1
|
Shahror RA, Morris CA, Mohammed AA, Wild M, Zaman B, Mitchell CD, Phillips PH, Rusch NJ, Shosha E, Fouda AY. Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions. J Neuroinflammation 2024; 21:65. [PMID: 38454477 PMCID: PMC10918977 DOI: 10.1186/s12974-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Carol A Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Aya A Mohammed
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Bushra Zaman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Christian D Mitchell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Paul H Phillips
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Liu S, Cao W, Wu L, Wen A, Zhou Y, Xiang Z, Rao W, Yao D. Endovascular treatment over 24 hours after ischemic stroke onset: a single-center retrospective study. Neuroradiology 2023; 65:793-804. [PMID: 36550266 DOI: 10.1007/s00234-022-03105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study is to evaluate the safety and effectiveness of endovascular treatment (EVT) for acute ischemic stroke caused by large-vessel obstruction or stenosis (AIS-LVO/S) over 24 h after first AIS symptom recognition (FAISSR). METHODS A total of 33 AIS-LVO/S cases with EVT over 24 h after FAISSR during the period from January 2019 to February 2022 in our hospital were divided into the 90d mRS ≤ 2 group [favorable outcome (FO) group] and 90d mRS > 2 group [unfavorable outcome (UFO) group] and retrospectively analyzed. RESULTS The reperfusion was successfully established with EVT in 97% (32/33) of cases, and most (63.6%, 21/33) had 90d mRS ≤ 2 and only 36.4% (12/33) had 90d mRS > 2. Preoperative DWI-ASPECT and ASITN/SIR scores were significantly higher and NIHSS scores were significantly lower in the FO group than those in the UFO group (P < 0.05). In addition, the FAISSR to exacerbation time, FAISSR to groin puncture time, and FAISSR to reperfusion time were significantly longer, and the groin puncture to reperfusion time was significantly shorter in the FO group than those in the UFO group (P < 0.05), but there was no significant difference in the stroke exacerbation to groin puncture time (P > 0.05). The patients with cerebral infarction due to artery dissection had more favorable EVT outcomes, but the patients with posterior cerebral circulation infarction had very poor EVT outcomes. CONCLUSIONS The FAISSR to groin puncture time over 24 h may not be a taboo for EVT and it may be safe and effective for AIS-LVO/S in anterior cerebral circulation, especially with lower preoperative NIHSS scores.
Collapse
Affiliation(s)
- Shimin Liu
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wenfeng Cao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lingfeng Wu
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - An Wen
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yongliang Zhou
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhengbing Xiang
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wei Rao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Dongyuan Yao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Mathew B, Acha LG, Torres LA, Huang CC, Liu A, Kalinin S, Leung K, Dai Y, Feinstein DL, Ravindran S, Roth S. MicroRNA-based engineering of mesenchymal stem cell extracellular vesicles for treatment of retinal ischemic disorders: Engineered extracellular vesiclesand retinal ischemia. Acta Biomater 2023; 158:782-797. [PMID: 36638942 PMCID: PMC10005109 DOI: 10.1016/j.actbio.2023.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) are emerging therapeutic tools. Hypoxic pre-conditioning (HPC) of MSCs altered the production of microRNAs (miRNAs) in EVs, and enhanced the cytoprotective, anti-inflammatory, and neuroprotective properties of their derivative EVs in retinal cells. EV miRNAs were identified as the primary contributors of these EV functions. Through miRNA seq analyses, miRNA-424 was identified as a candidate for the retina to overexpress in EVs for enhancing cytoprotection and anti-inflammatory effects. FEEs (functionally engineered EVs) overexpressing miR424 (FEE424) significantly enhanced neuroprotection and anti-inflammatory activities in vitro in retinal cells. FEE424 functioned by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in retinal Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery after retinal ischemic insult. In an in vivo model of retinal ischemia, native, HPC, and FEE424 MSC EVs robustly and similarly restored function to close to baseline, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. These results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component. STATEMENT OF SIGNIFICANCE: We show that functionally engineered extracellular vesicles (FEEs) from mesenchymal stem cells (MSCs) provide cytoprotection in rat retina subjected to ischemia. FEEs overexpressing microRNA 424 (FEE424) function by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery. In an in vivo model of retinal ischemia in rats, native, hypoxic-preconditioned (HPC), and FEE424 MSC EVs robustly and similarly restored function, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. The results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component.
Collapse
Affiliation(s)
- Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Lorea Gamboa Acha
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Leianne A Torres
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago
| | - Alice Liu
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Sergey Kalinin
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Kasey Leung
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois-Chicago
| | - Douglas L Feinstein
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago; Jesse Brown Veterans Affairs, Chicago, IL
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago.
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago.
| |
Collapse
|
4
|
Ye Z, Li X, Zheng D, Pei S, Cheng P, Zhang L, Zhu L. Intravitreally Injected Methylene Blue Protects Retina against Acute Ocular Hypertension in Rats. Curr Eye Res 2021; 47:91-101. [PMID: 34165383 DOI: 10.1080/02713683.2021.1948062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To assess the neuroprotective effects of methylene blue (MB) in a rat model of acute ocular hypertension (AOH) and explore its possible mechanisms.Methods: Our AOH rat model was obtained with anterior chamber perfusion for 60 min. After that, 100 μM MB was injected into the vitreous cavity immediately after injury. Electroretinogram, fundus photography, optical coherence tomography (OCT) and retina morphology examination were utilized to quantify retinal damage before surgery, as well as 7, 14 and 28 days after. The average number of surviving retinal ganglion cells (RGCs) was counted after fluorescent retrograde labelling with 4% DiI. And TUNEL assay was used to investigate retinal cell apoptosis at 24 hours after AOH. Nrf2 and BACE1 in the retina were determined by RT-qPCR analysis.Results: AOH did produce a severe degeneration effect on the whole retinal layer. Intravitreally injected MB maintained certain retinal thickness after AOH, reduced the destruction of electroretinograms, and enhanced RGCs survival. The average number of TUNEL-labelled cells statistically reduced in the MB-treated retina tissue compared with retina treated with normal saline. The relative mRNA level of Nrf2 was also much higher in the MB-treated retinas after AOH, and the expression of BACE1 had a decline in the AOH + MB group.Conclusions: MB can protect the retina from AOH injury and the possible mechanism might involve the inhibition of BACE1 expression and the activation of Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Li
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan, China
| | - Dongliang Zheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuaili Pei
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei Cheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lishu Zhang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Zhu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Mathew B, Chennakesavalu M, Sharma M, Torres LA, Stelman CR, Tran S, Patel R, Burg N, Salkovski M, Kadzielawa K, Seiler F, Aldrich LN, Roth S. Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy 2021; 17:1479-1499. [PMID: 32452260 PMCID: PMC8205079 DOI: 10.1080/15548627.2020.1767371] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Retinal ischemia is a major cause of vision loss and a common underlying mechanism associated with diseases, such as diabetic retinopathy and central retinal artery occlusion. We have previously demonstrated the robust neuroprotection in retina induced by post-conditioning (post-C), a brief period of ischemia, 24 h, following a prolonged and damaging initial ischemia. The mechanisms underlying post-C-mediated retinal protection are largely uncharacterized. We hypothesized that macroautophagy/autophagy is a mediator of post-C-induced neuroprotection. This study employed an in vitro model of oxygen glucose deprivation (OGD) in the retinal R28 neuronal cell line, and an in vivo rat model of retinal ischemic injury. In vivo, there were significant increases in autophagy proteins, MAP1LC3-II/LC3-II, and decreases in SQSTM1/p62 (sequestosome 1) in ischemia/post-C vs. ischemia/sham post-C. Blockade of Atg5 and Atg7 in vivo decreased LC3-II, increased SQSTM1, attenuated the functional protective effect of post-C, and increased histological damage and TUNEL compared to non-silencing siRNA. TUNEL after ischemia in vivo was found in retinal ganglion, amacrine, and photoreceptor cells. Blockade of Atg5 attenuated the post-C neuroprotection by a brief period of OGD in vitro. Moreover, in vitro, post-C attenuated cell death, loss of cellular proliferation, and defective autophagic flux from prolonged OGD. Stimulating autophagy using Tat-Beclin 1 rescued retinal neurons from cell death after OGD. As a whole, our results suggest that autophagy is required for the neuroprotective effect of retinal ischemic post-conditioning and augmentation of autophagy offers promise in the treatment of retinal ischemic injury.Abbreviations: BECN1: Beclin 1, autophagy related; DAPI: 4',6-diamidino-2-phenylindole; DR: diabetic retinopathy; EdU: 5-ethynyl-2'-deoxyuridine; ERG: Electroretinogram; FITC: Fluorescein isothiocyanate; GCL: Ganglion cell layer; GFAP: Glial fibrillary acidic protein; INL: Inner nuclear layer; IPL: Inner plexiform layer; MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3; OGD: Oxygen-glucose deprivation; ONL: Outer nuclear layer; OP: Oscillatory potential; PFA: Paraformaldehyde; PL: Photoreceptor layer; post-C: post-conditioning; RFP: Red fluorescent protein; RGC: Retinal ganglion cell; RPE: Retinal pigment epithelium; RT-PCR: Real-time polymerase chain reaction; SEM: Standard error of the mean; siRNA: Small interfering RNA; SQSTM1: Sequestosome 1; STR: Scotopic threshold response; Tat: Trans-activator of transcription; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Biji Mathew
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Monica Sharma
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne A. Torres
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R. Stelman
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sophie Tran
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Raj Patel
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nathan Burg
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryna Salkovski
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Konrad Kadzielawa
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Figen Seiler
- Electron Microscopy Core Facility, University of Illinois at Chicago, Chicago, IL, USA
| | - Leslie N. Aldrich
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Roth S, Dreixler J, Newman NJ. Haemodilution and head-down tilting induce functional injury in the rat optic nerve: A model for peri-operative ischemic optic neuropathy. Eur J Anaesthesiol 2019; 35:840-847. [PMID: 29771733 DOI: 10.1097/eja.0000000000000829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mechanisms of peri-operative ischaemic optic neuropathy remain poorly understood. Both specific pre-operative and intra-operative factors have been examined by retrospective studies, but no animal model currently exists. OBJECTIVES To develop a rodent model of peri-operative ischaemic optic neuropathy. In rats, we performed head-down tilt and/or haemodilution, theorising that the combination damages the optic nerve. DESIGN Animal study. SETTING Laboratory. ANIMALS A total of 36 rats, in four groups, completed the functional examination of retina and optic nerve after the interventions. INTERVENTIONS Anaesthetised groups (n>8) were supine (SUP) for 5 h, head-down tilted 70° for 5 h, head-down tilted/haemodiluted for 5 h or SUP/haemodiluted for 5 h. We measured blood pressure, heart rate, intra-ocular pressure and maintained constant temperature. MAIN OUTCOME MEASUREMENTS Retinal function (electroretinography), scotopic threshold response (STR) (for retinal ganglion cells) and visual evoked potentials (VEP) (for transmission through the optic nerve). We imaged the optic nerve in vivo and evaluated retinal histology, apoptotic cells and glial activation in the optic nerve. Retinal and optic nerve function were followed to 14 and 28 days after experiments. RESULTS At 28 days in head down tilted/haemodiluted rats, negative STR decreased (about 50% amplitude reduction, P = 0.006), VEP wave N2-P3 decreased (70% amplitude reduction, P = 0.01) and P2 latency increased (35%, P = 0.003), optic discs were swollen and glial activation was present in the optic nerve. SUP/haemodiluted rats had decreases in negative STR and increased VEP latency, but no glial activation. CONCLUSION An injury partly resembling human ischaemic optic neuropathy can be produced in rats by combining haemodilution and head-down tilt. Significant functional changes were also present with haemodilution alone. Future studies with this partial optic nerve injury may enable understanding of mechanisms of peri-operative ischaemic optic neuropathy and could help discover preventive or treatment strategies.
Collapse
Affiliation(s)
- Steven Roth
- From the Department of Anesthesiology (SR), Department of Ophthalmology and Visual Sciences, University of Illinois (SR), Anesthesia and Critical Care, University of Chicago, Chicago, Illinois (JD), Department of Ophthalmology and Neurology (NJN) and Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, USA (NJN)
| | | | | |
Collapse
|
7
|
Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang CC, Feng L, Zelka R, Lopez J, Sharma M, Roth S. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 2019; 197:146-160. [PMID: 30654160 PMCID: PMC6425741 DOI: 10.1016/j.biomaterials.2019.01.016] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Retinal ischemia is a major cause of vision loss and impairment and a common underlying mechanism associated with diseases such as glaucoma, diabetic retinopathy, and central retinal artery occlusion. The regenerative capacity of the diseased human retina is limited. Our previous studies have shown the neuroprotective effects of intravitreal injection of mesenchymal stem cells (MSC) and MSC-conditioned medium in retinal ischemia in rats. Based upon the hypothesis that the neuroprotective effects of MSCs and conditioned medium are largely mediated by extracellular vesicles (EVs), MSC derived EVs were tested in an in-vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. Treatment of R28 retinal cells with MSC-derived EVs significantly reduced cell death and attenuated loss of cell proliferation. Mechanistic studies on the mode of EV endocytosis by retinal cells were performed in vitro. EV endocytosis was dose- and temperature-dependent, saturable, and occurred via cell surface heparin sulfate proteoglycans mediated by the caveolar endocytic pathway. The administration of MSC-EVs into the vitreous humor 24 h after retinal ischemia in a rat model significantly enhanced functional recovery, and decreased neuro-inflammation and apoptosis. EVs were taken up by retinal neurons, retinal ganglion cells, and microglia. They were present in the vitreous humor for four weeks after intravitreal administration, with saturable binding to vitreous humor components. Overall, this study highlights the potential of MSC-EV as biomaterials for neuroprotective and regenerative therapy in retinal disorders.
Collapse
Affiliation(s)
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaorong Liu
- Department of Biology, and Psychology, University of Virginia, Charlottesville, VA, USA
| | | | | | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Feng
- Departments of Ophthalmology and Neuroscience, Northwestern University, Evanston, IL, USA
| | - Ruth Zelka
- Ophthalmology and Visual Science, College of Medicine, USA
| | | | | | - Steven Roth
- Departments of Anesthesiology, USA; Ophthalmology and Visual Science, College of Medicine, USA.
| |
Collapse
|
8
|
Kadzielawa K, Mathew B, Stelman CR, Lei AZ, Torres L, Roth S. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol 2018; 256:935-949. [PMID: 29504043 DOI: 10.1007/s00417-018-3905-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia. METHODS To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed. RESULTS There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions. CONCLUSION Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.
Collapse
Affiliation(s)
- Konrad Kadzielawa
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R Stelman
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Arden Zhengdeng Lei
- Center for Research Bioinformatics, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Anesthesiology, MC 515, University of Illinois Medical Center, 1740 West Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Gidday JM. Adaptive Plasticity in the Retina: Protection Against Acute Injury and Neurodegenerative Disease by Conditioning Stimuli. CONDITIONING MEDICINE 2018; 1:85-97. [PMID: 31423482 PMCID: PMC6696944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although both preclinical and clinical conditioning studies in heart and brain lead the field of conditioning medicine, investigations of retinal conditioning still number more than 100. In this brief review, we highlight findings to date from animal and cell culture models of conditioning that provide demonstrated protection in acute and chronic retinal injury and disease models. The multitude of stimuli used to condition the retina, the signaling mediators and pathways identified, and the injury- and disease-resilient phenotypes documented are discussed herein, along with our recommendations for the kinds of studies needed to continue to advance this promising field. In our view, the robust protection afforded by these adaptive epigenetic responses to conditioning stress provides significant incentives for both furthering our investment in bench research and underwriting clinical trials, so that the full potential of this therapy can be realized.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, and the Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
10
|
Mathew B, Poston JN, Dreixler JC, Torres L, Lopez J, Zelkha R, Balyasnikova I, Lesniak MS, Roth S. Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats. Graefes Arch Clin Exp Ophthalmol 2017; 255:1581-1592. [PMID: 28523456 DOI: 10.1007/s00417-017-3690-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss. METHODS Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130-135 mmHg for 55 min. BMSCs harvested from rat femur were injected into the vitreous 24 h post-ischemia. Functional recovery was assessed 7 days later using electroretinography (ERG) measurements of the a-wave, b-wave, P2, scotopic threshold response (STR), and oscillatory potentials (OP). The retinal injury and anti-ischemic effects of BMSCs were quantitated by measuring apoptosis, autophagy, inflammatory markers, and retinal-blood barrier permeability. The distribution and fate of BMSC were qualitatively examined using real-time fundus imaging, and retinal flat mounts. RESULTS Intravitreal delivery of BMSCs significantly improved recovery of the ERG a- and b-waves, OP, negative STR, and P2, and attenuated apoptosis as evidenced by decreased TUNEL and caspase-3 protein levels. BMSCs significantly increased autophagy, decreased inflammatory mediators (TNF-α, IL-1β, IL-6), and diminished retinal vascular permeability. BMSCs persisted in the vitreous and were also found within ischemic retina. CONCLUSIONS Taken together, our results indicate that intravitreal injection of BMSCs rescued the retina from ischemic damage in a rat model. The mechanisms include suppression of apoptosis, attenuation of inflammation and vascular permeability, and preservation of autophagy.
Collapse
Affiliation(s)
- Biji Mathew
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA
| | - Jacqueline N Poston
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - John C Dreixler
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA
| | - Jasmine Lopez
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA
| | - Ruth Zelkha
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maciej S Lesniak
- Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Livne-Bar I, Lam S, Chan D, Guo X, Askar I, Nahirnyj A, Flanagan JG, Sivak JM. Pharmacologic inhibition of reactive gliosis blocks TNF-α-mediated neuronal apoptosis. Cell Death Dis 2016; 7:e2386. [PMID: 27685630 PMCID: PMC5059876 DOI: 10.1038/cddis.2016.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 01/03/2023]
Abstract
Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Optometry, University of California at Berkeley, Berkeley, CA, USA
| | - Susy Lam
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Darren Chan
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Idil Askar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adrian Nahirnyj
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - John G Flanagan
- School of Optometry, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Roth S, Dreixler JC, Mathew B, Balyasnikova I, Mann JR, Boddapati V, Xue L, Lesniak MS. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats. Invest Ophthalmol Vis Sci 2016; 57:3522-32. [PMID: 27367588 PMCID: PMC4961056 DOI: 10.1167/iovs.15-17381] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. METHODS Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. RESULTS Eyes injected with hypoxic BMSC-conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. CONCLUSIONS The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect.
Collapse
Affiliation(s)
- Steven Roth
- Department of Anesthesiology, University of Illinois, Illinois, United States
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - John C. Dreixler
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois, Illinois, United States
| | - Irina Balyasnikova
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Surgery, University of Chicago Medicine, University of Chicago, Illinois, United States
| | - Jacob R. Mann
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - Venkat Boddapati
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - Lai Xue
- Surgery, University of Chicago Medicine, University of Chicago, Illinois, United States
| | - Maciej S. Lesniak
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Surgery, University of Chicago Medicine, University of Chicago, Illinois, United States
| |
Collapse
|
13
|
Gidday JM, Zhang L, Chiang CW, Zhu Y. Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset. Neurotherapeutics 2015; 12:502-14. [PMID: 25549850 PMCID: PMC4404439 DOI: 10.1007/s13311-014-0330-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The neuroprotective efficacy of adaptive epigenetics, wherein beneficial gene expression changes are induced by nonharmful "conditioning" stimuli, is now well established in several acute, preclinical central nervous system injury models. Recently, in a mouse model of glaucoma, we demonstrated retinal ganglion cell (RGC) protection by repetitively "preconditioning" with hypoxia prior to disease onset, indicating an epigenetic approach may also yield benefits in chronic neurodegenerative disease. Herein, we determined whether presenting the repetitive hypoxic stimulus after disease initiation [repetitive hypoxic "postconditioning" (RH-Post)] could afford similar functional and morphologic protection against glaucomatous RGC injury. Chronic elevations in intraocular pressure (IOP) were induced unilaterally in adult male C57BL/6 mice by episcleral vein ligation. Mice were randomized to an RH-Post [1 h of systemic hypoxia (11% oxygen) every other day, starting 4 days after IOP elevation] or an untreated control group. After 3 weeks of experimental glaucoma, the 21-27% reduction and 5-25% prolongation in flash visual-evoked potential amplitudes and latencies, respectively, and the 30% impairment in visual acuity were robustly improved in RH-Post-treated mice, as was the 17% loss in RGC soma number and 20% reduction in axon integrity. These protective effects were observed without RH-Post affecting IOP. The present findings demonstrate that functional and morphologic protection of RGCs can be realized by stimulating epigenetic responses during the early stages of disease, and thus constitute a new conceptual approach to glaucoma therapeutics.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA,
| | | | | | | |
Collapse
|
14
|
Dreixler JC, Poston JN, Balyasnikova I, Shaikh AR, Tupper KY, Conway S, Boddapati V, Marcet MM, Lesniak MS, Roth S. Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci 2014; 55:3785-96. [PMID: 24699381 DOI: 10.1167/iovs.13-11683] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. METHODS Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. RESULTS Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. CONCLUSIONS By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect.
Collapse
Affiliation(s)
- John C Dreixler
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Jacqueline N Poston
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Irina Balyasnikova
- Department of Surgery (Neurosurgery), The University of Chicago, Chicago, Illinois, United States
| | - Afzhal R Shaikh
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Kelsey Y Tupper
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Sineadh Conway
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Venkat Boddapati
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Marcus M Marcet
- Department of Surgery (Ophthalmology and Visual Science), The University of Chicago, Chicago, Illinois, United States
| | - Maciej S Lesniak
- Department of Surgery (Neurosurgery), The University of Chicago, Chicago, Illinois, United States
| | - Steven Roth
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
15
|
Abstract
Retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Generally, ischemic syndromes are initially characterized by low homeostatic responses which, with time, induce injury to the tissue due to cell loss by apoptosis. In this respect, retinal ischemia is a primary cause of neuronal death. It can be considered as a sort of final common pathway in retinal diseases and results in irreversible morphological and functional changes. This review summarizes the recent knowledge on the effects of ischemia in retinal tissue and points out experimental strategies/models performed to gain better comprehension of retinal ischemia diseases. In particular, the nature of the mechanisms leading to neuronal damage (i.e., excess of glutamate release, oxidative stress and inflammation) will be outlined as well as the potential and most intriguing retinoprotective approaches and the possible therapeutic use of naturally occurring molecules such as neuropeptides. There is a general agreement that a better understanding of the fundamental pathophysiology of retinal ischemia will lead to better management and improved clinical outcome. In this respect, to contrast this pathological state, specific pharmacological strategies need to be developed aimed at the many putative cascades generated during ischemia.
Collapse
|
16
|
Abstract
Ischemic stroke remains a vexing public health problem. Although progress has been made in prevention and supportive care, efforts to protect the brain from ischemic cell death have failed. Thus, no new treatment has made it from bench to bedside since tissue plasminogen activator was introduced in 1996. The brain has a remarkable capacity for self-preservation, illustrated by the protective responses induced by ischemia, preconditioning and exercise. Here we describe the mechanisms underlying brain self-protection, with the goal of identifying features that could provide insight into stroke therapy. Unlike traditional therapeutic approaches based on counteracting selected pathways of the ischemic cascade, endogenous neuroprotection relies on coordinated neurovascular programs that support cerebral perfusion, mitigate the harmful effects of cerebral ischemia and promote tissue restoration. Learning how the brain triggers and implements these protective measures may advance our quest to treat stroke.
Collapse
|