1
|
Ahuja K, Vandenabeele M, Nami F, Lefevere E, Van Hoecke J, Bergmans S, Claes M, Vervliet T, Neyrinck K, Burg T, De Herdt D, Bhaskar P, Zhu Y, Looser ZJ, Loncke J, Gsell W, Plaas M, Agostinis P, Swinnen JV, Van Den Bosch L, Bultynck G, Saab AS, Wolfs E, Chai YC, Himmelreich U, Verfaillie C, Moons L, De Groef L. A deep phenotyping study in mouse and iPSC models to understand the role of oligodendroglia in optic neuropathy in Wolfram syndrome. Acta Neuropathol Commun 2024; 12:140. [PMID: 39198924 PMCID: PMC11351506 DOI: 10.1186/s40478-024-01851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1∆exon8 mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.
Collapse
Affiliation(s)
- K Ahuja
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Vandenabeele
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - F Nami
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - E Lefevere
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - J Van Hoecke
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - S Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - M Claes
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - T Vervliet
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - K Neyrinck
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - T Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - D De Herdt
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - P Bhaskar
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Y Zhu
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Z J Looser
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - J Loncke
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - W Gsell
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - M Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - P Agostinis
- Laboratory for Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, Leuven Center for Cancer Biology, VIB-KU, Leuven Cancer Institute, VIB-KU Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - L Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - G Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - A S Saab
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - E Wolfs
- Laboratory for Functional Imaging and Research on Stem Cells, BIOMED, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Y C Chai
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - U Himmelreich
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - C Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - L Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
3
|
Tombolini B, Battista M, Borrelli E, Frontino G, Bandello F, Barboni P, Cascavilla ML. Wolfram Syndrome: Only a Neurodegenerative Disease or Also a Maculopathy? J Neuroophthalmol 2023:00041327-990000000-00440. [PMID: 37581949 DOI: 10.1097/wno.0000000000001981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Affiliation(s)
- Beatrice Tombolini
- School of Medicine (BT, MB, EB, FB, PB, MLC), Vita-Salute San Raffaele University, Milan, Italy; Division of Head and Neck (BT, MB, EB, FB, PB, MLC), Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Diabetes Research Institute (GF), IRCCS Ospedale San Raffaele, University Vita-Salute, Milan, Italy; and Pediatric Department (GF), IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Maamouri R, Hizem S, Kammoun I, Elaribi Y, Rejeb I, Sebai M, Jilani H, Rouzier C, Cheour M, Paquis-Flucklinger V, Ben Jemaa L. A novel WFS1 variant associated with severe diabetic retinopathy in Wolfram syndrome type 1. Ophthalmic Genet 2022; 44:304-312. [PMID: 36094066 DOI: 10.1080/13816810.2022.2113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Wolfram syndrome type 1 is a rare neurodegenerative disorder including diabetes insipidus, diabetes mellitus, optic atrophy, and deafness, with variable additional findings. The phenotypic spectrum is very heterogeneous, with non-autoimmune juvenile-onset diabetes and optic atrophy as minimal criteria for the diagnosis. Biallelic mutations in the WFS1 gene are the causative genetic anomaly for the syndrome, with, however, no evident genotype-phenotype correlation. Among the clinical features of the disease, diabetic retinopathy depicts a rarely reported microvascular complication. In this report, we describe the clinical and genetic findings in a 26-year-old patient presenting with Wolfram syndrome and severe diabetic retinopathy. METHODS The mutation screening was performed by polymerase chain reaction followed by Sanger sequencing of the entire coding sequence of the WFS1 gene. RESULTS A novel homozygous missense variant c.1901A>T (p.Lys634Met) was found in the proband and classified as probably pathogenic according to the American College of Medical Genetics and Genomics. CONCLUSIONS The molecular study of the WFS1 gene is essential for the diagnostic confirmation, to provide appropriate genetic counseling and a mutational screening in the at-risk relatives. The c.1901A>T (p.Lys634 Met) is a novel variant that could be responsible for a severe form of Wolfram syndrome with early and proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Rym Maamouri
- Department of Ophthalmology, Habib Thameur hospital, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Syrine Hizem
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - Ines Kammoun
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of endocrinology and metabolic diseases, National Institute "Zouhair Kallel" of Nutrition, Tunis, Tunisia
| | - Yasmina Elaribi
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - Imen Rejeb
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - Molka Sebai
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - Houweyda Jilani
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - Cécile Rouzier
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France
| | - Monia Cheour
- Department of Ophthalmology, Habib Thameur hospital, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Véronique Paquis-Flucklinger
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France
| | - Lamia Ben Jemaa
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunis, Tunisia
| |
Collapse
|
5
|
Majander A, Jurkute N, Burté F, Brock K, João C, Huang H, Neveu MM, Chan CM, Duncan HJ, Kelly S, Burkitt-Wright E, Khoyratty F, Lai YT, Subash M, Chinnery PF, Bitner-Glindzicz M, Arno G, Webster AR, Moore AT, Michaelides M, Stockman A, Robson AG, Yu-Wai-Man P. WFS1-Associated Optic Neuropathy: Genotype-Phenotype Correlations and Disease Progression. Am J Ophthalmol 2022; 241:9-27. [PMID: 35469785 DOI: 10.1016/j.ajo.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the pattern of vision loss and genotype-phenotype correlations in WFS1-associated optic neuropathy (WON). DESIGN Multicenter cohort study. METHODS The study involved 37 patients with WON carrying pathogenic or candidate pathogenic WFS1 variants. Genetic and clinical data were retrieved from the medical records. Thirteen patients underwent additional comprehensive ophthalmologic assessment. Deep phenotyping involved visual electrophysiology and advanced psychophysical testing with a complementary metabolomic study. MAIN OUTCOME MEASURES WFS1 variants, functional and structural optic nerve and retinal parameters, and metabolomic profile. RESULTS Twenty-two recessive and 5 dominant WFS1 variants were identified. Four variants were novel. All WFS1 variants caused loss of macular retinal ganglion cells (RGCs) as assessed by optical coherence tomography (OCT) and visual electrophysiology. Advanced psychophysical testing indicated involvement of the major RGC subpopulations. Modeling of vision loss showed an accelerated rate of deterioration with increasing age. Dominant WFS1 variants were associated with abnormal reflectivity of the outer plexiform layer (OPL) on OCT imaging. The dominant variants tended to cause less severe vision loss compared with recessive WFS1 variants, which resulted in more variable phenotypes ranging from isolated WON to severe multisystem disease depending on the WFS1 alleles. The metabolomic profile included markers seen in other neurodegenerative diseases and type 1 diabetes mellitus. CONCLUSIONS WFS1 variants result in heterogenous phenotypes influenced by the mode of inheritance and the disease-causing alleles. Biallelic WFS1 variants cause more variable, but generally more severe, vision and RGC loss compared with heterozygous variants. Abnormal cleftlike lamination of the OPL is a distinctive OCT feature that strongly points toward dominant WON.
Collapse
Affiliation(s)
- Anna Majander
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; Department of Ophthalmology, Helsinki University Hospital, University of Helsinki (A.M.), Helsinki, Finland.
| | - Neringa Jurkute
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Florence Burté
- Biosciences Institute, International Centre for Life, Newcastle University (F.B.), Newcastle upon Tyne, United Kingdom
| | - Kristian Brock
- Cancer Research UK Clinical Trials Unit, University of Birmingham (K.B.), Birmingham, United Kingdom
| | - Catarina João
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Houbin Huang
- Hainan Hospital of the General Hospital of Chinese People's Liberation Army (H.H.), Sanya, China
| | - Magella M Neveu
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Choi Mun Chan
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Holly J Duncan
- Newcastle Eye Centre, Royal Victoria Infirmary (H.J.D.), Newcastle upon Tyne, United Kingdom
| | - Simon Kelly
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust (E.B.-W.), Manchester, United Kingdom; Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre (E.B.-W.), Manchester, United Kingdom
| | - Fadil Khoyratty
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Yoon Tse Lai
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Mala Subash
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (P.F.C.), Cambridge, United Kingdom
| | | | - Gavin Arno
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Andrew R Webster
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Anthony T Moore
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; Department of Ophthalmology, UCSF School of Medicine (A.T.M.), San Francisco, California, USA
| | - Michel Michaelides
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Andrew Stockman
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Anthony G Robson
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Patrick Yu-Wai-Man
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (P.Y.-W.-M.), Cambridge, United Kingdom; and Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals (P.Y.-W.-M.), Cambridge, United Kingdom
| |
Collapse
|
6
|
Seo Y, Kim TY, Won D, Shin S, Choi JR, Lee ST, Lee BJ, Lim HT, Han SH, Han J. Genetic spectrum and characteristics of autosomal optic neuropathy in Korean: Use of next-generation sequencing in suspected hereditary optic atrophy. Front Neurol 2022; 13:978532. [PMID: 36071901 PMCID: PMC9441910 DOI: 10.3389/fneur.2022.978532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
AimsTo evaluate the clinical characteristics and causative genetic variants in autosomal optic atrophy diagnosed using next-generation sequencing (NGS).MethodsA cohort of 57 unrelated families affected with bilateral optic atrophy were recruited from two university-based tertiary referral hospitals from May 2016 to April 2022. Genetic variants were detected using a target enrichment panel consisting of 429 or 595 genes and known deep intronic variants associated with inherited eye diseases, exome sequencing, or genome sequencing. The results of detailed clinical examinations, disease-causing variants, and clinical diagnoses were analyzed.ResultsAmong the 57 probands, 33 (57.9%) were men, and the median age at genetic testing was 19.1 years (interquartile range, 7.6–42.5 years). We identified 22 likely causative variants in 18 families and corresponding diagnostic yields of 31.6% (95% confidence interval, 21.0–44.5%). The diagnostic rate of NGS was higher in patients with infantile or early childhood onset optic atrophy than in those with late-onset or unknown optic atrophy (18/39, 46.2% vs. 0/18, 0%, P < 0.001). Among the 22 variants, 15 were novel in our cohort. The OPA1 variants (n = 7) were found to be the major genetic causes, followed by the NR2F1 variant (n = 4). The causative variants in PTPN23, TMEM126A, NBAS, and WFS1 genes were identified in 4 probands with a recessive form of optic atrophy.ConclusionsBased on the results of diagnostic NGS for optic atrophy, the causative variant could be detected in 31.6% of patients. Our study also demonstrated that NGS is unlikely to help identify molecular causes in late-onset unexplained optic atrophy.
Collapse
Affiliation(s)
- Yuri Seo
- Department of Ophthalmology, Institute of Vision Research, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Tae Young Kim
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co., Ltd., Seongnam-si, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co., Ltd., Seongnam-si, South Korea
| | - Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Seoul Orthopia Eye Clinic, Seoul, South Korea
| | - Sueng-Han Han
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Sueng-Han Han
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jinu Han
| |
Collapse
|
7
|
Longitudinal Changes in Vision and Retinal Morphological in Wolfram Syndrome. Am J Ophthalmol 2022; 243:10-18. [PMID: 35850251 DOI: 10.1016/j.ajo.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE To report long-term ophthalmic findings in Wolfram syndrome, including rates of visual decline, macular thinning, retinal nerve fiber layer (RNFL) thinning and outer plexiform lamination (OPL). DESIGN Single-center, cohort study METHODS: : Thirty-eight participants were recruited and underwent a complete ophthalmic examination as well as optical coherence tomography imaging of the macula and nerve on an annual basis. Linear mixed-effects models for longitudinal data were used to examine both fixed and random effects related to visual acuity and optic nerve quadrants of RNFL and macula thickness. RESULTS Participants completed a mean of 6.44 years of follow-up (range 2-10 years). Visual acuity declined over time in all participants with a mean slope of 0.059 logMar/year (95% CI: 0.07 to 0.05 logMar/year), although nearly 25% of subjects experienced more rapid visual decline. RNFL thickness decreased in superior, inferior, and nasal quadrants (β = -0.5 μm/year, -0.98 μm/year, -0.28 μm/year, respectively). OPL lamination was noted in three study participants, two of which had autosomal dominant mutations. CONCLUSIONS Our study describes the longest and largest natural history study of visual acuity decline and retinal morphometry in Wolfram syndrome to date. Results suggest that there are slower and faster progressing subgroups and that OPL lamination is present in some individuals with this disease.
Collapse
|
8
|
Knapp B, Roedig J, Roedig H, Krzysko J, Horn N, Güler BE, Kusuluri DK, Yildirim A, Boldt K, Ueffing M, Liebscher I, Wolfrum U. Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103108. [PMID: 35630584 PMCID: PMC9146371 DOI: 10.3390/molecules27103108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jens Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Heiko Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jacek Krzysko
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Nicola Horn
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Baran E. Güler
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Adem Yildirim
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Karsten Boldt
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Marius Ueffing
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Uwe Wolfrum
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
- Correspondence:
| |
Collapse
|
9
|
Barboni P, Amore G, Cascavilla ML, Battista M, Frontino G, Romagnoli M, Caporali L, Baldoli C, Gramegna LL, Sessagesimi E, Bonfanti R, Romagnoli A, Scotti R, Brambati M, Carbonelli M, Starace V, Fiorini C, Panebianco R, Parisi V, Tonon C, Bandello F, Carelli V, La Morgia C. The pattern of retinal ganglion cell loss in Wolfram syndrome is distinct from mitochondrial optic neuropathies. Am J Ophthalmol 2022; 241:206-216. [PMID: 35452662 DOI: 10.1016/j.ajo.2022.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To describe the clinical phenotype of a cohort of Wolfram syndrome (WS) patients, focusing on the pattern of optic atrophy correlated with brain MRI measurements, as compared to OPA1-associated mitochondrial optic neuropathy. DESIGN Retrospective, comparative cohort study METHODS: 25 WS patients and 33 age-matched patients affected by OPA1-related Dominant Optic Atrophy (DOA). Ophthalmological, neurological, endocrinological and MRI data from WS patients were retrospectively retrieved. Ophthalmological data were compared to OPA1-related DOA and further analyzed for age dependency dividing patients in age quartiles. In a subgroup of WS patients, we correlated the structural damage assessed by optical coherence tomography (OCT) with brain MRI morphological measurements. Visual acuity (VA), visual field mean defect (MD), retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness assessed by OCT, MRI morphological measurements of anterior and posterior visual pathways. RESULTS In our cohort optic atrophy was present in 100% of WS patients. VA, MD and RNFL thickness loss were worse in WS patients with a faster decline since early age as compared to DOA patients, who displayed a more stable visual function over the years. Conversely, GCL sectors were overall thinner in DOA patients since early age compared to WS, in which GCL thickness started to decline later in life. The neuroradiological sub-analysis on 11 WS patients exhibited bilateral thinning of the anterior optic pathway, especially prechiasmatic optic nerves and optic tracts. Optic tract thinning was significantly correlated with the GCL thickness but not with RNFL parameters. CONCLUSIONS Our results showed a generally more severe and diffuse degeneration of both anterior and posterior visual pathways in WS, with fast deterioration of visual function and structural OCT parameters since early age. The pattern observed at OCT suggests that retinal ganglion cells axonal degeneration (i.e. RNFL) precedes of about a decade the cellular body atrophy (i.e. GCL). This differs substantially from DOA, in which a more stable visual function is evident with predominant early loss of GCL, indirectly supporting the lack of a primary mitochondrial dysfunction in WS.
Collapse
Affiliation(s)
- Piero Barboni
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; Studio Oculistico d'Azeglio (P.B.), Bologna, Italy.
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Battista
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Frontino
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Cristina Baldoli
- Neuroradiology Unit (C.B., R.S.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ludovica Gramegna
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Elisa Sessagesimi
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Riccardo Bonfanti
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Romagnoli
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberta Scotti
- Neuroradiology Unit (C.B., R.S.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy
| | - Vincenzo Starace
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Roberta Panebianco
- Department of Ophthalmology (R.P.), University of Catania, Catania, Italy
| | | | - Caterina Tonon
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Francesco Bandello
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
10
|
Kabanovski A, Donaldson L, Margolin E. Neuro-ophthalmological manifestations of Wolfram syndrome: Case series and review of the literature. J Neurol Sci 2022; 437:120267. [DOI: 10.1016/j.jns.2022.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
|
11
|
Crouzier L, Richard EM, Diez C, Alzaeem H, Denus M, Cubedo N, Delaunay T, Glendenning E, Baxendale S, Liévens JC, Whitfield TT, Maurice T, Delprat B. OUP accepted manuscript. Hum Mol Genet 2022; 31:2711-2727. [PMID: 35325133 PMCID: PMC9402244 DOI: 10.1093/hmg/ddac065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Camille Diez
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Hala Alzaeem
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Morgane Denus
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Nicolas Cubedo
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Emily Glendenning
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sarah Baxendale
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Tanya T Whitfield
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Tangui Maurice
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Benjamin Delprat
- To whom correspondence should be addressed: Tel: +33 467143623; Fax: +33 47149295;
| |
Collapse
|
12
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Cairns G, Burté F, Price R, O'Connor E, Toms M, Mishra R, Moosajee M, Pyle A, Sayer JA, Yu-Wai-Man P. A mutant wfs1 zebrafish model of Wolfram syndrome manifesting visual dysfunction and developmental delay. Sci Rep 2021; 11:20491. [PMID: 34650143 PMCID: PMC8516871 DOI: 10.1038/s41598-021-99781-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Wolfram syndrome (WS) is an ultra-rare progressive neurodegenerative disorder defined by early-onset diabetes mellitus and optic atrophy. The majority of patients harbour recessive mutations in the WFS1 gene, which encodes for Wolframin, a transmembrane endoplasmic reticulum protein. There is limited availability of human ocular and brain tissues, and there are few animal models for WS that replicate the neuropathology and clinical phenotype seen in this disorder. We, therefore, characterised two wfs1 zebrafish knockout models harbouring nonsense wfs1a and wfs1b mutations. Both homozygous mutant wfs1a-/- and wfs1b-/- embryos showed significant morphological abnormalities in early development. The wfs1b-/- zebrafish exhibited a more pronounced neurodegenerative phenotype with delayed neuronal development, progressive loss of retinal ganglion cells and clear evidence of visual dysfunction on functional testing. At 12 months of age, wfs1b-/- zebrafish had a significantly lower RGC density per 100 μm2 (mean ± standard deviation; 19 ± 1.7) compared with wild-type (WT) zebrafish (25 ± 2.3, p < 0.001). The optokinetic response for wfs1b-/- zebrafish was significantly reduced at 8 and 16 rpm testing speeds at both 4 and 12 months of age compared with WT zebrafish. An upregulation of the unfolded protein response was observed in mutant zebrafish indicative of increased endoplasmic reticulum stress. Mutant wfs1b-/- zebrafish exhibit some of the key features seen in patients with WS, providing a versatile and cost-effective in vivo model that can be used to further investigate the underlying pathophysiology of WS and potential therapeutic interventions.
Collapse
Affiliation(s)
- G Cairns
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Interdisciplinary School of Health Science, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - F Burté
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - R Price
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - E O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - M Toms
- UCL Institute of Ophthalmology, University College London, London, UK
| | - R Mishra
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Moosajee
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation, Trust, London, UK
| | - A Pyle
- The Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - J A Sayer
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Renal Medicine, Freeman Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - P Yu-Wai-Man
- UCL Institute of Ophthalmology, University College London, London, UK.
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
14
|
Loncke J, Vervliet T, Parys JB, Kaasik A, Bultynck G. Uniting the divergent Wolfram syndrome-linked proteins WFS1 and CISD2 as modulators of Ca 2+ signaling. Sci Signal 2021; 14:eabc6165. [PMID: 34582248 DOI: 10.1126/scisignal.abc6165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Allen Kaasik
- University of Tartu, Institute of Biomedicine and Translational Medicine, Department of Pharmacology, Tartu, Estonia
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
15
|
Munshani S, Ibrahim EY, Domenicano I, Ehrlich BE. The Impact of Mutations in Wolframin on Psychiatric Disorders. Front Pediatr 2021; 9:718132. [PMID: 34746052 PMCID: PMC8567103 DOI: 10.3389/fped.2021.718132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wolfram Syndrome is a rare autosomal recessive disease characterized by early-onset diabetes mellitus, neurodegeneration, and psychological disorders. Mutations in the gene WFS1, coding for the protein wolframin, cause Wolfram Syndrome and are associated with bipolar disorder and schizophrenia. This report aims to connect WFS1 mutations to their impact on protein expression and structure, which ultimately translates to altered cell function and behavioral alterations of an individual. Methods: Published data were used to compile WFS1 mutations associated with psychiatric symptoms, both in homozygous patients and heterozygous carriers of WFS1 mutations. These mutations were evaluated in silico using SNAP2, PolyPhen-2, and PROVEAN to predict the effects of sequence variants. Statistical analysis was performed to assess the correlation between the locations of the mutations and the damage prediction scores. Results: Several mutations, clustering in the center and C-terminus of the WFS1 polypeptide, such as A559T and R558C, are found in individuals with psychiatric diseases and appear particularly impactful on protein structure. Our analysis showed that mutations in all regions of wolframin were present in patients with schizophrenia whereas only cytoplasmic and ER luminal mutations were reported in patients with manic episodes and bipolar disorders. According to Poly-Phen-2 predictions, 82.4% of the ER lumen mutations and 85.7% of the membrane mutations are damaging. Conclusion: We propose mood disorders in Wolfram Syndrome and heterozygous carriers of WFS1 mutations are the consequence of specific mutations in WFS1 that alter the structure of wolframin, resulting in intracellular calcium dysregulations and impaired cell signaling, Understanding the effect of WFS1 mutations on bipolar disorder and schizoprenia is integral to designing clinically targeted treatments for both diseases, which need more specialized treatments.
Collapse
Affiliation(s)
- Saira Munshani
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States
| | - Eiman Y Ibrahim
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Medicine, Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Ilaria Domenicano
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Barbara E Ehrlich
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Mishra R, Chen BS, Richa P, Yu-Wai-Man P. Wolfram syndrome: new pathophysiological insights and therapeutic strategies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211039518. [PMID: 37181110 PMCID: PMC10032446 DOI: 10.1177/26330040211039518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
Wolfram Syndrome (WS) is an ultra-rare, progressive neurodegenerative disease characterized by early-onset diabetes mellitus and irreversible loss of vision, secondary to optic nerve degeneration. Visual loss in WS is an important cause of registrable blindness in children and young adults and the pathological hallmark is the preferential loss of retinal ganglion cells within the inner retina. In addition to optic atrophy, affected individuals frequently develop variable combinations of neurological, endocrinological, and psychiatric complications. The majority of patients carry recessive mutations in the WFS1 (4p16.1) gene that encodes for a multimeric transmembrane protein, wolframin, embedded within the endoplasmic reticulum (ER). An increasingly recognised subgroup of patients harbor dominant WFS1 mutations that usually cause a milder phenotype, which can be limited to optic atrophy. Wolframin is a ubiquitous protein with high levels of expression in retinal, neuronal, and muscle tissues. It is a multifunctional protein that regulates a host of cellular functions, in particular the dynamic interaction with mitochondria at mitochondria-associated membranes. Wolframin has been implicated in several crucial cellular signaling pathways, including insulin signaling, calcium homeostasis, and the regulation of apoptosis and the ER stress response. There is currently no cure for WS; management remains largely supportive. This review will cover the clinical, genetic, and pathophysiological features of WS, with a specific focus on disease models and the molecular pathways that could serve as potential therapeutic targets. The current landscape of therapeutic options will also be discussed in the context of the latest evidence, including the pipeline for repurposed drugs and gene therapy. Plain language summary Wolfram syndrome - disease mechanisms and treatment options Wolfram syndrome (WS) is an ultra-rare genetic disease that causes diabetes mellitus and progressive loss of vision from early childhood. Vision is affected in WS because of damage to a specialized type of cells in the retina, known as retinal ganglion cells (RGCs), which converge at the back of the eye to form the optic nerve. The optic nerve is the fast-conducting cable that transmits visual information from the eye to the vision processing centers within the brain. As RGCs are lost, the optic nerve degenerates and it becomes pale in appearance (optic atrophy). Although diabetes mellitus and optic atrophy are the main features of WS, some patients can develop more severe problems because the brain and other organs, such as the kidneys and the bladder, are also affected. The majority of patients with WS carry spelling mistakes (mutations) in the WFS1 gene, which is located on the short arm of chromosome 4 (4p16.1). This gene is highly expressed in the eye and in the brain, and it encodes for a protein located within a compartment of the cell known as the endoplasmic reticulum. For reasons that still remain unclear, WFS1 mutations preferentially affect RGCs, accounting for the prominent visual loss in this genetic disorder. There is currently no effective treatment to halt or slow disease progression and management remains supportive, including the provision of visual aids and occupational rehabilitation. Research into WS has been limited by its relative rarity and the inability to get access to eye and brain tissues from affected patients. However, major advances in our understanding of this disease have been made recently by making use of more accessible cells from patients, such as skin cells (fibroblasts), or animal models, such as mice and zebrafish. This review summarizes the mechanisms by which WFS1 mutations affect cells, impairing their function and eventually leading to their premature loss. The possible treatment strategies to block these pathways are also discussed, with a particular focus on drug repurposing (i.e., using drugs that are already approved for other diseases) and gene therapy (i.e., replacing or repairing the defective WFS1 gene).
Collapse
Affiliation(s)
- Ratnakar Mishra
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
| | - Benson S. Chen
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
| | - Prachi Richa
- Department of Physiology, Development and
Neuroscience, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, ED Adrian Building, Robinson Way, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University
College London, London, UK
| |
Collapse
|
17
|
Li L, Venkataraman L, Chen S, Fu H. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's disease. Neurosci Biobehav Rev 2020; 118:775-783. [PMID: 32949681 DOI: 10.1016/j.neubiorev.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
L.P. Li, L. Venkataraman, S. Chen, and H.J. Fu. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's Disease. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Wolfram syndrome (WS) is a rare monogenetic spectrum disorder characterized by insulin-dependent juvenile-onset diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing loss, progressive neurodegeneration, and a wide spectrum of psychiatric manifestations. Most WS patients belong to Wolfram Syndrome type 1 (WS1) caused by mutations in the Wolfram Syndrome 1 (WFS1/Wolframin) gene, while a small fraction of patients belongs to Wolfram Syndrome type 2 (WS2) caused by pathogenic variants in the CDGSH Iron Sulfur Domain 2 (CISD2/WFS2) gene. Although currently there is no treatment for this life-threatening disease, the molecular mechanisms underlying the pathogenesis of WS have been proposed. Interestingly, Alzheimer's disease (AD), an age-dependent neurodegenerative disease, shares some common mechanisms with WS. In this review, we focus on the function of WFS1 and WFS2 in the central nervous system as well as their implications in WS and AD. We also propose three future directions for elucidating the role of WFS1 and WFS2 in WS and AD.
Collapse
Affiliation(s)
- Liangping Li
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Lalitha Venkataraman
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Shuo Chen
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Corneal Abnormalities Are Novel Clinical Feature in Wolfram Syndrome. Am J Ophthalmol 2020; 217:140-151. [PMID: 32335055 DOI: 10.1016/j.ajo.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate corneal morphology among patients with Wolfram syndrome (WFS). DESIGN Comparative observational longitudinal case series of WFS patients with a laboratory approach in the WFS1 gene knockout (Wfs1KO) mouse model. METHODS A group of 12 patients with biallelic mutations in the WFS1 gene recruited from the whole country and a control group composed of 30 individuals with type 1 diabetes (T1D) were evaluated in a national reference center for monogenic diabetes. All subjects (n = 42) underwent a complete ophthalmic examination, computer videokeratography, and corneal thickness and endothelial measurements. Additionally, WFS patients (n = 9) underwent longitudinal videokeratography and Pentacam evaluation. Corneal characteristics were assessed and compared between both groups. Human and mouse corneas were subjected to immunohistochemistry to detect wolframin expression and microscopic evaluation to study corneal morphology ex vivo. RESULTS Clinical and topographic abnormalities similar to keratoconus were observed in 14 eyes (58.3%) of 8 WFS patients (66.7%). Flat keratometry, inferior-superior dioptric asymmetry, skewed radial axis, logarithm of keratoconus percentage index, index of surface variance, index of vertical asymmetry, keratoconus index, central keratoconus index, index of height asymmetry, and index of height decentration differed between WFS and T1D patients. Immunohistochemistry demonstrated wolframin expression in human and mouse corneas. Compared with Wfs1WT mice, Wfs1KO mice also presented corneal abnormalities. CONCLUSIONS Patients with WFS present a high prevalence of changes in corneal morphology compatible with the diagnosis of early stages of keratoconus. Observations in a mouse model suggest that a mutation in the WFS1 gene may be responsible for corneal abnormalities similar to keratoconus.
Collapse
|
19
|
Potilinski MC, Lorenc V, Perisset S, Gallo JE. Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21072351. [PMID: 32231131 PMCID: PMC7177797 DOI: 10.3390/ijms21072351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Valeria Lorenc
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Sofía Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Juan Eduardo Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
- Departamento de Oftalmologia, Hospital Universitario Austral, Av. Juan Perón 1500, 1629 Pilar, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-91164038725
| |
Collapse
|
20
|
Zhang Y, Feng L, Kong X, Wu J, Chen Y, Tian G. Novel mutations and the ophthalmologic characters in Chinese patients with Wolfram Syndrome. Orphanet J Rare Dis 2019; 14:190. [PMID: 31391115 PMCID: PMC6686481 DOI: 10.1186/s13023-019-1161-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolfram Syndrome (WFS) is a rare autosomal recessive neurodegenerative disease which has a wide spectrum of manifestations including diabetes insipidus, diabetes mellitus, optic atrophy and deafness. WFS1 and CISD2 are two main causing genes of WFS. The aim of this study was to illustrate the ophthalmologic manifestations and determine the genotype of Chinese WFS patients. RESULTS Completed ophthalmic examinations and family investigations were performed on 4 clinically diagnosed WFS patients from 4 unrelated families. Genetic testing was done by the next generation sequencing of candidate genes. One patient carried a homozygous mutation (c.272_273del) in CISD2, two patients carried compound heterozygous mutations (c.1618 T > G + c.2020G > A and c.1048 T > A + c.2020G > A) in WFS1, and one patient carried a heterozygous mutation (c.937C > T) in WFS1. Three of them were novel mutations. CONCLUSIONS Our study indicated WFS in Chinese is a neurodegenerative disease with both wide spectrum of clinical features and genetic heterogeneity. We found three novel mutations in WFS patients, and to our best knowledge, this is the first report of Chinese WFS patient with mutation in CISD2.
Collapse
Affiliation(s)
- Youjia Zhang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China
| | - Lili Feng
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China
| | - Xiangmei Kong
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Eye Ear Nose and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yuhong Chen
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Eye Ear Nose and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Eye Ear Nose and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China.
| | - Guohong Tian
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Eye Ear Nose and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Eye Ear Nose and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
21
|
Zmyslowska A, Waszczykowska A, Baranska D, Stawiski K, Borowiec M, Jurowski P, Fendler W, Mlynarski W. Optical coherence tomography and magnetic resonance imaging visual pathway evaluation in Wolfram syndrome. Dev Med Child Neurol 2019; 61:359-365. [PMID: 30246501 DOI: 10.1111/dmcn.14040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess parameters of retinal morphology by using high-definition optical coherence tomography (OCT) in patients with Wolfram syndrome (WFS) and their relation to optic tract atrophy in magnetic resonance imaging (MRI). METHOD High-definition OCT and MRI parameters were evaluated in 12 patients with WFS (three males, nine females; median age at examination 12y 8mo, range 10y 2mo-15y 11mo) and referred to 30 individuals with type 1 diabetes (T1D) (12 males, 18 females; median age at examination 20y 5mo, range 16y 8mo-21y 4mo) and 33 typically developing comparison participants (10 males, 23 females; median age at examination 20y 7mo, range 13y-22y 4mo). RESULTS Total thickness and quadrant thickness of the retinal nerve fibre layer (RNFL), macular full-thickness parameters and macular ganglion cell layer/inner plexiform layer, intraorbital and intracranial thickness of the optical nerve, as well as the optic chiasm and visual tracts were significantly reduced in patients with WFS compared with those having T1D and the typically developing comparison participants. Optic chiasm thickness correlated negatively in patients with WFS with both age (r=-0.79; p=0.002) and duration of diabetes (r=-0.62; p=0.032). Thickness of the intraorbital parts of the optic nerves in patients with WFS correlated positively with thickness of the superior RNFL (r=0.73; p=0.006). INTERPRETATION High-definition OCT in combination with MRI could become an important tool for evaluating the effectiveness of therapeutic trials in patients with WFS. WHAT THIS PAPER ADDS Provides evidence of significant reduction of retinal parameters and optic nerves in patients with Wolfram syndrome (WFS). Shows correlations between magnetic resonance imaging parameters and retinal morphology parameters in patients with WFS.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Łódź, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Łódź, Łódź, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Piotr Jurowski
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Łódź, Łódź, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
22
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
23
|
Hoekel J, Narayanan A, Rutlin J, Lugar H, Al-Lozi A, Hershey T, Tychsen L. Visual pathway function and structure in Wolfram syndrome: patient age, variation and progression. BMJ Open Ophthalmol 2018; 3:e000081. [PMID: 29657975 PMCID: PMC5895968 DOI: 10.1136/bmjophth-2017-000081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 01/24/2023] Open
Abstract
Background/aims To report alterations in visual acuity and visual pathway structure over an interval of 1–3 years in a cohort of children, adolescents and young adults who have Wolfram syndrome (WFS) and to describe the range of disease severity evident in patients with WFS whose ages differed by as much as 20 years at first examination. Methods Annual, prospective ophthalmological examinations were performed in conjunction with retinal nerve fibre layer (RNFL) analysis. Diffusion tensor MRI-derived fractional anisotropy was used to assess the microstructural integrity of the optic radiations (OR FA). Results Mean age of the 23 patients with WFS in the study was 13.8 years (range 5–25 years). Mean log minimum angle resolution visual acuity was 0.66 (20/91). RNFL thickness was subnormal in even the youngest patients with WFS. Average RNFL thickness in patients with WFS was 57±8 µ or ~40% thinner than that measured in normal (94±10 µ) children and adolescents (P<0.01). Lower OR FA correlated with worse visual acuity (P=0.006). Subsequent examinations showed declines (P<0.05) in visual acuity, RNFL thickness and OR FA at follow-up intervals of 12–36 months. However, a wide range of disease severity was evident across ages: some of the youngest patients at their first examination had deficits more severe than the oldest patients. Conclusion The genetic mutation of WFS causes damage to both pregeniculate and postgeniculate regions of the visual pathway. The damage is progressive. The decline in visual pathway structure is accompanied by declines of visual function. Disease severity differs widely in individual patients and cannot be predicted from their age.
Collapse
Affiliation(s)
- James Hoekel
- Department of Ophthalmology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Anagha Narayanan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Heather Lugar
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amal Al-Lozi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lawrence Tychsen
- Department of Ophthalmology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA.,Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Cataract as a Phenotypic Marker for a Mutation in WFS1, the Wolfram Syndrome Gene. Eur J Ophthalmol 2018; 22:254-8. [DOI: 10.5301/ejo.2011.8370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 11/20/2022]
|
25
|
Kamboj A, Lause M, Kumar P. Ophthalmic manifestations of endocrine disorders-endocrinology and the eye. Transl Pediatr 2017; 6:286-299. [PMID: 29184810 PMCID: PMC5682375 DOI: 10.21037/tp.2017.09.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disorders of the endocrine system usually manifest in a multi-organ fashion. More specifically, many endocrinopathies become apparent in the eye first through a variety of distinct pathophysiologic disturbances. The eye provides physicians with valuable clues for the recognition and management of numerous systemic diseases, including many disorders of the endocrine pathway. Recognizing ophthalmic manifestations of endocrine disorders is critical not only for rapid diagnosis and treatment, but also to prevent significant morbidity and mortality. In this review, we discuss relevant ophthalmic findings associated with key disorders of the pancreas, thyroid gland, and hypothalamic-pituitary axis, as well as with multiple hereditary endocrine syndromes. We have chosen to focus on diabetes mellitus (DM), Graves' ophthalmopathy, pituitary tumors, and some less common disorders that underscore the unique relationship between the eye and the endocrine system.
Collapse
Affiliation(s)
- Alisha Kamboj
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Michael Lause
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Priyanka Kumar
- Department of Ophthalmology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
26
|
Majander A, Bitner-Glindzicz M, Chan CM, Duncan HJ, Chinnery PF, Subash M, Keane PA, Webster AR, Moore AT, Michaelides M, Yu-Wai-Man P. Lamination of the Outer Plexiform Layer in Optic Atrophy Caused by Dominant WFS1 Mutations. Ophthalmology 2016; 123:1624-6. [PMID: 26875006 DOI: 10.1016/j.ophtha.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022] Open
Affiliation(s)
- Anna Majander
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
| | | | - Choi M Chan
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Holly J Duncan
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Malavika Subash
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Pearse A Keane
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Andrew R Webster
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Anthony T Moore
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; Ophthalmology Department, UCSF School of Medicine, San Francisco, California
| | | | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
28
|
Ophthalmologic correlates of disease severity in children and adolescents with Wolfram syndrome. J AAPOS 2014; 18:461-465.e1. [PMID: 25439303 PMCID: PMC4476046 DOI: 10.1016/j.jaapos.2014.07.162] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/26/2014] [Accepted: 07/13/2014] [Indexed: 01/23/2023]
Abstract
PURPOSE To describe an ophthalmic phenotype in children at relatively early stages of Wolfram syndrome. METHODS Quantitative ophthalmic testing of visual acuity, color vision, automated visual field sensitivity, optic nerve pallor and cupping, and retinal nerve fiber layer (RNFL) thickness assessed by optical coherence tomography (OCT) was performed in 18 subjects 5-25 years of age. Subjects were also examined for presence or absence of afferent pupillary defects, cataracts, nystagmus, and strabismus. RESULTS Subnormal visual acuity was detected in 89% of subjects, color vision deficits in 94%, visual field defects in 100%, optic disk pallor in 94%, abnormally large optic nerve cup:disk ratio in 33%, thinned RNFL in 100%, afferent pupillary defects in 61%, cataracts in 22%, nystagmus in 39%, and strabismus in 39% of subjects. RNFL thinning (P < 0.001), afferent pupillary defects (P = 0.01), strabismus (P = 0.04), and nystagmus (P = 0.04) were associated with more severe disease using the Wolfram United Rating Scale. CONCLUSIONS Children and adolescents with Wolfram syndrome have multiple ophthalmic markers that correlate with overall disease severity. RNFL thickness measured by OCT may be the most reliable early marker.
Collapse
|
29
|
Congenital central diabetes insipidus and optic atrophy in a Wolfram newborn: is there a role for WFS1 gene in neurodevelopment? Ital J Pediatr 2014; 40:76. [PMID: 25255707 PMCID: PMC4422421 DOI: 10.1186/s13052-014-0076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/09/2014] [Indexed: 12/01/2022] Open
Abstract
Background Wolfram syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by diabetes mellitus (DM), optic atrophy (OA), central diabetes insipidus (CDI) and deafness (D). The phenotype of the disease has been associated with several mutations in the WFS1 gene, a nuclear gene localized on chromosome 4. Since the discovery of the association between WFS1 gene and Wolfram syndrome, more than 150 mutations have been identified in WS patients. We previously described the first case of perinatal onset of Wolfram syndrome newborn carrying a segmental uniparental heterodysomy affecting the short arm of chromosome 4 responsible for a significant reduction in wolframin expression. Here we review and discuss the pathophysiological mechanisms that we believe responsible for the perinatal onset of Wolfram syndrome as these data strongly suggest a role for WFS1 gene in foetal and neonatal neurodevelopment. Case presentation We described a male patient of 30 weeks’ gestation with intrauterine growth restriction and poly-hydramnios. During the first days of life, the patient showed a 19% weight loss associated with polyuria and hypernatremia. The presence of persistent hypernatremia (serum sodium 150 mEq/L), high plasma osmolarity (322 mOsm/L) and low urine osmolarity (190 mOsm/l) with a Uosm/Posm ratio < 1 were consistent with CDI. The diagnosis of CDI was confirmed by the desmopressin test and the brain magnetic resonance imaging (MRI) at 34 weeks of age, that showed the lack of posterior pituitary hyperintense signal. In addition, a bilateral asymmetrical optic nerve hypoplasia associated with right orbital bone hypoplasia was observed, suggesting the diagnosis of WF. During the five years follow-up the patient did not developed glucose intolerance or diabetes mellitus. By the end of the second year of life, primary non-autoimmune central hypothyroidism and mild neurodevelopment retardation were diagnosed. Conclusions The analysis of our case, in the light of the most recent literature, suggests a possible role for WFS1 gene in the development of certain brain structures during the fetal period. Wolfram syndrome should be considered in the differential diagnosis of the rare cases of congenital central diabetes insipidus developed in the neonatal period.
Collapse
|
30
|
Bonnet Wersinger D, Benkafadar N, Jagodzinska J, Hamel C, Tanizawa Y, Lenaers G, Delettre C. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice. PLoS One 2014; 9:e97222. [PMID: 24823368 PMCID: PMC4019519 DOI: 10.1371/journal.pone.0097222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/16/2014] [Indexed: 01/27/2023] Open
Abstract
Wolfram syndrome is an early onset genetic disease (1/180,000) featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1−/− mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs) were performed in Wfs1−/− and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC) abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP), protein disulfide isomerase (PDI) and inositol-requiring enzyme 1 alpha (Ire1α) markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1−/− mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1−/− mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1−/− optic pathways.
Collapse
Affiliation(s)
- Delphine Bonnet Wersinger
- INSERM U1051, Institut des Neurosciences de Montpellier, France and Université de Montpellier I et II, Montpellier, France
| | - Nesrine Benkafadar
- INSERM U1051, Institut des Neurosciences de Montpellier, France and Université de Montpellier I et II, Montpellier, France
| | - Jolanta Jagodzinska
- INSERM U1051, Institut des Neurosciences de Montpellier, France and Université de Montpellier I et II, Montpellier, France
| | - Christian Hamel
- INSERM U1051, Institut des Neurosciences de Montpellier, France and Université de Montpellier I et II, Montpellier, France
- Centre Hospitalier Universitaire, Genetics of Sensory Diseases, Montpellier, France
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Guy Lenaers
- INSERM U1051, Institut des Neurosciences de Montpellier, France and Université de Montpellier I et II, Montpellier, France
| | - Cécile Delettre
- INSERM U1051, Institut des Neurosciences de Montpellier, France and Université de Montpellier I et II, Montpellier, France
- * E-mail:
| |
Collapse
|
31
|
Optic nerve histopathology in a case of Wolfram Syndrome: A mitochondrial pattern of axonal loss. Mitochondrion 2013; 13:841-5. [DOI: 10.1016/j.mito.2013.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022]
|
32
|
Berry V, Gregory-Evans C, Emmett W, Waseem N, Raby J, Prescott D, Moore AT, Bhattacharya SS. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans. Eur J Hum Genet 2013; 21:1356-60. [PMID: 23531866 DOI: 10.1038/ejhg.2013.52] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
Congenital cataracts are an important cause of bilateral visual impairment in infants. Through genome-wide linkage analysis in a four-generation family of Irish descent, the disease-associated gene causing autosomal-dominant congenital nuclear cataract was mapped to chromosome 4p16.1. The maximum logarithm of odds (LOD) score was 2.62 at a recombination fraction θ=0, obtained for marker D4S432 physically close to the Wolfram gene (WFS1). By sequencing the coding regions and intron-exon boundaries of WFS1, we identified a DNA substitution (c.1385A-to-G) in exon 8, causing a missense mutation at codon 462 (E462G) of the Wolframin protein. This is the first report of a mutation in this gene causing an isolated nuclear congenital cataract. These findings suggest that the membrane trafficking protein Wolframin may be important for supporting the developing lens.
Collapse
Affiliation(s)
- Vanita Berry
- Department of Genetics, Institute of Ophthalmology, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Wolfram syndrome (WS) (MIM 222300) is a rare multisystem neurodegenerative disorder of autosomal recessive inheritance, also known as DIDMOAD (diabetes insipidus, insulin-deficient diabetes mellitus, optic atrophy and deafness). A Wolfram gene (WFS1) has been mapped to chromosome 4p16.1 which encodes an endoplasmic reticulum (ER) membrane-embedded protein. ER localization suggests that WFS1 protein has physiological functions in membrane trafficking, secretion, processing and/or regulation of ER calcium omeostasis. Disturbances or overloading of these functions induce ER stress responses, including apoptosis. Most WS patients carry mutations in this gene, but some studies provided evidence for genetic heterogeneity, and the genotype-phenotype relationships are not clear. Here we review the data regarding the mechanisms and the mutations of WFS1 gene that relate to WS.
Collapse
Affiliation(s)
- L Rigoli
- Department of Pediatrics, University Hospital, Messina, Italy.
| | | | | |
Collapse
|