASI usage was obtained by interview, and AMD was determined through retinal image assessment. We performed multivariable analyses to assess the relationship between utilization of RASIs and AMD prevalence. We also took drug treatment duration into account, in order to better understand the effects of RASIs. RESULTS Multivariable logistic regression analyses revealed that AMD prevalence had no significant association with RASI usage but was inversely correlated with RASI treatment duration (odds ratio (OR) = 0.87, 95% confidence interval (CI) = 0.78-0.98, p=0.02). Long-term usage (>5 years) of RASIs was significantly associated with not only reduced overall risk of AMD (OR = 0.23, 95% CI = 0.14-0.38, p < 0.001) but also lower propensity to have early (OR = 0.23, 95% CI = 0.14-0.37, p < 0.001) and late (OR = 0.25, 95% CI = 0.07-0.87, p=0.03) AMD. Furthermore, long-term RASI users were less prone to develop soft drusen (OR = 0.67, 95% CI = 0.45-0.99, p=0.04) and geographic atrophy (GA) (OR = 0.39, 95% CI = 0.22-0.71, p=0.003). CONCLUSIONS Evidence supporting that RASI utilization could directly protect against AMD in hypertensive patients was still insufficient, but long-term RASI treatment seemed to be beneficial for both early and late AMD, implicating a promising therapeutic approach that RASIs might offer for AMD prevention and management.
Collapse
Affiliation(s)
- Chi Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xue Yin
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Bingyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| |
Collapse
|
3
|
Liu X, Pan G. Roles of Drug Transporters in Blood-Retinal Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:467-504. [PMID: 31571172 PMCID: PMC7120327 DOI: 10.1007/978-981-13-7647-4_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood-retinal barrier (BRB) includes inner BRB (iBRB) and outer BRB (oBRB), which are formed by retinal capillary endothelial (RCEC) cells and by retinal pigment epithelial (RPE) cells in collaboration with Bruch's membrane and the choriocapillaris, respectively. Functions of the BRB are to regulate fluids and molecular movement between the ocular vascular beds and retinal tissues and to prevent leakage of macromolecules and other potentially harmful agents into the retina, keeping the microenvironment of the retina and retinal neurons. These functions are mainly attributed to absent fenestrations of RCECs, tight junctions, expression of a great diversity of transporters, and coverage of pericytes and glial cells. BRB existence also becomes a reason that systemic administration for some drugs is not suitable for the treatment of retinal diseases. Some diseases (such as diabetes and ischemia-reperfusion) impair BRB function via altering tight junctions, RCEC death, and transporter expression. This chapter will illustrate function of BRB, expressions and functions of these transporters, and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- grid.254147.10000 0000 9776 7793School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Guoyu Pan
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai China
| |
Collapse
|
4
|
Wilkinson-Berka JL, Suphapimol V, Jerome JR, Deliyanti D, Allingham MJ. Angiotensin II and aldosterone in retinal vasculopathy and inflammation. Exp Eye Res 2019; 187:107766. [PMID: 31425690 DOI: 10.1016/j.exer.2019.107766] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Angiotensin II and aldosterone are the main effectors of the renin-angiotensin aldosterone system (RAAS) and have a central role in hypertension as well as cardiovascular and renal disease. The localization of RAAS components within the retina has led to studies investigating the roles of angiotensin II, aldosterone and the counter regulatory arm of the pathway in vision-threatening retinopathies. This review will provide a brief overview of RAAS components as well as the vascular pathology that develops in the retinal diseases, retinopathy of prematurity, diabetic retinopathy and neovascular age-related macular degeneration. The review will discuss pre-clinical and clinical evidence that modulation of the RAAS alters the development of vasculopathy and inflammation in the aforementioned retinopathies, as well as the emerging role of aldosterone and the mineralocorticoid receptor in central serous chorioretinopathy.
Collapse
Affiliation(s)
- Jennifer L Wilkinson-Berka
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Varaporn Suphapimol
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jack R Jerome
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
5
|
Ola MS, Alhomida AS, Ferrario CM, Ahmad S. Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-( 1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem 2017; 24:3104-3114. [PMID: 28403787 DOI: 10.2174/0929867324666170407141955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Abstract
Diabetic retinopathy (DR) is a major diabetes complication and the leading cause for vision loss and blindness in the adult human population. Diabetes, being an endocrinological disorder dysregulates a number of hormonal systems including the renin angiotensin system (RAS), which thereby may damage both vascular and neuronal cells in the retina. Angiotensin II (Ang II), an active component of the RAS is increased in diabetic retina, and may play a significant role in neurovascular damage leading to the progression of DR. In this review article, we highlight the role of Ang II in the pathogenesis of retinal damage in diabetes and discuss a newly identified mechanism involving tissue chymase and angiotensin-(1-12) [Ang-(1-12)] pathways. We also discuss the therapeutic effects of potential RAS inhibitors targeting blockade of cellular Ang II formation to prevent/ protect the retinal damage. Thus, a better understanding of Ang II formation pathways in the diabetic retina will elucidate early molecular mechanism of vision loss. These concepts may provide a novel strategy for preventing and/or treating diabetic retinopathy, a leading cause of blindness worldwide.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud, University, Riyadh 11451. Saudi Arabia
| | - Abdullah S Alhomida
- Department of Biochemistry, College of Science, King Saud, University, Riyadh 11451. Saudi Arabia
| | - Carlos M Ferrario
- Department of General Surgery, Wake Forest University Health Science, Winston-Salem, NC 27157. United States
| | - Sarfaraz Ahmad
- Department of General Surgery, Wake Forest University Health Science, Winston-Salem, NC 27157. United States
| |
Collapse
|
6
|
Katsi VK, Marketou ME, Vrachatis DA, Manolis AJ, Nihoyannopoulos P, Tousoulis D, Vardas PE, Kallikazaros I. Essential hypertension in the pathogenesis of age-related macular degeneration: a review of the current evidence. J Hypertens 2016; 33:2382-8. [PMID: 26536087 DOI: 10.1097/hjh.0000000000000766] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age-related macular degeneration (AMD) is one of the main causes of vision loss, especially in the elderly. The involvement of essential hypertension in its pathogenesis has been well covered in the literature since it was first recognized. Hemodynamic abnormalities appear to contribute to AMD, with the renin-angiotensin system playing a significant role. Many studies have demonstrated that high blood pressure is associated with lower choroidal blood flow and disturbed vascular homeostasis in these patients. In addition, AMD is characterized by abnormal neovascularization, to which angiotensin II and growth factors make a large contribution. Most epidemiological studies have found essential hypertension to be a risk factor for AMD. However, although all agree that the strongest predisposing factors are age and smoking, overall there is some inconsistency regarding the exact role of hypertension in its pathogenesis. In particular, there are no data in the literature to support the view that antihypertensive medication and the successful management of hypertension have a positive effect on the clinical outcome of AMD. This reinforces the data indicating that the cause of AMD is multifactorial and suggests that, although essential hypertension probably plays a role, in itself it is unlikely to be a major contributor to the future occurrence of AMD.
Collapse
Affiliation(s)
- Vasiliki K Katsi
- aDepartment of Cardiology, Hippokration Hospital, Athens bDepartment of Cardiology, Heraklion University Hospital, Crete cFirst Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens dDepartment of Cardiology, Asklepieion General Hospital, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dominguez JM, Hu P, Caballero S, Moldovan L, Verma A, Oudit GY, Li Q, Grant MB. Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1688-700. [PMID: 27178803 DOI: 10.1016/j.ajpath.2016.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/07/2016] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating inflammatory cells into the retina (F4/80(+)) (prevention cohort: untreated diabetic, 24.2 ± 6.7; ACE2 diabetic, 2.5 ± 1.6 per mm(2); reversal cohort: untreated diabetic, 56.8 ± 5.2; ACE2 diabetic, 5.6 ± 2.3 per mm(2)). In both study cohorts, intracapillary bone marrow-derived cells, indicative of leukostasis, were only observed in diabetic animals receiving control AAV injections. These results indicate that diabetic retinopathy, and possibly other diabetic microvascular complications, can be prevented and reversed by locally restoring the balance between the classic and vasoprotective renin angiotensin system.
Collapse
Affiliation(s)
- James M Dominguez
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, University of Florida, Gainesville, Florida; Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Hu
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sergio Caballero
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leni Moldovan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amrisha Verma
- Department of Ophthalmology and Powell Gene Therapy Center, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| | - Gavin Y Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Qiuhong Li
- Department of Ophthalmology and Powell Gene Therapy Center, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Abu El-Asrar AM, Al-Mezaine HS, Ola MS. Pathophysiology and management of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Cunea A, Meyer J, Russmann C, Licha K, Welker P, Holz FG, Schmitz-Valckenberg S. In vivo Imaging with a Fundus Camera in a Rat Model of Laser-Induced Choroidal Neovascularization. Ophthalmologica 2014; 231:117-23. [DOI: 10.1159/000355094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022]
|
10
|
Giese MJ, Speth RC. The ocular renin-angiotensin system: a therapeutic target for the treatment of ocular disease. Pharmacol Ther 2013; 142:11-32. [PMID: 24287313 DOI: 10.1016/j.pharmthera.2013.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is most well-known for its role in regulation and dysregulation of blood pressure as well as fluid and electrolyte homeostasis. Due to its ability to cause cardiovascular disease, the RAS is the target of a multitude of drugs that antagonize its pathophysiological effects. While the "classical" RAS is a systemic hormonal system, there is an increasing awareness of the existence and functional significance of local RASs in a number of organs, e.g., liver, kidney, heart, lungs, reproductive organs, adipose tissue and adrenal. The eye is one of these organs where a compelling body of evidence has demonstrated the presence of a local RAS. Individual components of the RAS have been shown to be present in many structures of the eye and their potential functional significance in ocular disease states is described. Because the eye is one of the most important and complex organs in the body, this review also discusses the implications of dysregulation of the systemic RAS on the pathogenesis of ocular diseases and how pharmacological manipulation of the RAS might lead to novel or adjunctive therapies for ocular disease states.
Collapse
Affiliation(s)
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
11
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
12
|
Nawaz MI, Abouammoh M, Khan HA, Alhomida AS, Alfaran MF, Ola MS. Novel drugs and their targets in the potential treatment of diabetic retinopathy. Med Sci Monit 2013; 19:300-8. [PMID: 23619778 PMCID: PMC3659065 DOI: 10.12659/msm.883895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. It causes vision loss, and the incidence is increasing with the growth of the diabetes epidemic worldwide. Over the past few decades a number of clinical trials have confirmed that careful control of glycemia and blood pressure can reduce the risk of developing DR and control its progression. In recent years, many treatment options have been developed for clinical management of the complications of DR (e.g., proliferative DR and macular edema) using laser-based therapies, intravitreal corticosteroids and anti-vascular endothelial growth factors, and vitrectomy to remove scarring and hemorrhage, but all these have limited benefits. In this review, we highlight and discuss potential molecular targets and new approaches that have shown great promise for the treatment of DR. New drugs and strategies are based on targeting a number of hyperglycemia-induced metabolic stress pathways, oxidative stress and inflammatory pathways, the renin-angiotensin system, and neurodegeneration, in addition to the use of stem cells and ribonucleic acid interference (RNAi) technologies. At present, clinical trials of some of these newer drugs in humans are yet to begin or are in early stages. Together, the new therapeutic drugs and approaches discussed may control the incidence and progression of DR with greater efficacy and safety.
Collapse
Affiliation(s)
- Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marwan Abouammoh
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mubarak F. Alfaran
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Corresponding Author: Mohammad Shamsul Ola, e-mail: and
| |
Collapse
|
13
|
Zhang ZG, Sun X, Zhang QZ, Yang H. Neuroprotective effects of ultra-low-molecular-weight heparin on cerebral ischemia/reperfusion injury in rats: involvement of apoptosis, inflammatory reaction and energy metabolism. Int J Mol Sci 2013; 14:1932-9. [PMID: 23344063 PMCID: PMC3565356 DOI: 10.3390/ijms14011932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 10/30/2022] Open
Abstract
Previous experiments showed that ultra-low-molecular-weight heparin (ULMWH) reduced the infarct and neurologic deficit in rats followed by transient cerebral ischemia, but the mechanisms of its neuroprotective effect are unclear. This study reported the effect of ULMWH on energy metabolism, inflammatory reaction and neuronal apoptosis. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. ULMWH (0.5, 1 mg/kg, i.v.) was administered after the MCAO and reperfusion. 24 h after the reperfusion, Spectrophotometric assay was used to determine the activity of ATPase and the content of lactic acid in the brain. The ICAM-1 and Caspase-3 genes were investigated by RT-PCR. Furthermore, the apoptotic percentage of cells in hippocampus was quantified by flow cytometry. Compared with the model group, ULMWH significantly decreased lactic acid content and increased ATPase activity in ischemic brain. At the same time, ULMWH inhibited the neural apoptosis and decreased the expressions of ICAM-1 and Caspase-3 mRNA in hippocampus. These findings suggest that ULMWH exhibits a neuroprotective effect against cerebral ischemia/reperfusion injury, partly through improving energy metabolism, inhibiting apoptosis and attenuating inflammatory reaction.
Collapse
Affiliation(s)
- Zhi-Guo Zhang
- Department of Pharmacy, the 88th Hospital of PLA, Hushan East Road, Tai’an 271000, Shandong, China; E-Mails: (Z.-G.Z.); (X.S.)
| | - Xin Sun
- Department of Pharmacy, the 88th Hospital of PLA, Hushan East Road, Tai’an 271000, Shandong, China; E-Mails: (Z.-G.Z.); (X.S.)
| | - Qing-Zhu Zhang
- Pharmacological Institute of New Drugs, School of Pharmacy, Shandong University, 44 Wenhua Xi Road, Ji’nan 250012, Shandong, China
- Author to whom correspondence should be addressed; E-Mail:; Tel./Fax: +86-531-8838-2542
| | - Hua Yang
- Department of Immunology, Taishan Medical College, 2 Yingsheng East Road, Tai’an 271016, Shandong, China; E-Mail:
| |
Collapse
|
14
|
Phipps JA, Jobling AI, Greferath U, Fletcher EL, Vessey KA. Alternative pathways in the development of diabetic retinopathy: the renin-angiotensin and kallikrein-kinin systems. Clin Exp Optom 2012; 95:282-9. [PMID: 22594546 DOI: 10.1111/j.1444-0938.2012.00747.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy is a common complication of both type 1 and type 2 diabetes and is the leading cause of blindness in people of working age. Current treatment strategies are mostly limited to laser photocoagulation, which restricts proliferative retinopathic changes but also causes irreversible damage to the retina. This review examines two important pathways involved in regulating vascular function and their role in the development of diabetic retinopathy. One, the renin-angiotensin system, is well known and has established angiogenic effects on the retina that increase in diabetic retinopathy. The other, the kallikrein-kinin system, has recently been found to be important in the development of diabetic retinal complications. This review describes the components of the two signalling networks, examines the current animal model studies investigating the role of these pathways in diabetic retinopathy and reviews the clinical studies that have been undertaken examining systemic inhibition of different points in these pathways. These systems are promising targets for therapies aimed at inhibiting the development of diabetic retinopathy and in the future, combination therapies that take advantage of both pathways might result in new treatment options for this debilitating complication of diabetes.
Collapse
Affiliation(s)
- Joanna A Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
15
|
Wilkinson-Berka JL, Agrotis A, Deliyanti D. The retinal renin-angiotensin system: roles of angiotensin II and aldosterone. Peptides 2012; 36:142-50. [PMID: 22537944 DOI: 10.1016/j.peptides.2012.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/29/2023]
Abstract
In the present review we examine the experimental and clinical evidence for the presence of a local renin-angiotensin system within the retina. Interest in a pathogenic role for the renin-angiotensin system in retinal disease originally stemmed from observations that components of the pathway were elevated in retina during the development of certain retinal pathologies. Since then, our knowledge about the contribution of the RAS to retinal disease has greatly expanded. We discuss the known functions of the renin-angiotensin system in retinopathy of prematurity and diabetic retinopathy. This includes the promotion of retinal neovascularization, inflammation, oxidative stress and neuronal and glial dysfunction. The contribution of specific components of the renin-angiotensin system is evaluated with a particular focus on angiotensin II and aldosterone and their cognate receptors. The therapeutic utility of inhibiting key components of the renin-angiotensin system is complex, but may hold promise for the prevention and improvement of vision threatening diseases.
Collapse
|
16
|
Wright WS, Singh Yadav A, McElhatten RM, Harris NR. Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse. Exp Eye Res 2012; 98:9-15. [PMID: 22440813 PMCID: PMC3340465 DOI: 10.1016/j.exer.2012.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 12/30/2022]
Abstract
The aim of this study was to characterize the microvascular flow abnormalities and oxygenation changes that are present following six months of hyperglycemia in the diabetic Ins2(Akita) mouse. Previous studies have shown decreased retinal blood flow in the first several weeks of hyperglycemia in rodents, similar to the decreases seen in the early stages of human diabetes. However, whether this alteration in the mouse retina continues beyond the initial weeks of diabetes has yet to be determined, as are the potential consequences of the decreased flow on retinal oxygenation. In this study, male Ins2(Akita) and age-matched C57BL/6 (non-diabetic) mice were maintained for a period of six months, at which time intravital microscopy was used to measure retinal blood vessel diameters, blood cell velocity, vascular wall shear rates, blood flow rates, and transient capillary occlusions. In addition, the presence of hypoxia was assessed using the oxygen-sensitive probe pimonidazole. The diabetic retinal microvasculature displayed decreases in red blood cell velocity (30%, p<0.001), shear rate (25%, p<0.01), and flow rate (40%, p<0.001). Moreover, transient capillary stoppages in flow were observed in the diabetic mice, but rarely in the non-diabetic mice. However, no alterations were observed in retinal hypoxia as determined by a pimonidazole assay, suggesting the possibility that the decreases seen in retinal blood flow may be dictated by a decrease in retinal oxygen utilization.
Collapse
Affiliation(s)
- William S. Wright
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC 29303
| | - Amit Singh Yadav
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Robert M. McElhatten
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Norman R. Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
17
|
Renin-Angiotensin system hyperactivation can induce inflammation and retinal neural dysfunction. Int J Inflam 2012; 2012:581695. [PMID: 22536545 PMCID: PMC3321303 DOI: 10.1155/2012/581695] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/09/2011] [Accepted: 01/04/2012] [Indexed: 12/21/2022] Open
Abstract
The renin-angiotensin system (RAS) is a hormone system that has been classically known as a blood pressure regulator but is becoming well recognized as a proinflammatory mediator. In many diverse tissues, RAS pathway elements are also produced intrinsically, making it possible for tissues to respond more dynamically to systemic or local cues. While RAS is important for controlling normal inflammatory responses, hyperactivation of the pathway can cause neural dysfunction by inducing accelerated degradation of some neuronal proteins such as synaptophysin and by activating pathological glial responses. Chronic inflammation and oxidative stress are risk factors for high incidence vision-threatening diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. In fact, increasing evidence suggests that RAS inhibition may actually prevent progression of various ocular diseases including uveitis, DR, AMD, and glaucoma. Therefore, RAS inhibition may be a promising therapeutic approach to fine-tune inflammatory responses and to prevent or treat certain ocular and neurodegenerative diseases.
Collapse
|
18
|
Tsujikawa A, Ogura Y. Evaluation of Leukocyte-Endothelial Interactions in Retinal Diseases. Ophthalmologica 2012; 227:68-79. [DOI: 10.1159/000332080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/19/2022]
|
19
|
PPARgamma Agonists: Potential as Therapeutics for Neovascular Retinopathies. PPAR Res 2011; 2008:164273. [PMID: 18509499 PMCID: PMC2396446 DOI: 10.1155/2008/164273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 01/16/2023] Open
Abstract
The angiogenic, neovascular proliferative retinopathies, proliferative diabetic retinopathy (PDR), and age-dependent macular degeneration (AMD) complicated by choroidal neovascularization (CNV), also termed exudative or “wet” AMD, are common causes of blindness. The antidiabetic thiazolidinediones (TZDs), rosiglitazone, and troglitazone are PPARγ agonists with demonstrable antiproliferative, and anti-inflammatory effects, in vivo, were shown to ameliorate PDR and CNV in rodent models, implying the potential efficacy of TZDs for treating proliferative retinopathies in humans. Activation of the angiotensin II type 1 receptor (AT1-R) propagates proinflammatory and proliferative pathogenic determinants underlying PDR and CNV. The antihypertensive dual AT1-R blocker (ARB), telmisartan, recently was shown to activate PPARγ and improve glucose and lipid metabolism and to clinically improve PDR and CNV in rodent models. Therefore, the TZDs and telmisartan, clinically approved antidiabetic and antihypertensive drugs, respectively, may be efficacious for treating and attenuating PDR and CNV humans. Clinical trials are needed to test these possibilities.
Collapse
|
20
|
Affiliation(s)
- Francesco Boscia
- Department of Ophthalmology and Otolaryngology, University of Bari, Bari, Italy.
| |
Collapse
|
21
|
Villarroel M, Ciudin A, Hernández C, Simó R. Neurodegeneration: An early event of diabetic retinopathy. World J Diabetes 2010; 1:57-64. [PMID: 21537428 PMCID: PMC3083883 DOI: 10.4239/wjd.v1.i2.57] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/03/2010] [Accepted: 03/10/2010] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy (DR) has been classically considered to be a microcirculatory disease of the retina caused by the deleterious metabolic effects of hyperglycemia per se and the metabolic pathways triggered by hyperglycemia. However, retinal neurodegeneration is already present before any microcirculatory abnormalities can be detected in ophthalmoscopic examination. In other words, retinal neurodegeneration is an early event in the pathogenesis of DR which predates and participates in the microcirculatory abnormalities that occur in DR. Therefore, the study of the mechanisms that lead to neurodegeneration will be essential to identify new therapeutic targets in the early stages of DR. Elevated levels of glutamate and the overexpression of the renin- angiotensin-system play an essential role in the neurodegenerative process that occurs in diabetic retina. Among neuroprotective factors, pigment epithelial derived factor, somatostatin and erythropoietin seem to be the most relevant and these will be considered in this review. Nevertheless, it should be noted that the balance between neurotoxic and neuroprotective factors rather than levels of neurotoxic factors alone will determine the presence or absence of retinal neurodegeneration in the diabetic eye. New strategies, based on either the delivery of neuroprotective agents or the blockade of neurotoxic factors, are currently being tested in experimental models and in clinical pilot studies. Whether these novel therapies will eventually supplement or prevent the need for laser photocoagulation or vitrectomy awaits the results of additional clinical research.
Collapse
Affiliation(s)
- Marta Villarroel
- Marta Villarroel, Andreea Ciudin, Cristina Hernández, Rafael Simó, Diabetes and Metabolism Research Unit. Institut de Recerca Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | | | | | | |
Collapse
|
22
|
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29:284-311. [PMID: 20380890 DOI: 10.1016/j.preteyeres.2010.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Guo AM, Scicli G, Sheng J, Falck JC, Edwards PA, Scicli AG. 20-HETE can act as a nonhypoxic regulator of HIF-1alpha in human microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2009; 297:H602-13. [PMID: 19502554 DOI: 10.1152/ajpheart.00874.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
20-HETE increases the expression of VEGF in human dermal microvascular endothelial cells (ECs). Since VEGF is regulated by hypoxia inducible factor (HIF)-1, we studied whether 20-HETE also upregulates HIF-1alpha using the stable 20-HETE analog 20-hydroxyeicosa-5(Z),14(Z)dienoic acid (WIT003; 1-10 microM) and found that it induced a marked increase in HIF-1alpha protein levels. The increases in VEGF after the addition of WIT003 preceded the changes in HIF-1alpha, and the increases in HIF-1alpha were prevented by a VEGF neutralizing antibody. This suggests that 20-HETE first causes increases in VEGF, which then, in turn, cause the upregulation of HIF-1alpha. Stimulation with exogenously added VEGF also led to an upregulation of HIF-1alpha. Incubation with the MEK1/ERK1/2 inhibitor U-0126 (10 microM) completely abolished the increases in VEGF and thus HIF-1alpha, suggesting the involvement of ERK1/2 activation. The addition of WIT003 resulted in a rapid and sustained increase in superoxide formation. When WIT003 was added in the presence of the nitric oxide (NO) synthase (NOS) inhibitor N-nitro-L-arginine, no changes in superoxide, VEGF, or HIF-1alpha were observed. This suggests that NOS is responsible for the early changes in superoxide induced by WIT003. Furthermore, WIT003 induced the expression of the NADPH oxidase subunit p47(phox) in ECs before the increases in HIF-1alpha. Incubation with polyethylene glycol-superoxide dismutase (400 U/ml), apocynin (100 microM), diphenylene iodonium (10 microM), or p47(phox) downregulation with small interfering (si)RNA all inhibited the increases in HIF-1alpha expression. This indicates that the early changes in superoxide lead to VEGF increases and thereby NADPH oxidase-dependent superoxide production, which is required for HIF-1alpha upregulation. We also found that the higher HIF-1alpha expression induced by WIT003 was accompanied by higher expression of erythropoietin receptor and angiopoietin-2 proteins. These increases were caused by HIF-1alpha because their levels were markedly decreased by siRNA downregulation of HIF-1alpha. 20-HETE may be a novel nonhypoxic regulator of HIF-1alpha and HIF-1alpha-regulated genes in ECs.
Collapse
Affiliation(s)
- Austin M Guo
- 1Eye Care Services, Henry Ford Hospital, Wayne State University, Detroit, Michigan 48202-3450, USA
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Rhian M. Touyz
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Glaucia E. Callera
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Rosenbluth MJ, Lam WA, Fletcher DA. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. LAB ON A CHIP 2008; 8:1062-70. [PMID: 18584080 PMCID: PMC7931849 DOI: 10.1039/b802931h] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pathological processes in hematologic diseases originate at the single-cell level, often making measurements on individual cells more clinically relevant than population averages from bulk analysis. For this reason, flow cytometry has been an effective tool for single-cell analysis of properties using light scattering and fluorescence labeling. However, conventional flow cytometry cannot measure cell mechanical properties, alterations of which contribute to the pathophysiology of hematologic diseases such as sepsis, diabetic retinopathy, and sickle cell anemia. Here we present a high-throughput microfluidics-based 'biophysical' flow cytometry technique that measures single-cell transit times of blood cell populations passing through in vitro capillary networks. To demonstrate clinical relevance, we use this technique to characterize biophysical changes in two model disease states in which mechanical properties of cells are thought to lead to microvascular obstruction: (i) sepsis, a process in which inflammatory mediators in the bloodstream activate neutrophils and (ii) leukostasis, an often fatal and poorly understood complication of acute leukemia. Using patient samples, we show that cell transit time through and occlusion of microfluidic channels is increased for both disease states compared to control samples, and we find that mechanical heterogeneity of blood cell populations is a better predictor of microvascular obstruction than average properties. Inflammatory mediators involved in sepsis were observed to significantly affect the shape and magnitude of the neutrophil transit time population distribution. Altered properties of leukemia cell subpopulations, rather than of the population as a whole, were found to correlate with symptoms of leukostasis in patients-a new result that may be useful for guiding leukemia therapy. By treating cells with drugs that affect the cytoskeleton, we also demonstrate that their transit times could be significantly reduced. Biophysical flow cytometry offers a low-cost and high-throughput diagnostic and drug discovery platform for hematologic diseases that affect microcirculatory flow.
Collapse
|
27
|
Chen P, Guo AM, Edwards PA, Trick G, Scicli AG. Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1619-29. [PMID: 17652361 DOI: 10.1152/ajpregu.00290.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied whether angiotensin II (ANG II) via superoxide may contribute to retinal leukostasis and thus to the pathogenesis of retinopathies. We studied: 1) whether intravitreal ANG II induces retinal leukostasis that is altered by antioxidants or by apocynin, a NAD(P)H oxidase inhibitor and 2) whether retinal leukostasis induced by diabetes in rats is also altered by these treatments. Rats were injected intravitreally with ANG II (20 μg in 2 μl), and divided into the following three groups: 1) untreated; 2) treated with tempol doses (∼3 mM/day) and N-acetylcysteine (NAC; ∼1 g·kg−1·day−1); and 3) treated with apocynin (∼2 mM/day), both in the drinking water. Rats with streptozotocin-induced diabetes were similarly treated. Leukostasis was evaluated 48 h after ANG II or 2 wk after diabetes induction. ANG II increased retinal leukostasis from 0.3 ± 0.5 to 3.7 ± 0.4 leukocytes/ mm2 ( P < 0.01), and these changes were markedly decreased by treatment with tempol + NAC or apocynin, and also by a blocking antibody against vascular endothelial growth factor given intravitreally ( P < 0.01). In addition, incubation of dihydroethidium-loaded retina sections with ANG II caused marked increase in superoxide formation. Compared with normal controls, retinal leukostasis in diabetic rats markedly increased from 0.2 ± 0.3 to 3.8 ± 0.1 leukocytes/mm2 ( P < 0.01). Diabetic retinal leukostasis was also decreased by treatment with tempol-NAC and normalized by apocynin. Thus increases in intravitreal ANG II can induce retinal leukostasis, which appears to be mediated via increasing superoxide generation by NAD(P)H oxidase, and by VEGF. The activity of NAD(P)H oxidase is required for leukostasis to occur in the diabetic retina.
Collapse
Affiliation(s)
- Ping Chen
- Eye Care Services, Henry Ford Hospital, 1 Ford Pl., 4D, Detroit, MI 48202-3450, USA
| | | | | | | | | |
Collapse
|