1
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kim S, Yoon NG, Im JY, Lee JH, Kim J, Jeon Y, Choi YJ, Lee J, Uemura A, Park DH, Kang BH. Targeting the Mitochondrial Chaperone TRAP1 Alleviates Vascular Pathologies in Ischemic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302776. [PMID: 37983591 PMCID: PMC10787068 DOI: 10.1002/advs.202302776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Activation of hypoxia-inducible factor 1α (HIF1α) contributes to blood-retinal barrier (BRB) breakdown and pathological neovascularization responsible for vision loss in ischemic retinal diseases. During disease progression, mitochondrial biology is altered to adapt to the ischemic environment created by initial vascular dysfunction, but the mitochondrial adaptive mechanisms, which ultimately contribute to the pathogenesis of ischemic retinopathy, remain incompletely understood. In the present study, it is identified that expression of mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) is essential for BRB breakdown and pathologic retinal neovascularization in mouse models mimicking ischemic retinopathies. Genetic Trap1 ablation or treatment with small molecule TRAP1 inhibitors, such as mitoquinone (MitoQ) and SB-U015, alleviate retinal pathologies via proteolytic HIF1α degradation, which is mediated by opening of the mitochondrial permeability transition pore and activation of calcium-dependent protease calpain-1. These findings suggest that TRAP1 can be a promising target for the development of new treatments against ischemic retinopathy, such as retinopathy of prematurity and proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- So‐Yeon Kim
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Nam Gu Yoon
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | | | - Ji Hye Lee
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Juhee Kim
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Young Jae Choi
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
| | - Jong‐Hwa Lee
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
- Department of Human and Environment ToxicologyUniversity of Science & TechnologyDaejeon34113Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoya467‐8601Japan
| | - Dong Ho Park
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Byoung Heon Kang
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
- SmartinBio Inc.Cheongju28160Republic of Korea
| |
Collapse
|
3
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
4
|
Gurung RL, FitzGerald LM, Liu E, McComish BJ, Kaidonis G, Ridge B, Hewitt AW, Vote BJ, Verma N, Craig JE, Burdon KP. The effect of insulin on response to intravitreal anti-VEGF injection in diabetic macular edema in type 2 diabetes mellitus. BMC Ophthalmol 2022; 22:94. [PMID: 35227220 PMCID: PMC8883612 DOI: 10.1186/s12886-022-02325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives To assess whether insulin therapy impacts the effectiveness of anti-vascular endothelial growth factor (anti-VEGF) injection for the treatment of diabetic macular edema (DME) in type 2 diabetes mellitus. Methods This was a retrospective multi-center analysis. The best-corrected visual acuity (BCVA) at 12 months, BCVA change, central macular thickness (CMT), CMT change, and cumulative injection number were compared between the insulin and the oral hypoglycemic agent (OHA) groups. Results The mean final BCVA and CMT improved in both the insulin (N = 137; p < 0.001; p < 0.001, respectively) and the OHA group (N = 61; p = 0.199; p < 0.001, respectively). The two treatment groups were comparable for final BCVA (p = 0.263), BCVA change (p = 0.184), final CMT (p = 0.741), CMT change (p = 0.458), and the cumulative injections received (p = 0.594). The results were comparable between the two groups when stratified by baseline vision (p > 0.05) and baseline HbA1c (p > 0.05). Conclusion Insulin therapy does not alter treatment outcomes for anti-VEGF therapy in DME. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02325-x.
Collapse
Affiliation(s)
- Rajya L Gurung
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street (Private Bag 23), Hobart, Tas, 7000, Australia.
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street (Private Bag 23), Hobart, Tas, 7000, Australia
| | - Ebony Liu
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South, Australia
| | - Bennet J McComish
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street (Private Bag 23), Hobart, Tas, 7000, Australia
| | - Georgia Kaidonis
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South, Australia
| | - Bronwyn Ridge
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street (Private Bag 23), Hobart, Tas, 7000, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Brendan Jt Vote
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nitin Verma
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street (Private Bag 23), Hobart, Tas, 7000, Australia
| |
Collapse
|
5
|
Decreased MicroRNA-150 Exacerbates Neuronal Apoptosis in the Diabetic Retina. Biomedicines 2021; 9:biomedicines9091135. [PMID: 34572320 PMCID: PMC8469350 DOI: 10.3390/biomedicines9091135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication associated with diabetes and the number one cause of blindness in working adults in the US. More than 90% of diabetic patients have obesity-associated type 2 diabetes (T2D), and 60% of T2D patients will develop DR. Photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. However, how diabetic insults cause photoreceptor apoptosis remains unclear. In this study, obesity-associated T2D mice and cultured photoreceptors were used to investigate how decreased microRNA-150 (miR-150) and its downstream target were involved in photoreceptor apoptosis. In the T2D retina, miR-150 was decreased with its target ETS-domain transcription factor (ELK1) and phosphorylated ELK1 at threonine 417 (pELK1T417) upregulated. In cultured photoreceptors, treatments with palmitic acid (PA), to mimic a high-fat environment, decreased miR-150 but upregulated ELK1, pELK1T417, and the translocation of pELK1T417 from the cytoplasm to the cell nucleus. Deletion of miR-150 (miR-150-/-) exacerbates T2D- or PA-induced photoreceptor apoptosis. Blocking the expression of ELK1 with small interfering RNA (siRNA) for Elk1 did not rescue PA-induced photoreceptor apoptosis. Translocation of pELK1T417 from cytoplasm-to-nucleus appears to be the key step of diabetic insult-elicited photoreceptor apoptosis.
Collapse
|
6
|
Zhang P, Zhou YD, Tan Y, Gao L. Protective effects of piperine on the retina of mice with streptozotocin-induced diabetes by suppressing HIF-1/VEGFA pathway and promoting PEDF expression. Int J Ophthalmol 2021; 14:656-665. [PMID: 34012879 DOI: 10.18240/ijo.2021.05.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the protective mechanisms of piperine in the retina of mice with streptozotocin-induced diabetes. METHODS In experiments in vitro, stimulation by chemical hypoxia was established in ARPE-19 cells. Then, the expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor A (VEGFA), and pigment epithelium-derived factor (PEDF) was assessed at the mRNA and protein levels. In experiments in vivo, diabetes mellitus was established by intraperitoneally injecting 150 mg/kg streptozotocin once. After 3wk of the onset of diabetes, 15 mg/kg piperine was intraperitoneally injected once daily for 1 or 3wk. Then, the retinal morphology and mRNA and protein expression were assessed. RESULTS In hypoxia, 1-100 µmol/L piperine significantly decreased the expression of VEGFA mRNA and increased the expression of PEDF mRNA without affecting HIF-1α mRNA. Meanwhile, 100 µmol/L piperine substantially decreased the protein level of VEGFA and increased the protein level of PEDF. The HIF-1α protein level was also hampered by piperine. In the diabetic retina of mice, the morphological damage was alleviated by piperine. Likewise, the retinal vascular leakage was substantially decreased by piperine. Further, the protein levels of HIF-1α and VEGFA were significantly reduced by piperine. Moreover, the level of the antiangiogenic factor of PEDF dramatically increased by piperine. CONCLUSION Piperine may exert protective effects on the retina of mice with diabetes via regulating the pro-antiangiogenic homeostasis composed of HIF-1/VEGFA and PEDF.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Changsha Aier Eye Hospital, Changsha 410015, Hunan Province, China
| | - Yan-Dan Zhou
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Changsha Aier Eye Hospital, Changsha 410015, Hunan Province, China
| | - Yao Tan
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ling Gao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
7
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
8
|
Reddy SS, Prabhakar YK, Kumar CU, Reddy PY, Reddy GB. Effect of vitamin B 12 supplementation on retinal lesions in diabetic rats. Mol Vis 2020; 26:311-325. [PMID: 32355441 PMCID: PMC7190579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022] Open
Abstract
Purpose Diabetic retinopathy (DR) is the most common complication of diabetes involving microvasculature and neuronal alterations in the retina. Previously, we reported that vitamin B12 deficiency could be an independent risk factor for DR in humans. However, the effect of vitamin B12 supplementation in experimental DR is unknown. Thus, in this study, we investigated the impact of dietary supplementation of vitamin B12 on retinal changes in diabetic rats. Methods Diabetes was induced in 2-month-old Sprague-Dawley rats and maintained for 4 months. One group of diabetic rats were fed normal levels of vitamin B12, and one group double the quantity of vitamin B12 (50 µg/kg diet). Vitamin B12 and homocysteine levels in the plasma were analyzed with radioimmunoassay (RIA) and high-performance liquid chromatography (HPLC), respectively. At the end of 4 months of experimentation, the eyeballs were collected. Retinal changes were analyzed with hematoxylin and eosin (H&E) staining, immunoblotting, and immunofluorescence methods. Results Dietary supplementation of vitamin B12 had no effect on food intake, bodyweight, fasting blood glucose, and plasma homocysteine levels in the diabetic rats. However, vitamin B12 supplementation prevented loss of rhodopsin, and overexpression of VEGF, and completely prevented overexpression of HIF1α, GFAP, and endoplasmic reticulum (ER) stress markers (GRP78, ATF6α, XBP1, CHOP, and caspase 12) in the diabetic rat retina. Further, vitamin B12 ameliorated apoptosis in the retina as shown with terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and prevented retinal thinning. Conclusions Vitamin B12 supplementation of diabetic rats appeared to be beneficial by circumventing retinal hypoxia, VEGF overexpression, and ER stress-mediated cell death in the retina. The present study adds another potential therapeutic strategy of vitamin B12 in diabetes.
Collapse
|
9
|
Liu X, Xu H, Han M, Zhang J, Xie J, Tian R. Expression of HIF-1α and Robo4 in the retinas of streptozotocin-induced diabetic mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:507-515. [PMID: 31933855 PMCID: PMC6945086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
PURPOSE This study investigated the expression of HIF-1α and Robo4 in the retinas of streptozotocin (STZ)-induced mice and determined the expression correlation of these two factors in early diabetic retinas in vivo. METHODS A high-fat diet together with STZ stimulated type 2 diabetes mellitus (DM). HE staining was used to observe the morphologic features of the retinas following 4, or 8 weeks of hyperglycemia. Immunofluorescence was carried out to analyze the expression of HIF-1α and Robo4 in the retinas at different time points. HIF-1α and Robo4 mRNA and protein expressions were quantified by real-time PCR and western blot. RESULTS The arrangements of the retinal nerve fiber layer (NFL) and the ganglion cell layer (GCL) were slightly turbulent in the 4-week old diabetic mice, which became aggravated by NFL edema and cytoplasmic vacuoles in the 8-week old group. In the 4-week old group, HIF-1α was expressed slightly higher in NFL and GCL, and Robo4 expression increased in NFL and GCL. In the 8-week old diabetic retinas, HIF-1α expression was enhanced in NFL, GCL, and the outer plexiform layer (OPL); Robo4 expression increased apparently in NFL and GCL. HIF-1α and Robo4 mRNA and protein expressions were also increased slightly in the 1-week old retinas and significantly after 4 and 8 weeks. CONCLUSIONS With aggravating retina structure turbulence in DM mice, both HIF-1α and Robo4 expressions were increased and mainly concentrated in the GCL, INL, and OPL, suggesting a regulatory role of HIF-1α on Robo4 and their combined effect on DM retina damage in vivo.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University Changchun, Jilin, China
| | - Haitao Xu
- Eye Center, The Second Hospital of Jilin University Changchun, Jilin, China
| | - Mei Han
- Eye Center, The Second Hospital of Jilin University Changchun, Jilin, China
| | - Jialu Zhang
- Eye Center, The Second Hospital of Jilin University Changchun, Jilin, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University Changchun, Jilin, China
| | - Rui Tian
- Eye Center, The Second Hospital of Jilin University Changchun, Jilin, China
| |
Collapse
|
10
|
Zhao L, Bartnikas T, Chu X, Klein J, Yun C, Srinivasan S, He P. Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCα-dependent manner. FASEB J 2018; 33:3549-3561. [PMID: 30423260 DOI: 10.1096/fj.201801855r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Excessive iron increases the incidence of diabetes and worsens diabetic complications. Reciprocally, diabetes induces iron loading, partially attributable to elevated intestinal iron export according to a recent report. Herein, we show that iron uptake and the mRNA expression of iron importer divalent metal transporter 1 (DMT1) were significantly increased in the duodenum of streptozotocin-induced diabetic mice. Immunofluorescence staining of human intestinal biopsies revealed increased brush border membrane (BBM) and decreased cytoplasmic DMT1 expression in patients with diabetes, suggesting translocation of DMT1. This pattern of DMT1 regulation was corroborated by immunoblotting results in diabetic mice showing that BBM DMT1 expression was increased by 210%, in contrast to a 60% increase in total DMT1. PKC mediates many diabetic complications, and PKCα activity was increased in diabetic mouse intestine. Intriguingly, diabetic mice with PKCα deficiency did not show increases in iron uptake and BBM DMT1 expression. High-glucose treatment increased plasma membrane DMT1 expression via the activation of PKCα in cultured IECs. Inhibition of PKCα potentiated the ubiquitination and degradation of DMT1 protein. We further showed that high glucose suppressed membrane DMT1 internalization. These findings demonstrate that PKCα promotes microvillus membrane DMT1 expression and intestinal iron uptake, contributing to diabetic iron loading.-Zhao, L., Bartnikas, T., Chu, X., Klein, J., Yun, C., Srinivasan, S., He, P. Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCα-dependent manner.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Gastroenterology, Beijing Hospital of Traditional Chinese Medicine Affiliated With Capital Medical University, Beijing, China.,Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Xiangpeng Chu
- Department of Thoracic Surgery, People's Hospital of Rizhao, Shandong, China
| | - Janet Klein
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Millán JM, Rodrigo R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa. FASEB J 2018; 32:2438-2451. [PMID: 29295858 DOI: 10.1096/fj.201700985r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive and irreversible loss of vision due to rod and cone degeneration. Evidence suggests that an inappropriate oxygen level could contribute to its pathogenesis. Rod cell death could increase oxygen concentration, reduce hypoxia-inducible factor 1 (HIF-1α) and contribute to cone cell death. The purposes of this study were: 1) to analyze the temporal profile of HIF-1α, its downstream effectors VEGF, endothelin-1 (ET-1), iNOS, and glucose transporter 1 (GLUT1), and neuroinflammation in retinas of the murine model of rd10 ( retinal degeneration 10) mice with RP; 2) to study oxygen bioavailability in these retinas; and 3) to investigate how stabilizing HIF-1α proteins with dimethyloxaloglycine (DMOG), a prolyl hydroxylase inhibitor, affects retinal degeneration, neuroinflammation, and antioxidant response in rd10 mice. A generalized down-regulation of HIF-1α and its downstream targets was detected in parallel with reactive gliosis, suggesting high oxygen levels during retinal degeneration. At postnatal d 18, DMOG treatment reduced photoreceptor cell death and glial activation. In summary, retinas of rd10 mice seem to be exposed to a hyperoxic environment even at early stages of degeneration. HIF-1α stabilization could have a temporal neuroprotective effect on photoreceptor cell survival, glial activation, and antioxidant response at early stages of RP.-Olivares-González, L., Martínez-Fernández de la Cámara, C., Hervás, D., Millán, J. M., Rodrigo, R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centros de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - David Hervás
- Unidad de Data Science, Bioestadística y Bioinformática, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; and
| | - José María Millán
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centros de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Regina Rodrigo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centros de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
12
|
D'Amico AG, Maugeri G, Rasà DM, Bucolo C, Saccone S, Federico C, Cavallaro S, D'Agata V. Modulation of IL-1β and VEGF expression in rat diabetic retinopathy after PACAP administration. Peptides 2017; 97:64-69. [PMID: 28964802 DOI: 10.1016/j.peptides.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Hyperglycemic/hypoxic microenvironment concurs to aberrant angiogenesis characterizing the pathology and activates many downstream target genes including inflammatory cytokines and vasoactive peptides, such as interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF). It has been largely demonstrated that pituitary adenylate cyclase-activating peptide (PACAP) plays a protective effect in DR. In the present study, we investigated the role of PACAP to protect retinal tissue through IL-1β and VEGF expression. Diabetes was induced in rats by streptozotocin (STZ) injection, and one week later a single intravitreal injection of 100μM PACAP was administrated. Analyses of IL-1β and VEGF levels were performed three weeks after diabetes induction. The results demonstrated that a single intraocular administration of PACAP significantly reduced the expression of IL-1β in diabetic animals. Moreover, it affects VEGF and its receptors (VEGFRs) levels and interferes with their retinal layers distribution as showed by confocal microscopy analysis. In particular, PACAP treatment downregulates VEGF and VEGFRs that are increasingly expressed in STZ-treated animals as compared to controls. These results indicate that PACAP plays an important role to attenuate the early phase of DR.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy; Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Maria Rasà
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO University of Catania, Catania, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Blair NP, Wanek J, Felder AE, Brewer KC, Joslin CE, Shahidi M. Inner Retinal Oxygen Delivery, Metabolism, and Extraction Fraction in Ins2Akita Diabetic Mice. Invest Ophthalmol Vis Sci 2017; 57:5903-5909. [PMID: 27802520 PMCID: PMC5096417 DOI: 10.1167/iovs.16-20082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Retinal nonperfusion and hypoxia are important factors in human diabetic retinopathy, and these presumably inhibit energy production and lead to cell death. The purpose of this study was to elucidate the effect of diabetes on inner retinal oxygen delivery and metabolism in a mouse model of diabetes. Methods Phosphorescence lifetime and blood flow imaging were performed in spontaneously diabetic Ins2Akita (n = 22) and nondiabetic (n = 22) mice at 12 and 24 weeks of age to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). Inner retinal oxygen delivery (DO2) and metabolism (MO2) were calculated as F ∗ O2A and F ∗ (O2A − O2V), respectively. Oxygen extraction fraction (OEF), which equals MO2/DO2, was calculated. Results DO2 at 12 weeks were 112 ± 40 and 97 ± 29 nL O2/min in nondiabetic and diabetic mice, respectively (NS), and 148 ± 31 and 85 ± 37 nL O2/min at 24 weeks, respectively (P < 0.001). MO2 were 65 ± 31 and 66 ± 27 nL O2/min in nondiabetic and diabetic mice at 12 weeks, respectively, and 79 ± 14 and 54 ± 28 nL O2/min at 24 weeks, respectively (main effects = NS). At 12 weeks OEF were 0.57 ± 0.17 and 0.67 ± 0.09 in nondiabetic and diabetic mice, respectively, and 0.54 ± 0.07 and 0.63 ± 0.08 at 24 weeks, respectively (main effect of diabetes: P < 0.01). Conclusions Inner retinal MO2 was maintained in diabetic Akita mice indicating that elevation of the OEF adequately compensated for reduced DO2 and prevented oxidative metabolism from being limited by hypoxia.
Collapse
Affiliation(s)
- Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Justin Wanek
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anthony E Felder
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Katherine C Brewer
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Charlotte E Joslin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States 2Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, United States 3University of Illinois Cancer Center, Population Health, Behavior, and Outcomes Program, Chicago, Illinois, United States
| | - Mahnaz Shahidi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
14
|
Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58:115-151. [PMID: 28109737 DOI: 10.1016/j.preteyeres.2017.01.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory.
Collapse
Affiliation(s)
- Robert A Linsenmeier
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Neurobiology Department, Northwestern University, 2205 Tech Drive, Evanston 60208-3520, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| | - Hao F Zhang
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| |
Collapse
|
15
|
D'Amico AG, Maugeri G, Bucolo C, Saccone S, Federico C, Cavallaro S, D'Agata V. Nap Interferes with Hypoxia-Inducible Factors and VEGF Expression in Retina of Diabetic Rats. J Mol Neurosci 2016; 61:256-266. [PMID: 27909871 DOI: 10.1007/s12031-016-0869-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/22/2016] [Indexed: 02/14/2023]
Abstract
The retinal microvascular damage is a complication of diabetic retinopathy (DR). Hyperglycemia and hypoxia are responsible of aberrant vessel's proliferation. The cellular response to hypoxia is mediated through activation of hypoxia-inducible factors (HIFs). Among these, HIF-1α modulates expression of its target gene, VEGF, whose upregulation controls the angiogenic event during DR development. In a previous study, we have demonstrated that a small peptide, NAP, is able to protect retina from hyperglycemic insult. Here, we have demonstrated that its intraocular administration in a rat model of diabetic retinopathy has reduced expression of HIF-1α, HIF-2α, and VEGF by increasing HIF-3α levels. These data have been also confirmed by immunolocalization study by confocal microscopy. Although these evidences need to be further deepened to understand the molecular mechanism involved in the protective NAP action, the present data suggest that this small peptide may be effective to prevent the development of this ocular pathology.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- San Raffaele Open University of Rome, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123, Catania, Italy.
| |
Collapse
|
16
|
Maugeri G, D'Amico AG, Saccone S, Federico C, Cavallaro S, D'Agata V. PACAP and VIP Inhibit HIF-1α-Mediated VEGF Expression in a Model of Diabetic Macular Edema. J Cell Physiol 2016; 232:1209-1215. [PMID: 27661459 DOI: 10.1002/jcp.25616] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) exert a protective role against retinal injuries, including diabetic macular edema (DME). The macular damage is induced by hyperglycemia, which damages vessels supplying blood to the retina and induces hypoxia. The microenvironmental changes stimulate the expression of hypoxia-inducible factors (HIFs), which promote the choroidal endothelial cell transmigration across the retinal pigmented epithelium (RPE) into neurosensory retina, where they proliferate into new vessels under stimulation of the vascular endothelial growth factor (VEGF). In the present study, we have investigated whether PACAP and VIP prevent retinal damage by modulating the expression of HIFs, VEGF, and its receptors. In accord to our hypothesis, we have shown that both peptides are able to significantly reduce HIF-1α and increase HIF-3α expression in ARPE-19 cells exposed to hyperglycemic/hypoxic insult. This effect is also related to a reduction of VEGF and its receptors expression. Moreover, both peptides also reduce the activation of p38 mitogen-activated protein kinase (MAPK), a pro-apoptotic signaling pathway, which is activated by VEGFR-1 and 2 receptors. In conclusion, our study has further elucidated the protective role performed by PACAP and VIP, against the harmful combined effect of hyperglycemia/hypoxia characterizing the DME microenvironment. J. Cell. Physiol. 232: 1209-1215, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,San Raffaele Telematic University of Rome, Rome, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
17
|
PACAP Modulates Expression of Hypoxia-Inducible Factors in Streptozotocin-Induced Diabetic Rat Retina. J Mol Neurosci 2015. [PMID: 26202258 DOI: 10.1007/s12031-015-0621-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinal hypoxia has been related to the pathogenesis of diabetic retinopathy. This event is mediated by the hypoxia-inducible factors (HIFs), including HIF-1α, HIF-2α, and HIF-3α. Previously, we have demonstrated the protective role of pituitary adenylate cyclase-activating peptide (PACAP) in the early phase of diabetic retinopathy. In the present work, we investigated whether PACAP effect in hyperglycemic retina is mediated through modulation of HIFs' expression. Diabetes was induced with a single injection of streptozotocin (STZ) in rats. After 1 week, a group of diabetic animals was treated with a single intravitreal injection of 100 μM PACAP or saline solution. Then, changes in HIFs' expression levels were evaluated in the retina after 3 weeks of hyperglycemia. The expression of HIF-1α and HIF-2α was significantly (p < 0.001 vs control) increased in diabetic rats as compared to controls. Instead, their expression levels were significantly (p < 0.001 vs STZ) decreased after PACAP intraocular administration, as detected by Western blot analysis. Conversely, the expression of HIF-3α was significantly (p < 0.001 vs control) downregulated in retinas of STZ-injected rats and significantly (p < 0.001 vs control) increased after PACAP treatment. These data were supported by the immunohistochemical analysis. HIFs were localized either in inner and outer retinal layers. Diabetes interferes with their distribution, which is changed following intravitreal injection of PACAP. The present results suggest that the protective effect of the peptide in diabetic retina might be also mediated through modulation of HIFs' expression.
Collapse
|
18
|
Abstract
In diabetic retinopathy, neovascularization is hypothesized to develop due to hypoxia in the retina. However, evidence for retinal hypoxia is limited, and the progressive changes in oxygenation are unknown. The objective of this study was to determine if retinal hypoxia occurs early in the development of diabetes. Intraretinal oxygen (PO2) profiles were recorded with oxygen-sensitive microelectrodes in control and diabetic Long-Evans rats at 4 and 12 weeks after induction of diabetes. Diabetes did not affect oxygen consumption in the photoreceptors in either dark or light adaptation. Oxygenation of the inner retina was not affected after 4 weeks of diabetes, although vascular endothelial growth factor levels increased. At 12 weeks, average inner retinal PO2, normalized to choriocapillaris PO2, was higher in diabetic rats than in age-matched controls, which was opposite to what was expected. Thus retinal hypoxia is not a condition of early diabetes in rat retina. Increased inner retinal PO2 may occur because oxygen consumption decreases in the inner retina.
Collapse
Affiliation(s)
- Jennifer C M Lau
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL Department of Neurobiology, Northwestern University, Evanston, IL Department of Ophthalmology, Northwestern University, Chicago, IL
| |
Collapse
|
19
|
Catrina SB. Impaired hypoxia-inducible factor (HIF) regulation by hyperglycemia. J Mol Med (Berl) 2014; 92:1025-34. [PMID: 25027070 DOI: 10.1007/s00109-014-1166-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
Abstract
The mechanisms that contribute to the development of diabetes complications remain unclear. A defective reaction of tissues to hypoxia has recently emerged as a new pathogenic mechanism and consists of a complex repression of hypoxia-inducible factor (HIF), which is the main regulator of the adaptive response to hypoxia. This paper discusses the mechanisms by which hyperglycaemia contributes to HIF repression in diabetes. Furthermore, a comprehensive analysis of the functional relevance of these new findings to the development of chronic diabetes complications is provided, along with examples from animal models and clinics.
Collapse
Affiliation(s)
- Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital, L1:01, 17176, Stockholm, Sweden,
| |
Collapse
|
20
|
Eshaq RS, Wright WS, Harris NR. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy. Redox Biol 2014; 2:661-6. [PMID: 24936440 PMCID: PMC4052533 DOI: 10.1016/j.redox.2014.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/30/2022] Open
Abstract
Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. Diabetes alters oxygen delivery and consumption in the retina. Conversion of oxygen to superoxide increases in the diabetic retina. An initial production of mitochondrial superoxide generates further ROS. ROS have been found to mediate deleterious pathways in the diabetic retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Norman R Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
21
|
Wanek J, Teng PY, Blair NP, Shahidi M. Inner retinal oxygen delivery and metabolism in streptozotocin diabetic rats. Invest Ophthalmol Vis Sci 2014; 55:1588-93. [PMID: 24550355 DOI: 10.1167/iovs.13-13537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The purpose of the study is to report global measurements of inner retinal oxygen delivery (DO2_IR) and oxygen metabolism (MO2_IR) in streptozotocin (STZ) diabetic rats. METHODS Phosphorescence lifetime and blood flow imaging were performed in rats 4 (STZ/4 wk; n = 10) and 6 (STZ/6 wk; n = 10) weeks following injection of STZ to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). DO2_IR and MO2_IR were calculated from measurements of F and O2A and of F and the arteriovenous oxygen content difference, respectively. Data in STZ rats were compared to those in healthy control rats (n = 10). RESULTS Measurements of O2A and O2V were not significantly different among STZ/4 wk, STZ/6 wk, and control rats (P ≥ 0.28). Likewise, F was similar among all groups of rats (P = 0.81). DO2_IR measurements were 941 ± 231, 956 ± 232, and 973 ± 243 nL O2/min in control, STZ/4 wk, and STZ/6 wk rats, respectively (P = 0.95). MO2_IR measurements were 516 ± 175, 444 ± 103, and 496 ± 84 nL O2/min in control, STZ/4 wk, and STZ/6 wk rats, respectively (P = 0.37). CONCLUSIONS Global inner retinal oxygen delivery and metabolism were not significantly impaired in STZ rats in early diabetes.
Collapse
Affiliation(s)
- Justin Wanek
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | |
Collapse
|
22
|
Yang W, Yu X, Zhang Q, Lu Q, Wang J, Cui W, Zheng Y, Wang X, Luo D. Attenuation of streptozotocin-induced diabetic retinopathy with low molecular weight fucoidan via inhibition of vascular endothelial growth factor. Exp Eye Res 2013; 115:96-105. [DOI: 10.1016/j.exer.2013.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/03/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
|
23
|
Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A 2013; 110:16586-91. [PMID: 24067647 DOI: 10.1073/pnas.1314575110] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests that photoreceptor cells play a previously unappreciated role in the development of early stages of diabetic retinopathy, but the mechanism by which this occurs is not clear. Inhibition of oxidative stress is known to inhibit the vascular lesions of early diabetic retinopathy, and we investigated whether the diabetes-induced oxidative stress in the retina emanates from photoreceptors. Superoxide generation was assessed in retinas of male C57BL/6J mice made diabetic for 2 mo (4 mo of age when killed) using histochemical (dichlorofluorescein and dihydroethidine) and bioluminescence (lucigenin) methods. Photoreceptors were eliminated in vivo by genetic (opsin(-/-)) and chemical (iodoacetic acid) techniques. Immunoblots were used to measure expression of intercellular adhesion molecule 1 and the inducible form of nitric oxide synthase. Diabetes increased the generation of superoxide by diabetic mouse retina more at night than during the day. Photoreceptors were the major source of reactive oxygen species in the retina, and their deletion (either genetically in opsin(-/-) mice or acutely with iodoacetic acid) inhibited the expected diabetes-induced increase in superoxide and inflammatory proteins in the remaining retina. Both mitochondria and NADPH oxidase contributed to the observed retinal superoxide generation, which could be inhibited in vivo with either methylene blue or apocynin. Photoreceptors are the major source of superoxide generated by retinas of diabetic mice. Pharmaceuticals targeting photoreceptor oxidative stress could offer a unique therapy for diabetic retinopathy.
Collapse
|
24
|
Leskova W, Watts MN, Carter PR, Eshaq RS, Harris NR. Measurement of retinal blood flow rate in diabetic rats: disparity between techniques due to redistribution of flow. Invest Ophthalmol Vis Sci 2013; 54:2992-9. [PMID: 23572104 DOI: 10.1167/iovs.13-11915] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Reports of altered retinal blood flow in experimental models of type I diabetes have provided contrasting results, which leads to some confusion as to whether flow is increased or decreased. The purpose of our study was to evaluate early diabetes-induced changes in retinal blood flow in diabetic rats, using two distinctly different methods. METHODS Diabetes was induced by injection of streptozotocin (STZ), and retinal blood flow rate was measured under anesthesia by a microsphere infusion technique, or by an index of flow based on the mean circulation time between arterioles and venules. Measurements in STZ rats were compared to age-matched nondiabetic controls. In addition, the retinal distribution of fluorescently-labeled red blood cells (RBCs) was viewed by confocal microscopy in excised flat mounts. RESULTS Retinal blood flow rate was found to decrease by approximately 33% in the STZ rats compared to controls (P < 0.001) as assessed by the microsphere technique. However, in striking contrast, the mean circulation time through the retina was found to be almost 3× faster in the STZ rats (P < 0.01). This contradiction could be explained by flow redistribution through the superficial vessels of the diabetic retina, with this possibility supported by our observation of significantly fewer RBCs flowing through the deeper capillaries. CONCLUSIONS We conclude that retinal blood flow rate is reduced significantly in the diabetic rat, with a substantial decrease of flow through the capillaries due to shunting of blood through the superficial layer, allowing rapid transit from arterioles to venules.
Collapse
Affiliation(s)
- Wendy Leskova
- Louisiana State University Health Sciences Center in Shreveport, Department of Molecular and Cellular Physiology, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
25
|
Johnson LE, Larsen M, Perez MT. Retinal adaptation to changing glycemic levels in a rat model of type 2 diabetes. PLoS One 2013; 8:e55456. [PMID: 23408985 PMCID: PMC3568153 DOI: 10.1371/journal.pone.0055456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/02/2013] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Glucose concentrations are elevated in retinal cells in undiagnosed and in undertreated diabetes. Studies of diabetic patients suggest that retinal function adapts, to some extent, to this increased supply of glucose. The aim of the present study was to examine such adaptation in a model of type 2 diabetes and assess how the retina responds to the subsequent institution of glycemic control. METHODS Electroretinography (ERG) was conducted on untreated Zucker diabetic fatty (ZDF) rats and congenic controls from 8-22 weeks of age and on ZDFs treated with daily insulin from 16-22 weeks of age. Retinal sections from various ages were prepared and compared histologically and by immunocytochemistry. PRINCIPAL FINDINGS/CONCLUSIONS Acute hyperglycemia did not have an effect on control rats while chronic hyperglycemia in the ZDF was associated with scotopic ERG amplitudes which were up to 20% higher than those of age-matched controls. This change followed the onset of hyperglycemia with a delay of over one month, supporting that habituation to hyperglycemia is a slow process. When glycemia was lowered, an immediate decrease in ZDF photoreceptoral activity was induced as seen by a reduction in a-wave amplitudes and maximum slopes of about 30%. A direct effect of insulin on the ERG was unlikely since the expression of phosphorylated Akt kinase was not affected by treatment. The electrophysiological differences between untreated ZDFs and controls preceded an activation of Müller cells in the ZDFs (up-regulation of glial fibrillary acidic protein), which was attenuated by insulin treatment. There were otherwise no signs of cell death or morphological alterations in any of the experimental groups. These data show that under chronic hyperglycemia, the ZDF retina became abnormally sensitive to variations in substrate supply. In diabetes, a similar inability to cope with intensive glucose lowering could render the retina susceptible to damage.
Collapse
Affiliation(s)
- Leif E Johnson
- Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark.
| | | | | |
Collapse
|
26
|
Liu DS, Zhou YH, Liang ES, Li W, Lin WW, Chen FF, Gao W. Neuroprotective effects of the Chinese Yi-Qi-Bu-Shen recipe extract on injury of rat hippocampal neurons induced by hypoxia/reoxygenation. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:168-174. [PMID: 23127652 DOI: 10.1016/j.jep.2012.10.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To explore the protective effects of the Chinese Yi-Qi-Bu-Shen recipe (YB) against neuronal injury induced by hypoxia-reoxygenation, which has shown beneficial effect in improving the brain function of type 2 diabetics likely through its antihyperglycemic, antioxidant activity, and investigate its mechanisms. METHODS The bilateral hippocampus was collected from newborn rats to establish single cell suspension. On the 10th day, the primarily cultured hippocampal neurons were randomly divided into five groups: the normal group (NG), the hypoxia/reoxygenation group (HG), and groups protected with small, medium and large dosages of YB (SG, MG and LG, respectively). The YB-protected groups were treated with different concentrations of YB containing serum before reoxygenation. The metabolic rate of MTT, the malondialdehyde (MDA) content, and the activity of superoxide dismutase (SOD) and lactate dehydrogenase (LDH) were measured with assay kits. The apoptosis rate of hippocampal neurons were tested using flow cytometry analysis. RT-PCR was used to evaluate the mRNA expressions of bcl-2 and bax genes. RESULTS The SOD activity, the cell survival rate, the bcl-2/bax ratio, and the bcl-2mRNA expression in the HG group were significantly lower (all P<0.01), but the levels of MDA and LDH, the apoptosis rate, and the bax mRNA expression were higher (all P<0.01) than those in the NG group. The SOD activity, the cell survival, the bcl-2mRNA expression, and the bcl-2/bax ratio were significantly higher in all of the YB-protected groups (all P<0.01), but the level of MDA and LDH, the apoptosis rate, and the bax mRNA expression were lower (P<0.01, P<0.05) than those in the HG group in a dose dependent manner. CONCLUSION The YB extract has a protective effect on hippocampal neurons against injury induced by hypoxia/reoxygenation, through its antioxidant activity and the regulation of apoptosis.
Collapse
Affiliation(s)
- De-shan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan 250012, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013; 2013:106594. [PMID: 24286086 PMCID: PMC3826427 DOI: 10.1155/2013/106594] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening.
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- *Amy C. Y. Lo:
| |
Collapse
|
28
|
Wright WS, Singh Yadav A, McElhatten RM, Harris NR. Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse. Exp Eye Res 2012; 98:9-15. [PMID: 22440813 PMCID: PMC3340465 DOI: 10.1016/j.exer.2012.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 12/30/2022]
Abstract
The aim of this study was to characterize the microvascular flow abnormalities and oxygenation changes that are present following six months of hyperglycemia in the diabetic Ins2(Akita) mouse. Previous studies have shown decreased retinal blood flow in the first several weeks of hyperglycemia in rodents, similar to the decreases seen in the early stages of human diabetes. However, whether this alteration in the mouse retina continues beyond the initial weeks of diabetes has yet to be determined, as are the potential consequences of the decreased flow on retinal oxygenation. In this study, male Ins2(Akita) and age-matched C57BL/6 (non-diabetic) mice were maintained for a period of six months, at which time intravital microscopy was used to measure retinal blood vessel diameters, blood cell velocity, vascular wall shear rates, blood flow rates, and transient capillary occlusions. In addition, the presence of hypoxia was assessed using the oxygen-sensitive probe pimonidazole. The diabetic retinal microvasculature displayed decreases in red blood cell velocity (30%, p<0.001), shear rate (25%, p<0.01), and flow rate (40%, p<0.001). Moreover, transient capillary stoppages in flow were observed in the diabetic mice, but rarely in the non-diabetic mice. However, no alterations were observed in retinal hypoxia as determined by a pimonidazole assay, suggesting the possibility that the decreases seen in retinal blood flow may be dictated by a decrease in retinal oxygen utilization.
Collapse
Affiliation(s)
- William S. Wright
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC 29303
| | - Amit Singh Yadav
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Robert M. McElhatten
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Norman R. Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
29
|
Lange CA, Bainbridge JW. Oxygen Sensing in Retinal Health and Disease. Ophthalmologica 2012; 227:115-31. [DOI: 10.1159/000331418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 12/24/2022]
|
30
|
Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 2011; 31:89-119. [PMID: 22108059 DOI: 10.1016/j.preteyeres.2011.11.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
Abstract
Photoreceptors and other cells of the retina consume large quantities of energy to efficiently convert light information into a neuronal signal understandable by the brain. The necessary energy is mainly provided by the oxygen-dependent generation of ATP in the numerous mitochondria of retinal cells. To secure the availability of sufficient oxygen for this process, the retina requires constant blood flow through the vasculature of the retina and the choroid. Inefficient supply of oxygen and nutrients, as it may occur in conditions of disturbed hemodynamics or vascular defects, results in tissue ischemia or hypoxia. This has profound consequences on retinal function and cell survival, requiring an adaptational response by cells to cope with the reduced oxygen tension. Central to this response are hypoxia inducible factors, transcription factors that accumulate under hypoxic conditions and drive the expression of a large variety of target genes involved in angiogenesis, cell survival and metabolism. Prominent among these factors are vascular endothelial growth factor and erythropoietin, which may contribute to normal angiogenesis during development, but may also cause neovascularization and vascular leakage under pathologically reduced oxygen levels. Since ischemia and hypoxia may have a role in various retinal diseases such as diabetic retinopathy and retinopathy of prematurity, studying the cellular and molecular response to reduced tissue oxygenation is of high relevance. In addition, the concept of preconditioning with ischemia or hypoxia demonstrates the capacity of the retina to activate endogenous survival mechanisms, which may protect cells against a following noxious insult. Part of these mechanisms is the local production of protective factors such as erythropoietin. Due to its plethora of effects in the retina including neuro- and vaso-protective activities, erythropoietin has gained strong interest as potential therapeutic factor for retinal degenerative diseases.
Collapse
Affiliation(s)
- Christian Caprara
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Increase in retinal hypoxia-inducible factor-2α, but not hypoxia, early in the progression of diabetes in the rat. Exp Eye Res 2011; 93:437-41. [PMID: 21689648 DOI: 10.1016/j.exer.2011.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/12/2011] [Accepted: 06/06/2011] [Indexed: 01/09/2023]
Abstract
Hypoxia and the associated hypoxia-inducible factors (HIFs) may be influential in the progression of diabetic retinopathy. However, little is known of the extent of hypoxia and the levels of HIFs early in the progression of the disease. In the current study, we injected the oxygen-dependent probe pimonidazole (Hypoxyprobe™-1) into diabetic rats, and also performed immunohistochemistry to determine the retinal levels of HIF-1α and HIF-2α. The rats were made diabetic using a single injection of streptozotocin (STZ; 60 mg/kg), with vehicle-injected rats used as non-diabetic controls. The measurements of hypoxia and HIF levels were obtained three weeks following STZ injection, at which time we have previously found significant decreases in retinal blood flow in the same model. In the current experiments, no increases in either HIF-1α or hypoxia were observed in the diabetic rats (compared with controls), and there was even a tendency for hypoxia levels to be decreased (tissue more highly oxygenated). However, we did observe an increase in HIF-2α in the retinas of the diabetic rats. Therefore, we conclude that early diabetes-induced increases in HIF-2α occur independently of hypoxia.
Collapse
|
32
|
Lin M, Chen Y, Jin J, Hu Y, Zhou KK, Zhu M, Le YZ, Ge J, Johnson RS, Ma JX. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Müller cells. Diabetologia 2011; 54:1554-66. [PMID: 21360191 PMCID: PMC6592825 DOI: 10.1007/s00125-011-2081-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/19/2011] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Retinal Müller cells are known to produce inflammatory and angiogenic cytokines, which play important roles in diabetic retinopathy. Hypoxia-inducible factor (HIF)-1 has been shown to play a crucial role in retinal inflammation and neovascularisation. We sought to determine the role of Müller cell-derived HIF-1 in oxygen-induced retinopathy (OIR) and diabetic retinopathy using conditional Hif-1α (also known as Hif1a) knockout (KO) mice. METHODS Conditional Hif-1α KO mice were generated by crossing mice expressing cyclisation recombinase (cre, also known as P1_gp003) in Müller cells with floxed Hif-1α mice and used for OIR and streptozotocin-induced diabetes to induce retinal neovascularisation and inflammation, respectively. Abundance of HIF-1α and pro-angiogenic and pro-inflammatory factors was measured by immunoblotting and immunohistochemistry. Retinal neovascularisation was visualised by angiography and quantified by counting pre-retinal nuclei. Retinal inflammation was evaluated by leucostasis and vascular leakage. RESULTS While the Hif-1α KO mice showed significantly decreased HIF-1α levels in the retina, they exhibited no apparent histological or visual functional abnormalities under normal conditions. Compared with wild-type counterparts, Hif-1α KO mice with OIR demonstrated attenuated overproduction of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule (ICAM)-1, reduced vascular leakage and alleviated neovascularisation in the retina. Under diabetes conditions, disruption of Hif-1α in Müller cells attenuated the increases of retinal vascular leakage and adherent leucocytes, as well as the overproduction of VEGF and ICAM-1. CONCLUSIONS/INTERPRETATION Müller cell-derived HIF-1α is a key mediator of retinal neovascularisation, vascular leakage and inflammation, the major pathological changes in diabetic retinopathy. Müller cell-derived HIF-1α is therefore a promising therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- M Lin
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang Z, Yadav AS, Leskova W, Harris NR. Inhibition of 20-HETE attenuates diabetes-induced decreases in retinal hemodynamics. Exp Eye Res 2011; 93:108-13. [PMID: 21658386 DOI: 10.1016/j.exer.2011.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022]
Abstract
The mechanisms of early diabetes-induced decreases in retinal blood flow have yet to be fully determined. The aim of this study was to explore the hypothesis that 20-hydroxyeicosatetraenoic acid (20-HETE) plays a role in the early decrease of retinal hemodynamics in diabetic mice. 20-HETE has been implicated previously in the diabetes-enhanced vasoconstriction of mesenteric and renal vessels; however, its role in the diabetic retinal microcirculation has not been investigated. Diabetes was induced by multiple low-dose injections of streptozotocin (STZ; 50 mg/kg for 5 consecutive days), then ∼2 weeks later the mice were administered daily intraperitoneal injections with or without the 20-HETE inhibitor HET0016 (2.5 mg/kg/day) for the following 2 weeks. Non-diabetic age-matched mice were included as controls. Intravital microscopy was used to obtain measurements of retinal vascular diameters and red blood cell (RBC) velocities for the feed arterioles and draining venules extending out of and into the optic disk. From these values, wall shear rates and blood flow rates were calculated. Diabetes induced approximately 30-40% decreases in RBC velocity, wall shear rate, and blood flow rate. These decreases were attenuated to 5-10% in the mice given HET0016. In summary, the 20-HETE inhibitor HET0016 is able to attenuate the retinal hemodynamic changes induced by diabetes.
Collapse
Affiliation(s)
- Zhongli Wang
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
34
|
Villalvilla A, Fernández-Durango R. [Endothelial progenitor cells: their possible potential in cell therapy for ischemic retina]. ACTA ACUST UNITED AC 2010; 85:291-3. [PMID: 21167435 DOI: 10.1016/j.oftal.2010.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
|