1
|
Deng Y, Li L, Xu J, Yao Y, Ding J, Wang L, Luo C, Yang W, Li L. A biomimetic human disease model of bacterial keratitis using a cornea-on-a-chip system. Biomater Sci 2024; 12:5239-5252. [PMID: 39233608 DOI: 10.1039/d4bm00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Bacterial keratitis is a common form of inflammation caused by the bacterial invasion of the corneal stroma after trauma. In extreme cases, it can lead to severe visual impairment or even blindness; therefore, timely medical intervention is imperative. Unfortunately, widespread misuse of antibiotics has led to the development of drug resistance. In recent years, organ-on-chips that integrate multiple cell co-cultures have extensive applications in fundamental research and drug screening. In this study, immortalized human corneal epithelial cells and primary human corneal fibroblasts were co-cultured on a porous polydimethylsiloxane membrane to create a cornea-on-a-chip model. The developed multilayer epithelium closely mimicked clinical conditions, demonstrating high structural resemblance and repeatability. By introducing a consistently defective epithelium and bacterial infection using the space-occupying method, we successfully established an in vitro model of bacterial keratitis using S. aureus. We validate this model by evaluating the efficacy of antibiotics, such as levofloxacin, tobramycin, and chloramphenicol, through simultaneously observing the reactions of bacteria and the two cell types to these antibiotics. Our study has revealed the barrier function of epithelium of the model and differentiated efficacy of three drugs in terms of bactericidal activity, reducing cellular apoptosis, and mitigating scar formation. Altogether, the cornea on chip enables the assessment of ocular antibiotics, distinguishing the impact on corneal cells and structural integrity. This study introduced a biomimetic in vitro disease model to evaluate drug efficacy and provided significant insights into the extensive effects of antibiotics on diverse cell populations within the cornea.
Collapse
Affiliation(s)
- Yudan Deng
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingjun Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jian Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Yili Yao
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Jiangtao Ding
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Chunxiong Luo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Wei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingli Li
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Torricelli AAM, Giglio VB, Garcia R, Santhiago MR, Bechara SJ, Wilson SE, Monteiro MLR. Photorefractive Keratectomy: Technical Evolution, Refractive Outcomes, Corneal Wound Healing Response, and Complications. J Refract Surg 2024; 40:e754-e767. [PMID: 39387384 DOI: 10.3928/1081597x-20240826-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Photorefractive keratectomy (PRK) was the first excimer laser procedure developed to treat refractive errors. The safety and efficacy of PRK established it as one of the most performed corneal refractive procedures worldwide. With the introduction of laser in situ keratomileusis (LASIK), and more recently keratorefractive lenticule extraction (KLEx) procedures, many corneal surgeons favor these newer corneal procedures as the first choice due to faster visual rehabilitation and less discomfort during the early postoperative period. Importantly, however, PRK remains a viable alternative for most corneal refractive candidates and there are many situations in which PRK remains the refractive procedure of choice. This review addresses the technical evolution of PRK-mechanical epithelial debridement versus alcohol-assisted epithelial removal versus excimer laser-assisted epithelial debridement (transepithelial) PRK-and reports the PRK refractive outcomes compared to other keratorefractive laser procedures. The corneal wound response associated with each PRK technique and the indications, limitations, and complications of PRK are reviewed to aid refractive surgeons to best position PRK in their overall practice. [J Refract Surg. 2024;40(10):e754-e767.].
Collapse
|
3
|
Oruz O, Şaker D, Şimşek F, Eroğlu M, Polat S. Histochemical and ultrastructural evaluation of myopic corneal lenticules based on refractive error. Clin Exp Ophthalmol 2024; 52:704-712. [PMID: 38872607 DOI: 10.1111/ceo.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND This study aimed to investigate cell degeneration, apoptosis, and ultrastructural differences in refractive lenticules (RL) obtained using small incision lenticule extraction (SMILE) compared with spherical equivalence (SE) refraction values. METHODS This study included 84 eyes from 42 patients. Patients were divided into two groups according to the SE values: those with values below 4 diopters (D) (Group 1) and above 4 diopters (D) (Group 2). Patients who did not belong to the same SE group were excluded from the study. One RL obtained from each patient was separated for light microscopy and immunohistochemical examinations, and another for transmission electron microscopy (TEM) examinations. Caspase-3 for apoptosis and alpha-smooth muscle actin (α-SMA) for cell degeneration were evaluated using immunohistochemical examinations. RESULTS Histological analyses showed that the density of collagen fibres was greater in Group 1 than in Group 2. Glycoaminoglycan and glycoprotein staining intensities were also higher in Group 1. TEM observations showed that Group 1 had intact cell and nuclear membranes, peripheral heterochromatin, and large nuclei, while Group 2 showed heterochromatin condensation and fragmentation, increased intracellular vacuoles, and loss of cytoplasm. Immunohistochemical analyses revealed that α-SMA and caspase-3 were significantly higher in Group 2 than in Group 1 (p < 0.001 and p < 0.001, respectively). CONCLUSIONS Cell degeneration and apoptosis were significantly more common in the RLs with high SE values after SMILE surgery. The tissue response induced by surgery was more severe in the RLs with high SE values. This should be considered when reusing RLs.
Collapse
Affiliation(s)
- Oğuzhan Oruz
- Department of Ophthalmology, Başkent University School of Medicine, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Çukurova University School of Medicine, Adana, Turkey
| | - Firas Şimşek
- Department of Ophthalmology, MD Park Hospital, Hatay, Turkey
| | - Mustafa Eroğlu
- Department of Ophthalmology, Republic of Turkey Ministry of Health Adana City Hospital, Adana, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
4
|
Waring GO, Stonecipher K, Lobanoff M, Chu YR, Endl M, Feinerman G, Hosten LO, Kumar N. Safety and Effectiveness of Laser in Situ Keratomileusis Using the Teneo 317 Model 2 for Correcting Myopia and Myopic Astigmatism: Results of the U.S. FDA Clinical Trial. J Refract Surg 2024; 40:e544-e553. [PMID: 39120020 DOI: 10.3928/1081597x-20240611-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
PURPOSE To evaluate the safety and effectiveness of a new aspheric ablation profile for correcting myopia and myopic astigmatism. METHODS This prospective, multicenter study included patients who underwent laser in situ keratomileusis (LASIK) using a new aspheric ablation profile of the Technolas Teneo 317 (Model 2) excimer laser (version 1.28 US SW) by Technolas Perfect Vision, Bausch+Lomb, Inc. No nomogram adjustments were made, and the patient's manifest refraction was entered into the laser (for treatment). Postoperative assessments included visual and refractive outcomes. Patients were asked to complete the Patient-Reported Outcomes With LASIK (PROWL) questionnaire preoperatively and postoperatively. RESULTS A total of 333 eyes from 168 patients with a mean age of 33 ± 7 years were included. At postoperative 9 months, uncorrected and corrected distance visual acuities of 20/25 or better were seen in 97.8% and 100% of eyes, respectively. None of the eyes lost two or more lines of corrected distance visual acuity. The mean manifest spherical refraction improved from -5.67 ± 2.52 diopters (D) preoperatively to -0.04 ± 0.32 D postoperatively, with 92.7% of eyes achieving residual refractive error within ±0.50 D. Residual refractive cylinder within ±0.50 and ±1.00 D was seen in 93% and 99.4% eyes, respectively. The refractive outcomes were stable throughout the follow-up of 9 months. The proportion of patients satisfied with their vision rose from 27.7% preoperatively to 98.1% postoperatively. CONCLUSIONS LASIK performed using a new aspheric ablation profile of the Technolas Teneo 317 (Model 2) excimer laser is safe and effective for correcting myopia and myopic astigmatism, yielding excellent visual and refractive outcomes that were stable over 9 months. [J Refract Surg. 2024;40(8):e544-e553.].
Collapse
|
5
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | | | - Tarsis F Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
6
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Shukla A, Suresh V, Gupta PC, Sharma M, Saikia UN, Ram J, Luthra-Guptasarma M. A single chain variable fragment antibody (Tn 64) cognate to fibronectin type III repeats promotes corneal wound healing by inhibiting fibrosis. Int Immunopharmacol 2024; 133:112029. [PMID: 38640715 DOI: 10.1016/j.intimp.2024.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Corneal wound healing requires epithelial reorganization and stromal extracellular matrix (ECM) remodeling, with ECM proteins such as Tenascin C (TnC) regulating and maintaining corneal homeostasis. The N-terminal globular domain and C-terminal fibrinogen-related domains of TnC are separated by epidermal growth factor (EGF)-like repeats, and upto fifteen fibronectin type III domains (Tn fn). Overexpression of Tn fn 1-5 and its splice variants occurs in varied pathologies. We have previously used Tn64 (a single chain variable fragment antibody cognate to Tn fn 1-5) to establish roles of Tn fn 1-5 in fibrotic pathologies such as rheumatoid arthritis and posterior capsular opacification. Here, we show that Tn64 binds to Tn fn repeats 3-5 (which constitute the major site for binding of soluble fibronectin within TnC). Unlike other Tn fn domains, Tn fn 3-5 displays no inhibition of fibronectin matrix assembly. Rather, the Tn fn 3-5 construct is pro-fibrotic and elicits increased expression of fibronectin. We examined corneal epithelial as well as stromal wound healing through Tn64 binding to Tn fn 3-5, using a human corneal epithelial cell (HCEC) line, primary cultures of human corneal fibroblasts (HCFs), and an ex-vivo corneal organ culture model. Tn64 enhanced proliferation and adhesion of corneal epithelial cells, while inhibiting the migration of corneal fibroblasts and myofibroblasts. Tn64 appears to attenuate inflammation through downregulation of TNF-α, prevent corneal fibrosis by limiting fibronectin polymerization, and promote regeneration of corneal epithelia and stroma, suggesting that it could be developed as a therapeutic agent for effective anti-fibrotic corneal wound healing.
Collapse
Affiliation(s)
- Ashu Shukla
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Vyshak Suresh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Parul Chawla Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Maryada Sharma
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Jagat Ram
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India.
| |
Collapse
|
8
|
Uysal BS, Sarıkaya B, Dizakar SÖA, Kaplanoğlu GT, Gümüşderelioğlu M. Investigation of healing strategies in a rat corneal opacity model with polychromatic light and stem cells injection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112874. [PMID: 38422971 DOI: 10.1016/j.jphotobiol.2024.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Corneal opacities are a major cause of vision loss worldwide. However, the current therapies are suboptimal to manage the corneal wound healing process. Therefore, there is an obvious need to develop new treatment strategies that are efficient in promoting wound healing in patients with severe corneal disorders. In this study, we investigated and compared the efficacy of adipose-derived mesenchymal stem cells (ADMSCs) and photobiomodulation (PBM) with polychromatic light in the NIR (600-1200 nm) alone and in combination, on corneal opacity, inflammatory response, and tissue architecture in a rat corneal opacity model created by mechanical injury. All animals were divided into four groups randomly following the injury: injury only (no treatment), ADMSCs treatment, PBM treatment and combined (ADMSCs+PBM) treatment (n = 12 eyes per group). At the 10th and 30th day following injury, corneal opacity formation, neovascularization, and corneal thickness were assessed. On the 30th day the harvested corneas were analyzed by transmission electron microscopy (TEM), histological evaluation, immunohistochemical (IHC) staining and real-time polymerase chain reaction (RT-PCR). On day 30, the corneal opacity score, neovascularization grade, and corneal thickness in all treatment groups were significantly lower in comparison with the untreated injured corneas. The TEM imaging and H&E staining together clearly revealed a significant enhancement in corneal regeneration with improved corneal microenvironment and reduced vascularization in the combined administration of PBM and ADMSCs compared to treatment of PBM and ADMSCs alone. In addition, the IHC staining, and RT-PCR analysis supported our hypothesis that combining ADMSCs therapy with PBM alleviated the inflammatory response, and significantly decreased scar formation compared to either ADMSCs or PBM alone during the corneal wound healing.
Collapse
Affiliation(s)
- Betül Seher Uysal
- Gazi University, Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| | - Burcu Sarıkaya
- Balıkesir University, Faculty of Medicine, Department of Medical Genetics, Balıkesir, Turkey
| | | | - Gülnur Take Kaplanoğlu
- Gazi University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Division, Ankara, Turkey.
| |
Collapse
|
9
|
Xiao Y, Zhong J, Yang J, Fu Z, Wang B, Peng L, Zuo X, Zhao X, He D, Yuan J. Myeloid-derived suppressor cells ameliorate corneal alkali burn through IL-10-dependent anti-inflammatory properties. Transl Res 2023; 262:25-34. [PMID: 37543286 DOI: 10.1016/j.trsl.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/03/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
This study aims to investigate the efficiency and the underlying mechanism of myeloid-derived suppressor cells (MDSCs) in corneal alkali burns (CAB). In the study, CD11b+ Gr-1+ cells from C57BL/6J mice bone marrow were cultured and induced. Cell activity and immunoregulatory function were assessed by flow cytometry in vitro. The optimal strategy of MDSCs therapy was assessed by slit-lamp microscopy, and flow cytometry in vivo. The therapeutic effects of MDSCs and the critical signaling pathway were investigated by hematoxylin-eosin (HE) staining, slit-lamp microscopy, flow cytometry, and immunofluorescence. The expression level of the NLRP3 inflammasome pathway was examined. The crucial biochemical parameters of MDSCs were examined by RNA-seq and qPCR to screen out the key regulators. The mechanism of MDSCs' therapeutic effects was explored using MDSCs with IL-10 knockout/rescue by slit-lamp microscopy, HE staining, and qPCR evaluation. The cell frequencies of macrophages and neutrophils in the cornea were examined by flow cytometry in vivo. The results demonstrated that the induced MDSCs meet the standard of phenotypic and functional characteristics. The treatment of 5 × 105 MDSCs conjunctival injection on alternate days significantly ameliorated the disease development, downregulated the NLRP3 inflammasome pathway, and decreased the cell frequencies of macrophages and neutrophils in vivo significantly. IL-10 was screened out to be the critical factor for MDSCs therapy. The therapeutic effects of MDSCs were impaired largely by IL-10 knock-out and saved by the IL-10 supplement. In conclusion, MDSCs therapy is a promising therapeutic solution for CAB. MDSCs fulfilled immunoregulatory roles for CAB by IL-10-dependent anti-inflammatory properties.
Collapse
Affiliation(s)
- Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Phillips AT, Boumil EF, Venkatesan A, Tilstra-Smith C, Castro N, Knox BE, Henty-Ridilla JL, Bernstein AM. The formin DAAM1 regulates the deubiquitinase activity of USP10 and integrin homeostasis. Eur J Cell Biol 2023; 102:151347. [PMID: 37562219 PMCID: PMC10839120 DOI: 10.1016/j.ejcb.2023.151347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
The differentiation of fibroblasts into pathological myofibroblasts during wound healing is characterized by increased cell surface expression of αv-integrins. Our previous studies found that the deubiquitinase (DUB) USP10 removes ubiquitin from αv-integrins, leading to cell surface integrin accumulation, subsequent TGFβ1 activation, and pathological myofibroblast differentiation. In this study, a yeast two-hybrid screen revealed a novel binding partner for USP10, the formin, DAAM1. We found that DAAM1 binds to and inhibits USP10's DUB activity through the FH2 domain of DAAM1 independent of its actin functions. The USP10/DAAM1 interaction was also supported by proximity ligation assay (PLA) in primary human corneal fibroblasts. Treatment with TGFβ1 significantly increased USP10 and DAAM1 protein expression, PLA signal, and co-localization to actin stress fibers. DAAM1 siRNA knockdown significantly reduced co-precipitation of USP10 and DAAM1 on purified actin stress fibers, and β1- and β5-integrin ubiquitination. This resulted in increased αv-, β1-, and β5-integrin total protein levels, αv-integrin recycling, and extracellular fibronectin (FN) deposition. Together, our data demonstrate that DAAM1 inhibits USP10's DUB activity on integrins subsequently regulating cell surface αv-integrin localization and FN accumulation.
Collapse
Affiliation(s)
- Andrew T Phillips
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Edward F Boumil
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Arunkumar Venkatesan
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christine Tilstra-Smith
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Nileyma Castro
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; New York VA Health Care, Syracuse VA Medical Center, 800 Irving Ave, Syracuse 13210, USA
| | - Barry E Knox
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Jessica L Henty-Ridilla
- SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Audrey M Bernstein
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA; New York VA Health Care, Syracuse VA Medical Center, 800 Irving Ave, Syracuse 13210, USA.
| |
Collapse
|
11
|
Gómez SG, Guillem-Marti J, Martín-Gómez H, Mas-Moruno C, Ginebra MP, Gil FJ, Barraquer RI, Manero JM. Titanium Boston keratoprosthesis with corneal cell adhesive and bactericidal dual coating. BIOMATERIALS ADVANCES 2023; 154:213654. [PMID: 37837906 DOI: 10.1016/j.bioadv.2023.213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
The Boston keratoprosthesis (BKPro) is a medical device used to restore vision in complicated cases of corneal blindness. This device is composed by a front plate of polymethylmethacrylate (PMMA) and a backplate usually made of titanium (Ti). Ti is an excellent biomaterial with numerous applications, although there are not many studies that address its interaction with ocular cells. In this regard, despite the good retention rates of the BKPro, two main complications compromise patients' vision and the viability of the prosthesis: imperfect adhesion of the corneal tissue to the upside of the backplate and infections. Thus, in this work, two topographies (smooth and rough) were generated on Ti samples and tested with or without functionalization with a dual peptide platform. This molecule consists of a branched structure that links two peptide moieties to address the main complications associated with BKPro: the well-known RGD peptide in its cyclic version (cRGD) as cell pro-adherent motif and the first 11 residues of lactoferrin (LF1-11) as antibacterial motif. Samples were physicochemically characterized, and their biological response was evaluated in vitro with human corneal keratocytes (HCKs) and against the gram-negative bacterial strain Pseudomonas aeruginosa. The physicochemical characterization allowed to verify the functionalization in a qualitative and quantitative manner. A higher amount of peptide was anchored to the rough surfaces. The studies performed using HCKs showed increased long-term proliferation on the functionalized samples. Gene expression was affected by topography and peptide functionalization. Roughness promoted α-smooth muscle actin (α-SMA) overexpression, and the coating notably increased the expression of extracellular matrix components (ECM). Such changes may favour the development of unwanted fibrosis, and thus, corneal haze. In contrast, the combination of the coating with a rough topography decreased the expression of α-SMA and ECM components, which would be desirable for the long-term success of the prosthesis. Regarding the antibacterial activity, the functionalized smooth and rough surfaces promoted the death of bacteria, as well as a perturbation in their wall definition and cellular morphology. Bacterial killing values were 58 % for smooth functionalised and 68 % for rough functionalised samples. In summary, this study suggests that the use of the dual peptide platform with cRGD and LF1-11 could be a good strategy to improve the in vitro and in vivo performance of the rough topography used in the commercial BKPro.
Collapse
Affiliation(s)
- Silvia González Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain.
| | - Helena Martín-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | | | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| |
Collapse
|
12
|
Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J 2023; 290:5248-5269. [PMID: 36877952 PMCID: PMC10480348 DOI: 10.1111/febs.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
| | | | - Bindu Kodati
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Charles E. Amankwa
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Akash Raola
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
13
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
14
|
Li X, Chen K, Wang Z, Li J, Wang X, Xie C, Tong J, Shen Y. The mTOR signalling in corneal diseases: A recent update. Biochem Pharmacol 2023; 213:115620. [PMID: 37217140 DOI: 10.1016/j.bcp.2023.115620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zixi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
16
|
Efficacy and safety of loteprednol etabonate versus fluorometholone in the treatment of patients after corneal refractive surgery: a meta-analysis. Int Ophthalmol 2023:10.1007/s10792-023-02646-w. [PMID: 36869982 DOI: 10.1007/s10792-023-02646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE To perform a systematic evaluation of the efficacy and safety of loteprednol etabonate (LE) 0.5% versus fluorometholone (FML) 0.1% for treating patients after corneal refractive surgery with the aim of providing an evidence-based rationale for clinical drug selection. METHODS Electronic databases (PubMed, EMBASE, Cochrane Library, Web of Science, WanFang, and CNKI) were searched (from inception to December 2021) for comparative clinical studies that evaluated LE versus FML treatment for post-corneal refractive surgery patients. Meta-analysis was performed using the RevMan 5.3 software. The pooled risk ratio (RR) and weighted mean difference (WMD) with corresponding 95% confidence interval (CI) were calculated. RESULTS Nine studies with a total sample size of 2677 eyes were included in this analysis. FML 0.1% and LE 0.5% produced a similar incidence of corneal haze within 6 months after surgery (P = 0.13 at 1 month, P = 0.66 at 3 months, and P = 0.12 at 6 months). There was no statistically significant difference between the two groups in terms of the mean logMAR postoperative uncorrected distance visual acuity (WMD: - 0.00; 95% CI: - 0.01 to 0.00; P = 0.29) and spherical equivalent (WMD: 0.01; 95% CI: - 0.01 to 0.03; P = 0.35). LE 0.5% appears to have a higher tendency to reduce the incidence of ocular hypertension compared FML 0.1%, but there was no statistical significance (RR: 0.63; 95% CI: 0.27 to 1.50; P = 0.30). CONCLUSION This meta-analysis demonstrated that LE 0.5% and FML 0.1% had comparable efficacy in preventing corneal haze and corticosteroid-induced ocular hypertension, with no difference in visual acuity in patients after corneal refractive surgery.
Collapse
|
17
|
Liao K, Cui Z, Wang Z, Peng Y, Tang S, Chen J. Hyperosmolar Potassium Inhibits Corneal Myofibroblast Transformation and Prevent Corneal Scar. Curr Eye Res 2023; 48:238-250. [PMID: 36149345 DOI: 10.1080/02713683.2022.2129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Corneal myofibroblasts play a crucial role in the process of corneal scarring. Potassium has been documented to reduce skin scar tissue formation. Herein, we investigated the ability of potassium to prevent corneal fibrosis in cell culture and in vivo. METHODS Corneal fibroblasts (CFs) were isolated from the corneal limbus and treated with TGF-β1 to transform into corneal myofibroblasts. Corneal myofibroblast markers were detected by quantitative real-time PCR, Western blot, and immunofluorescence. The contractive functions of corneal myofibroblast were evaluated by the scratch assay and the collagen gel contraction assay. RNA sequencing in corneal fibroblasts was performed to explore the mechanisms underlying hyperosmolar potassium treatment. GO and KEGG analysis were performed to explore the underlying mechanism by hyperosmolar potassium treatment. The ATP detection assay assessed the level of cell metabolism. KCl eye drops four times per day were administered to mice models of corneal injury to evaluate the ability to prevent corneal scar formation. Corneal opacity area was evaluated by Image J software. RESULTS Treatment with hyperosmolar potassium could suppress corneal myofibroblast transformation and collagen I synthesis induced by TGF-β1 in cell culture. Hyperosmolar potassium could inhibit wound healing and gel contraction in CFs. RNA sequencing results suggested that genes involved in the metabolic pathway were downregulated after KCl treatment. ATP levels were significantly decreased in the KCl group compared with the control group. Hyperosmolar potassium could prevent corneal myofibroblast transformation after corneal injury and corneal scar formation in mice. CONCLUSION Potassium can suppress corneal myofibroblast transformation and collagen I protein synthesis. Moreover, given that KCl eye drops can prevent corneal scar formation, it has been suggested to have huge prospects as a novel treatment approach during clinical practice.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yu Peng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Talpan D, Salla S, Seidelmann N, Walter P, Fuest M. Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes. Int J Mol Sci 2023; 24:ijms24021461. [PMID: 36674976 PMCID: PMC9862324 DOI: 10.3390/ijms24021461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
We evaluated the small molecules (AFM) caffeine, curcumin and pirfenidone to find non-toxic concentrations reducing the transformation of activated human corneal stromal keratocytes (aCSK) to scar-inducing myofibroblasts (MYO-SF). CSK were isolated from 16 human corneas unsuitable for transplantation and expanded for three passages in control medium (0.5% FBS). Then, aCSK were exposed to concentrations of caffeine of 0−500 μM, curcumin of 0−200 μM, pirfenidone of 0−2.2 nM and the profibrotic cytokine TGF-β1 (10 ng/mL) for 48 h. Alterations in viability and gene expression were evaluated by cell viability staining (FDA/PI), real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. We found that all AFMs reduced cell counts at high concentrations. The highest concentrations with no toxic effect were 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone. The addition of TGF-β1 to the control medium effectively transformed aCSK into myofibroblasts (MYO-SF), indicated by a 10-fold increase in α-smooth muscle actin (SMA) expression, a 39% decrease in lumican (LUM) expression and a 98% decrease in ALDH3A1 expression (p < 0.001). The concentrations of 100 µM of caffeine, 20/50 µM of curcumin and 1.1 nM of pirfenidone each significantly reduced SMA expression under TGF-β1 stimulation (p ≤ 0.024). LUM and ALDH3A1 expression remained low under TGF-β1 stimulation, independently of AFM supplementation. Immunocytochemistry showed that 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone reduce the conversion rate of aCSK to SMA+ MYO-SF. In conclusion, in aCSK, 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone significantly reduced SMA expression and MYO-SF conversion under TGF-β1 stimulation, with no influence on cell counts. However, the AFMs were unable to protect aCSK from characteristic marker loss.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Nina Seidelmann
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
19
|
Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells 2022; 11:cells11203310. [PMID: 36291182 PMCID: PMC9600986 DOI: 10.3390/cells11203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The process of corneal wound healing is complex and induces scar formation. Corneal scarring is a leading cause of blindness worldwide. The fibrotic healing of a major ocular wound disrupts the highly organized fibrillar collagen arrangement of the corneal stroma, rendering it opaque. The process of regaining this organized extracellular matrix (ECM) arrangement of the stromal layer to restore corneal transparency is complicated. The surface retention capacity of ocular drugs is poor, and there is a large gap between suitable corneal donors and clinical requirements. Therefore, a more efficient way of treating corneal scarring is needed. The eight major classes of interventions targeted as therapeutic tools for healing scarred corneas include those based on exosomes, targeted gene therapy, microRNAs, recombinant viral vectors, histone deacetylase inhibitors, bioactive molecules, growth factors, and nanotechnology. This review highlights the recent advancements in molecular therapeutics to restore a cornea without scarring. It also provides a scope to overcome the limitations of present studies and perform robust clinical research using these strategies.
Collapse
|
20
|
Choi SY, Kim S, Park KM. Initial Healing Effects of Platelet-Rich Plasma (PRP) Gel and Platelet-Rich Fibrin (PRF) in the Deep Corneal Wound in Rabbits. Bioengineering (Basel) 2022; 9:bioengineering9080405. [PMID: 36004930 PMCID: PMC9405118 DOI: 10.3390/bioengineering9080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Platelet concentrates (PCs), including platelet-rich plasma (PRP) gel and platelet-rich fibrin (PRF), are autologous blood-derived biomaterials containing numerous growth factors. This study aimed to evaluate the initial healing effects of PRP gel and PRF on deep corneal wounds. Thirty-three eyes from New Zealand white rabbits were divided into four groups: group 1, lamellar keratectomy (LK); group 2, LK + commercial porcine small intestinal submucosal membrane (SIS); group 3, LK + SIS + PRP gel; and group 4, LK + SIS + PRF. Postoperative clinical and histological findings were observed for eight weeks. Group 1 showed no neovascularization during the observation period, and incompletely recovered with a thin cornea. Group 2 showed active healing through neovascularization, and a thick cornea was regenerated through the sufficient generation of myofibroblasts. Although group 3 showed a healing effect similar to that of group 2, angiogenesis and subsequent vessel regression were promoted, and corneal opacity improved more rapidly. In group 4, angiogenesis was promoted during initial healing; however, the incidence of complications, such as inflammation, was high, and myofibroblasts were hardly generated in the corneal stroma, which adversely affected remodeling. In conclusion, while PRP gel is a safe surgical material for promoting remodeling through vascular healing and myofibroblast production in deep corneal wounds, the use of PRF is not recommended.
Collapse
Affiliation(s)
- Seo-Young Choi
- Laboratory of Veterinary Ophthalmology, Department of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, Department of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Ophthalmology, Department of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-43-250-2985
| |
Collapse
|
21
|
Mekonnen T, Lin X, Zevallos-Delgado C, Singh M, Aglyamov SR, Coulson-Thomas V, Larin KV. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography. JOURNAL OF BIOPHOTONICS 2022; 15:e202200022. [PMID: 35460537 PMCID: PMC11057918 DOI: 10.1002/jbio.202200022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Eye injury due to alkali burn is a severe ocular trauma that can profoundly affect corneal structure and function, including its biomechanical properties. Here, we assess the changes in the mechanical behavior of mouse corneas in response to alkali-induced injury by conducting longitudinal measurements using optical coherence elastography (OCE). A non-contact air-coupled ultrasound transducer was used to induce elastic waves in control and alkali-injured mouse corneas in vivo, which were imaged with phase-sensitive optical coherence tomography. Corneal mechanical properties were estimated using a modified Rayleigh-Lamb wave model, and results show that Young's modulus of alkali-burned corneas were significantly greater than that of their healthy counterparts on days 7 (p = 0.029) and 14 (p = 0.026) after injury. These findings, together with the changes in the shear viscosity coefficient postburn, indicate that the mechanical properties of the alkali-burned cornea are significantly modulated during the wound healing process.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Christian Zevallos-Delgado
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| |
Collapse
|
22
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
23
|
Peterson C, Chandler HL. Insulin facilitates corneal wound healing in the diabetic environment through the RTK-PI3K/Akt/mTOR axis in vitro. Mol Cell Endocrinol 2022; 548:111611. [PMID: 35231580 PMCID: PMC9053186 DOI: 10.1016/j.mce.2022.111611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Diabetic patients can develop degenerative corneal changes, termed diabetic keratopathy, during the course of their disease. Topical insulin has been shown to reduce corneal wound area and restore sensitivity in diabetic rats, and both the insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) stimulate cell signaling of the PI3K-Akt pathway. The purpose of this study was to assess a mechanism by which improved wound healing occurs by characterizing expression within the PI3K-Akt pathway in corneal epithelial and stromal cells. In vitro scratch tests were used to evaluate wound healing outcomes under variable glucose conditions in the presence or absence of insulin. Protein expression of intracellular kinases in the PI3K pathway, stromal cell markers, and GLUT-1 was evaluated by immunoblotting.TGF-β1 expression was evaluated by ELISA. Insulin promoted in vitro wound healing in all cell types. In human corneal epithelial cells, insulin did not induce PI3K-Akt signaling; however, in all other cell types evaluated, insulin increased expression of PI3K-Akt signaling proteins compared to vehicle control. Fibroblasts variably expressed α-SMA under all treatment conditions, with significant increases in α-SMA and TGF-β1 occurring in a dose-dependent manner with glucose concentration. These results indicate that insulin can promote corneal cellular migration and proliferation by inducing Akt signaling. Exogenous insulin therapy may serve as a novel target of therapeutic intervention for diabetic keratopathy.
Collapse
Affiliation(s)
- C Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Vision Science, The Ohio State University College of Optometry, Columbus, OH, 43210, USA.
| | - H L Chandler
- Department of Vision Science, The Ohio State University College of Optometry, Columbus, OH, 43210, USA
| |
Collapse
|
24
|
Zhang L, Gao J, Gong A, Dong Y, Hao X, Wang X, Zheng J, Ma W, Song Y, Zhang J, Xu W. The Long Noncoding RNA LINC00963 Inhibits Corneal Fibrosis Scar Formation by Targeting miR-143-3p. DNA Cell Biol 2022; 41:400-409. [PMID: 35262384 PMCID: PMC9063159 DOI: 10.1089/dna.2021.1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis is a complication of severe corneal injury, one of the major causes of vision loss. The formation of myofibroblasts has emerged as a key stimulative factor of corneal fibrosis. In the current study, we focused on the role of LINC00963 in regulating corneal fibrosis. Transforming growth factor β1 (TGF-β1) was used to induce human corneal stromal cells differentiating into corneal myofibroblasts, and the significant increase of α-smooth muscle actin (α-SMA) was verified by quantitative real-time PCR (qRT-PCR), western blot, and immunofluorescence, respectively. LINC00963 was identified to be one-half decreased compared with nonstimulated human corneal stromal cells, indicating that it might play a role in corneal fibrosis. Interestingly, overexpression of LINC00963 resulted in decreased formation of myofibroblasts indicating that it might exhibit an inhibiting effect. Moreover, bioinformatics tool was applied to predict the downstream target of LINC00963. We investigated that LINC00963 suppressed α-SMA induced by TGF-β1 in corneal fibroblasts, at least in part, by downregulating the expression of miR-143-3p. In addition, either LINC00963 promotion or miR-143-3p inhibition could significantly decrease myofibroblast contractility and collagen I and III secretion, which are the key to contribute to corneal fibrosis. Taken together, our study identified LINC00963 as a promising therapeutic target.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhan Dong
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaodan Hao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xuekang Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Zheng
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenmeng Ma
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yiying Song
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jie Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Hashemi H, Pakbin M, Pakravan M, Fotouhi A, Jafarzadehpur E, Aghamirsalim M, Khabazkhoob M. Effect of Short Versus Long-Term Steroid on Corneal Haze After Photorefractive Keratectomy: A Randomized, Double-Masked Clinical Trial. Am J Ophthalmol 2022; 235:211-220. [PMID: 34624248 DOI: 10.1016/j.ajo.2021.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effect of duration of fluorometholone 0.1% treatment on corneal haze after photorefractive keratectomy (PRK) with mitomycin C (MMC) 0.02%. DESIGN Prospective, randomized, double-blind, clinical trial. METHODS Single-center clinical trial of 252 myopic PRK candidates (252 eyes) aged 21 to 40 years with a mean spherical equivalent (SE) of ≤ 6 diopters (D). Participants were randomized to receive one of the three corticosteroid regimens after PRK: Group A = 1 month followed by 2-month placebo; Group B = 2 months followed by 1-month placebo; and Group C = 3 months. The main outcome measures were corneal haze incidence, subjective SE, uncorrected distance visual acuity (UDVA), and corneal densitometry. RESULTS The corneal haze incidence (Grade ≥ 1) at 12 months was 1.35% (1/74 eyes) in Group A and 0% in the other two groups. The mean anterior corneal densitometry (grayscale unit) was 21.19 ± 2.07, 21.09 ± 2.19, and 21.31 ± 2.21 in Groups A, B and C, respectively. The mean SE was 0 ± 0.09, 0 ± 0.11, and 0 ± 0.10, and UDVA (decimal) was 1 ± 0, 1 ± 0.01, and 1 ± 0 in Groups A, B and C, respectively. During 1-year follow-up, no statistically significant difference was observed in mean SE (P = .158), UDVA (P = .343), and anterior corneal densitometry (P = .109) at any stage between the study groups. CONCLUSIONS Long-term topical corticosteroids are unnecessary following PRK with MMC for moderate myopia.
Collapse
Affiliation(s)
- Hassan Hashemi
- Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Noor Ophthalmology Research center, Noor Eye Hospital, Tehran, Iran
| | - Mojgan Pakbin
- Noor Ophthalmology Research center, Noor Eye Hospital, Tehran, Iran; Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Pakravan
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Basic Sciences, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Suppression of lipopolysaccharide-induced corneal opacity by hepatocyte growth factor. Sci Rep 2022; 12:494. [PMID: 35017561 PMCID: PMC8752742 DOI: 10.1038/s41598-021-04418-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Keratitis induced by bacterial toxins, including lipopolysaccharide (LPS), is a major cause of corneal opacity and vision loss. Our previous study demonstrates hepatocyte growth factor (HGF) promotes epithelial wound healing following mechanical corneal injury. Here, we investigated whether HGF has the capacity to suppress infectious inflammatory corneal opacity using a new model of LPS-induced keratitis. Keratitis, induced by two intrastromal injections of LPS on day 1 and 4 in C57BL/6 mice, resulted in significant corneal opacity for up to day 10. Following keratitis induction, corneas were topically treated with 0.1% HGF or PBS thrice daily for 5 days. HGF-treated mice showed a significantly smaller area of corneal opacity compared to PBS-treated mice, thus improving corneal transparency. Moreover, HGF treatment resulted in suppression of α-SMA expression, compared to PBS treatment. HGF-treated corneas showed normalized corneal structure and reduced expression of pro-inflammatory cytokine, demonstrating that HGF restores corneal architecture and immune quiescence in corneas with LPS-induced keratitis. These findings offer novel insight into the potential application of HGF-based therapies for the prevention and treatment of infection-induced corneal opacity.
Collapse
|
27
|
Rajaiya J, Saha A, Zhou X, Chodosh J. Human Adenovirus Species D Interactions with Corneal Stromal Cells. Viruses 2021; 13:2505. [PMID: 34960773 PMCID: PMC8709199 DOI: 10.3390/v13122505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Notable among the many communicable agents known to infect the human cornea is the human adenovirus, with less than ten adenoviruses having corneal tropism out of more than 100 known types. The syndrome of epidemic keratoconjunctivitis (EKC), caused principally by human adenovirus, presents acutely with epithelial keratitis, and later with stromal keratitis that can be chronic and recurrent. In this review, we discuss the current state of knowledge regarding the molecular biology of adenovirus infection of corneal stromal cells, among which the fibroblast-like keratocyte is the most predominant, in order to elucidate basic pathophysiologic mechanisms of stromal keratitis in the human patient with EKC.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| | | | | | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| |
Collapse
|
28
|
Clinical Outcomes of Aberration-Free All Surface Laser Ablation (ASLA) vs. Aberration-Free ASLA Assisted by Smart Pulse Technology in High Myopia: A One-Year Follow-Up Study. J Ophthalmol 2021; 2021:2588765. [PMID: 34707908 PMCID: PMC8545587 DOI: 10.1155/2021/2588765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To compare the clinical outcomes of aberration-free all surface laser ablation (ASLA) with and without the use of smart pulse technology (SPT) in high myopia. Methods This study retrospectively analyzed 138 eyes (138 patients, only the right eye was selected) treated for high myopia (spherical equivalent ≥−6.00 diopters) using aberration-free ASLA (non-SPT group; 85 eyes) and aberration-free ASLA assisted by SPT (SPT group; 53 eyes). Examinations such as visual acuity, refraction, and haze were performed before the 12-month follow-up. Corneal epithelial healing time was assessed in the first postoperative day. Visual acuity and refraction examination were performed at 7 days and 1, 3, 6, and 12 months postoperatively. Corneal haze was evaluated in 1, 3, 6, and 12 months. Safety, efficacy, and corneal wavefront aberrations were assessed 12 months after the treatment. Results At 12 months postoperatively, 60% versus 40% of eyes achieved 20/16 Snellen lines or better, and 92% versus 82% of eyes achieved 20/20 Snellen lines or better visual acuity in the SPT and the non-SPT groups, respectively. The average postoperative epithelial healing time was 3.75 ± 1.00 days in the SPT group and 3.73 ± 1.30 days in the non-SPT group (P ≥ 0.05). The safety and the efficacy index of the SPT group were better than those of the non-SPT group in the follow-ups. The attempted spherical equivalent before the surgery and the achieved spherical equivalent at 12 months were comparable between the two groups. Regarding the aberrations, the results of Coma 90° in the SPT group were better than those in the non-SPT group (P ≤ 0.05), but the increase of RMS HOAs (root mean square higher order aberrations), Coma 0°, and spherical aberration postoperatively had no statistical difference between the two groups (P ≥ 0.05). Conclusions: Both aberration-free ASLA with and without SPT showed favorable safety, effectiveness, and predictability within 12 months for high myopia. And, ASLA using SPT might have potential advantages in the long-term visual quality.
Collapse
|
29
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
30
|
Kim S, Gates BL, Chang M, Pinkerton KE, Van Winkle L, Murphy CJ, Leonard BC, Demokritou P, Thomasy SM. Transcorneal delivery of topically applied silver nanoparticles does not delay epithelial wound healing. NANOIMPACT 2021; 24:100352. [PMID: 35559825 DOI: 10.1016/j.impact.2021.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) are a common antimicrobial additive for a variety of applications, including wound care. However, AgNPs often undergo dissolution resulting in release of silver ions, with subsequent toxicity to mammalian cells. The cornea is a primary exposure site to topically administered AgNPs in and around the eye but their impact on corneal wound healing is understudied. Thus, the purpose of this study was to determine in vitro toxicity of AgNPs on corneal epithelial cells and fibroblasts as well as their effects on corneal epithelial wound healing utilizing an in vivo rabbit model. Non-coated 20 nm sized AgNP (AgNP-20) as well as 1% and 10% silver silica NPs (AgSiO2NPs) were tested at concentrations ranging from 0.05-250 μg/mL. Immortalized human corneal epithelial (hTCEpi) cells and primary rabbit corneal fibroblasts (RCFs) were incubated for 24 h with AgNPs and cell viability was tested. Additionally, a round wound healing assay was performed to determine hTCEpi cell migration. Quantitative real-time PCR and western blot analysis was performed to determine α-smooth muscle actin (α-SMA, a myofibroblast marker) mRNA and protein expression, respectively, in RCFs treated with 50 μg/mL of AgNPs. Corneal epithelial wound healing was evaluated with 1%-AgSiO2NPs (10 and 250 μg/mL) using an in vivo rabbit model. Rabbits were subsequently euthanized, and histologic sections of the enucleated globes were used to determine corneal penetration of 1%-AgSiO2NPs with autometallography and hyperspectral darkfield microscopy. Cell viability of both the hTCEpi cells and fibroblasts was significantly decreased by the three AgNPs in a dose dependent manner. Migration of hTCEpi cells was significantly inhibited by the three AgNPs. Alpha-SMA mRNA expression was significantly inhibited with three AgNPs, but only the 1%-AgSiO2NPs inhibited protein expression of α-SMA. In vivo epithelial wound closure did not significantly differ between groups treated with 10 or 250 μg/mL of 1%-AgSiO2NPs or vehicle control. The 1%-AgSiO2NPs penetrated throughout all corneal layers and into the anterior chamber in all treated eyes with no histopathological changes observed. In conclusion, the 1%-AgSiO2NPs are safe and have potential therapeutic applications through its efficacy of the corneal penetration and reduced scar formation during corneal wound healing.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA
| | - Brooke L Gates
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA
| | - Maggie Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Laura Van Winkle
- Center for Health and the Environment, University of California, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, CA 95616, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Nuwormegbe S, Park NY, Kim SW. Lobeglitazone attenuates fibrosis in corneal fibroblasts by interrupting TGF-beta-mediated Smad signaling. Graefes Arch Clin Exp Ophthalmol 2021; 260:149-162. [PMID: 34468828 DOI: 10.1007/s00417-021-05370-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transforming growth factor beta 1 (TGF-β1) is an important cytokine released after ocular surface injury to promote wound healing. However, its persistence at the injury site triggers a fibrotic response that leads to corneal scarring and opacity. Thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands used to regulate glucose and lipid metabolism in the management of type 2 diabetes. Studies have also showed TZDs have antifibrotic effect. In this study, we investigated the antifibrotic effect of the TZD lobeglitazone on TGF-β1-induced fibrosis in corneal fibroblasts. METHODS Human primary corneal fibroblasts were cultivated and treated with TGF-β1 (5 ng/mL) to induce fibrosis, with or without pre-treatments with different concentrations of lobeglitazone. Myofibroblast differentiation and extracellular matrix (ECM) protein expression was evaluated by western blotting, immunofluorescence, real-time PCR, and collagen gel contraction assay. The effect of lobeglitazone on TGF-β1-induced reactive oxygen species (ROS) generation was evaluated by DCFDA-cellular ROS detection assay kit. Signaling proteins were evaluated by western blotting to determine the mechanism underlying the antifibrotic effect. RESULTS Our results showed lobeglitazone attenuated TGF-β1-induced ECM synthesis and myofibroblast differentiation of corneal fibroblasts. This antifibrotic effect appeared to be independent of PPAR signaling and rather due to the inhibition of the TGF-β1-induced Smad signaling. Lobeglitazone also blocked TGF-β1-induced ROS generation and nicotinamide adenine dinucleotide phosphate oxidase (Nox) 4 transcription. CONCLUSION These findings indicate that lobeglitazone may be a promising therapeutic agent for corneal scarring. KEY MESSAGES.
Collapse
Affiliation(s)
- Selikem Nuwormegbe
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Na-Young Park
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Sun Woong Kim
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
32
|
Awwad ST, Chacra LM, Helwe C, Dhaini AR, Telvizian T, Torbey J, Abdul Fattah M, Torres-Netto EA, Hafezi F, Shetty R. Mitomycin C Application After Corneal Cross-linking for Keratoconus Increases Stromal Haze. J Refract Surg 2021; 37:83-90. [PMID: 33577693 DOI: 10.3928/1081597x-20201124-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate and compare corneal haze as determined by optical coherence tomography (OCT) after corneal cross-linking (CXL) for the treatment of mild to moderate keratoconus with or without mitomycin C (MMC) application. METHODS This was a retrospective analysis of 87 eyes of 72 patients with mild to moderate keratoconus. The first group (n = 44 eyes) underwent CXL between June 2013 and January 2015 and the second group (n = 43 eyes) underwent CXL with MMC (CXL+MMC) between February and December 2015, both following the Dresden protocol. Patients were evaluated preoperatively and at 1, 3, 6, and 12 months postoperatively. Main outcome measures were corneal reflectivity and haze reflectivity measured by a specially developed OCT image analysis software. RESULTS Anterior corneal reflectivity at 1 month and 1 year postoperatively was 14.79 ± 4.68 and 25.97 ± 15.01 (P < .001), and 13.88 ± 4.39 and 18.41 ± 9.25 (P = .025) for the CXL and CXL+MMC groups, respectively. The reflectivity of the anterior stromal haze region at 1 month and 1 year postoperatively was 23.15 ± 5.91 and 33.14 ± 16.58 (P = .005), and 20.58 ± 7.88 and 27.14 ± 12.80 (P = .049) for both groups, respectively. The changes in simulated keratometry from preoperatively to postoperatively were similar in both groups. The CXL+MMC group showed larger maximum keratometry flattening: 53.41 ± 6.88 diopters (D) preoperatively and 49.44 ± 5.66 D 1 year postoperatively versus 52.27 ± 5.78 and 50.91 ± 4.25 D for CXL alone (P = .008). CONCLUSIONS MMC application following CXL significantly increases corneal haze. Similar studies need to be performed on simultaneous CXL and photorefractive keratectomy to evaluate the role of MMC in haze formation in such procedures. [J Refract Surg. 2021;37(2):83-90.].
Collapse
|
33
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Yu B, Yang L, Song S, Li W, Wang H, Cheng J. LRG1 facilitates corneal fibrotic response by inducing neutrophil chemotaxis via Stat3 signaling in alkali-burned mouse corneas. Am J Physiol Cell Physiol 2021; 321:C415-C428. [PMID: 34260299 DOI: 10.1152/ajpcell.00517.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leucine-rich α-2-glycoprotein-1 (LRG1) is a novel profibrotic factor that modulates transforming growth factor-β (TGF-β) signaling. However, its role in the corneal fibrotic response remains unknown. In the present study, we found that the LRG1 level increased in alkali-burned mouse corneas. In the LRG1-treated alkali-burned corneas, there were higher fibrogenic protein expression and neutrophil infiltration. LRG1 promoted neutrophil chemotaxis and CXCL-1 secretion. Conversely, LRG1-specific siRNA reduced fibrogenic protein expression and neutrophil infiltration in the alkali-burned corneas. The clearance of neutrophils effectively attenuated the LRG1-enhanced corneal fibrotic response, whereas the presence of neutrophils enhanced the effect of LRG1 on the fibrotic response in cultured TKE2 cells. In addition, the topical application of LRG1 elevated interleukin-6 (IL-6) and p-Stat3 levels in the corneal epithelium and in isolated neutrophils. The clearance of neutrophils inhibited the expression of p-Stat3 and IL-6 promoted by LRG1 in alkali-burned corneas. Moreover, neutrophils significantly increased the production of IL-6 and p-Stat3 promoted by LRG1 in TKE2 cells. Furthermore, the inhibition of Stat3 signaling by S3I-201 decreased neutrophil infiltration and alleviated the LRG1-enhanced corneal fibrotic response in the alkali-burned corneas. S3I-201 also reduced LRG1 or neutrophil-induced fibrotic response in TKE2 cells. In conclusion, LRG1 promotes the corneal fibrotic response by stimulating neutrophil infiltration via the modulation of the IL-6/Stat3 signaling pathway. Therefore, LRG1 could be targeted as a promising therapeutic strategy for patients with corneal fibrosis.
Collapse
Affiliation(s)
- Bingjie Yu
- Qingdao University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Shan Song
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Chengwu Hospital Affiliated to Shandong First Medical University, Heze, People's Republic of China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, People's Republic of China
| | - Huifeng Wang
- Qingdao University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Jun Cheng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Qingdao Eye Hospital of Shandong First University, Qingdao, People's Republic of China
| |
Collapse
|
35
|
Jhanji V, Billig I, Yam GHF. Cell-Free Biological Approach for Corneal Stromal Wound Healing. Front Pharmacol 2021; 12:671405. [PMID: 34122095 PMCID: PMC8193853 DOI: 10.3389/fphar.2021.671405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal opacification is the fourth most common cause of blindness globally behind cataracts, glaucoma, and age-related macular degeneration. The standard treatment of serious corneal scarring is corneal transplantation. Though it is effective for restoring vision, the treatment outcome is not optimal, due to limitations such as long-term graft survival, lifelong use of immunosuppressants, and a loss of corneal strength. Regulation of corneal stromal wound healing, along with inhibition or downregulation of corneal scarring is a promising approach to prevent corneal opacification. Pharmacological approaches have been suggested, however these are fraught with side effects. Tissue healing is an intricate process that involves cell death, proliferation, differentiation, and remodeling of the extracellular matrix. Current research on stromal wound healing is focused on corneal characteristics such as the immune response, angiogenesis, and cell signaling. Indeed, promising new technologies with the potential to modulate wound healing are under development. In this review, we provide an overview of cell-free strategies and some approaches under development that have the potential to control stromal fibrosis and scarring, especially in the context of early intervention.
Collapse
Affiliation(s)
- Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isabelle Billig
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Chaurasia S, Jakati S, Ramappa M, Mishra DK, Edward DP. Anterior segment alterations in congenital primary aphakia-a clinicopathologic report of five cases. Indian J Ophthalmol 2021; 68:1564-1568. [PMID: 32709777 PMCID: PMC7640842 DOI: 10.4103/ijo.ijo_2078_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: To report the clinicopathological features of corneal buttons in patients with congenital primary aphakia. Methods: Five corneal specimens of five patients with congenital primary aphakia who underwent penetrating keratoplasty (PKP) were studied by light microscopy, and immunohistochemistry with anti-smooth muscle (SMA) antibody. Results: All patients were born from consanguineous parents. Of the five, two patients were identical twins. All eyes were microphthalmic. In four patients, congenital primary aphakia was bilateral and in one patient (Patient 3), it was unilateral. PKP failed in all eyes due to hypotony. Histologically, Bowman's layer was absent in all specimens. The corneal stroma was thin; however, the stromal collagen showed thick and irregularly arranged fibers with neovascularization in all eyes. Descemet's membrane and the corneal endothelium were absent in all specimens. In three specimens, atrophic iris tissue without dilator muscle was adherent to the posterior corneal surface. In addition, anteriorly displaced hypoplastic ciliary body and/or pigmented and non-pigmented ciliary epithelium were attached to the posterior corneal surface in three of the five specimens. SMA staining demonstrated disorganized ciliary muscle in one case. SMA-positive stromal keratocytes demonstrated their myofibroblast nature. Conclusion: The corneal findings in congenital primary aphakia are similar to that seen in other causes of congenital corneal opacification. The anteriorly displaced hypoplastic ciliary body that was partially excised during keratoplasty explains the ocular hypotony in these eyes.
Collapse
Affiliation(s)
- Sunita Chaurasia
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Saumya Jakati
- Ocular Pathology Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Muralidhar Ramappa
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Dilip K Mishra
- Ocular Pathology Services, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deepak P Edward
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; University of Illinois Eye and Ear Infirmary, Chicago, Illinois, US
| |
Collapse
|
37
|
Park JH, Kim M, Yim B, Park CY. Nitric oxide attenuated transforming growth factor-β induced myofibroblast differentiation of human keratocytes. Sci Rep 2021; 11:8183. [PMID: 33854158 PMCID: PMC8046755 DOI: 10.1038/s41598-021-87791-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Nitric oxide (NO) has the potential to modulate myofibroblast differentiation. In this study, we investigated the effect of exogenous NO on the myofibroblast differentiation of human keratocytes using sodium nitrite as a NO donor. Myofibroblasts were induced by exposing resting keratocytes to transforming growth factor (TGF)-β1. N-cadherin and α-smooth muscle actin (αSMA) were used as myofibroblast markers. Both resting keratocytes and -stimulated keratocytes were exposed to various concentrations of sodium nitrite (1 μM to 1000 mM) for 24 to 72 h. Exposure to sodium nitrite did not alter keratocytes’ viability up to a 10 mM concentration for 72 h. However, significant cytotoxicity was observed in higher concentrations of sodium nitrite (over 100 mM). The expression of αSMA and N-cadherin was significantly increased in keratocytes by TGF-β1 stimulation after 72 h incubation. The addition of sodium nitrite (1 mM) to TGF-β1-stimulated keratocytes significantly decreased αSMA and N cadherin expression. Smad3 phosphorylation decreased after sodium nitrite (1 mM) exposure in TGF-β1-stimulated keratocytes. The effect of NO was reversed when NO scavenger, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) was added in the culture medium. Application of sodium nitrite resulted in significant decrease of corneal opacity when measured at 2 weeks after the chemical burn in the mouse. These results verified the potential therapeutic effect of NO to decrease myofibroblast differentiation of human keratocytes and corneal opacity after injury.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - Martha Kim
- Department of Ophthalmology, Ilsan Hospital, Dongguk University, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Bora Yim
- Department of Ophthalmology, Ilsan Hospital, Dongguk University, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Ilsan Hospital, Dongguk University, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea.
| |
Collapse
|
38
|
Chandru A, Agrawal P, Ojha SK, Selvakumar K, Shiva VK, Gharat T, Selvam S, Thomas MB, Damala M, Prasad D, Basu S, Bhowmick T, Sangwan VS, Singh V. Human Cadaveric Donor Cornea Derived Extra Cellular Matrix Microparticles for Minimally Invasive Healing/Regeneration of Corneal Wounds. Biomolecules 2021; 11:532. [PMID: 33918484 PMCID: PMC8066719 DOI: 10.3390/biom11040532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Biological materials derived from extracellular matrix (ECM) proteins have garnered interest as their composition is very similar to that of native tissue. Herein, we report the use of human cornea derived decellularized ECM (dECM) microparticles dispersed in human fibrin sealant as an accessible therapeutic alternative for corneal anterior stromal reconstruction. dECM microparticles had good particle size distribution (≤10 µm) and retained the majority of corneal ECM components found in native tissue. Fibrin-dECM hydrogels exhibited compressive modulus of 70.83 ± 9.17 kPa matching that of native tissue, maximum burst pressure of 34.3 ± 3.7 kPa, and demonstrated a short crosslinking time of ~17 min. The fibrin-dECM hydrogels were found to be biodegradable, cytocompatible, non-mutagenic, non-sensitive, non-irritant, and supported the growth and maintained the phenotype of encapsulated human corneal stem cells (hCSCs) in vitro. In a rabbit model of anterior lamellar keratectomy, fibrin-dECM bio-adhesives promoted corneal re-epithelialization within 14 days, induced stromal tissue repair, and displayed integration with corneal tissues in vivo. Overall, our results suggest that the incorporation of cornea tissue-derived ECM microparticles in fibrin hydrogels is non-toxic, safe, and shows tremendous promise as a minimally invasive therapeutic approach for the treatment of superficial corneal epithelial wounds and anterior stromal injuries.
Collapse
Affiliation(s)
- Arun Chandru
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Parinita Agrawal
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Sanjay Kumar Ojha
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Kamalnath Selvakumar
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Vaishnavi K. Shiva
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Tanmay Gharat
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Shivaram Selvam
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Midhun Ben Thomas
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Mukesh Damala
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
| | - Deeksha Prasad
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
| | - Sayan Basu
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Tuhin Bhowmick
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Virender Singh Sangwan
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Vivek Singh
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| |
Collapse
|
39
|
Wang X, Chung L, Hooks J, Maestas DR, Lebid A, Andorko JI, Huleihel L, Chin AF, Wolf M, Remlinger NT, Stepp MA, Housseau F, Elisseeff JH. Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing. SCIENCE ADVANCES 2021; 7:eabe2635. [PMID: 33863719 PMCID: PMC8051883 DOI: 10.1126/sciadv.abe2635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/03/2021] [Indexed: 05/06/2023]
Abstract
The avascular nature of cornea tissue limits its regenerative potential, which may lead to incomplete healing and formation of scars when damaged. Here, we applied micro- and ultrafine porcine urinary bladder matrix (UBM) particulate to promote type 2 immune responses in cornea wounds. Results demonstrated that UBM particulate substantially reduced corneal haze formation as compared to the saline-treated group. Flow cytometry and gene expression analysis showed that UBM particulate suppressed the differentiation of corneal stromal cells into α-smooth muscle actin-positive (αSMA+) myofibroblasts. UBM treatments up-regulated interleukin-4 (IL-4) produced primarily by eosinophils in the wounded corneas and CD4+ T cells in draining lymph nodes, suggesting a cross-talk between local and peripheral immunity. Gata1-/- mice lacking eosinophils did not respond to UBM treatment and had impaired wound healing. In summary, stimulating type 2 immune responses in the wounded cornea can promote proregenerative environments that lead to improved wound healing for vision restoration.
Collapse
Affiliation(s)
- Xiaokun Wang
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua Hooks
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - James I Andorko
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luai Huleihel
- ACell Inc., Columbia, MD 21046, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexander F Chin
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Matthew Wolf
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology and Department of Ophthalmology, School of Medicine and Health Sciences, George Washington University, Washington DC 20037, USA
| | - Franck Housseau
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
40
|
McNutt PM, Kelly KEM, Altvater AC, Nelson MR, Lyman ME, O'Brien S, Conroy MT, Ondeck CA, Bodt SML, Wolfe SE, Schulz SM, Kniffin DM, Hall NB, Hamilton TA. Dose-dependent emergence of acute and recurrent corneal lesions in sulfur mustard-exposed rabbit eyes. Toxicol Lett 2021; 341:33-42. [PMID: 33497768 DOI: 10.1016/j.toxlet.2021.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022]
Abstract
Sulfur mustard (SM) is a lipid soluble alkylating agent that causes genotoxic injury. The eye is highly sensitive to SM toxicity and exposures exceeding 400 mg min/m3 can elicit irreversible corneal pathophysiologies. Development of medical countermeasures for ocular SM exposure has been hindered by a limited understanding of dose-dependent effects of SM on corneal injury. Here, clinical, histological and ultrastructural analyses were used to characterize the effects of SM dose on corneal injury progression. Corneas were evaluated for up to 20 wk following exposure to saturated SM vapor for 30-150 s, which corresponds to 300-1,500 mg min/m3. In acute studies, a ceiling effect on corneal edema developed at doses associated with full-thickness corneal lesions, implicating endothelial toxicity in corneal swelling. Recurrent edematous lesions (RELs) transiently emerged after 2 wk in a dose-dependent fashion, followed by the development of secondary corneal pathophysiologies such as neovascularization, stromal scarring and endothelial abnormalities. RELs appeared in 96 % of corneas exposed for ≥ 90 s, 52 % of corneas exposed for 60 s and 0 % of corneas exposed for 30 s. While REL latency was variable in corneas exposed for 60 s, REL emergence was synchronized at exposures ≥ 90 s. Corneas did not exhibit more than one REL, suggesting RELs are part of a programmed pathophysiological response to severe alkylating lesions. In post-mortem studies at 12 wk, corneal edema was positively correlated to severity of endothelial pathologies, consistent with previous findings that endothelial toxicity influences long-term outcomes. These results provide novel insight into long-term corneal pathophysiological responses to acute toxicity and identify exposure conditions suitable for therapeutic testing.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, United States; US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States.
| | - Kyle E M Kelly
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Amber C Altvater
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Marian R Nelson
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Megan E Lyman
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Sean O'Brien
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Matthieu T Conroy
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Celinia A Ondeck
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Skylar M L Bodt
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States; Penn State School of Medicine, Hershey, PA, United States
| | - Sarah E Wolfe
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States; University of Colorado School of Medicine, United States
| | - Susan M Schulz
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Denise M Kniffin
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Nicole B Hall
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| | - Tracey A Hamilton
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, United States
| |
Collapse
|
41
|
Sugioka K, Fukuda K, Nishida T, Kusaka S. The fibrinolytic system in the cornea: A key regulator of corneal wound healing and biological defense. Exp Eye Res 2021; 204:108459. [PMID: 33493476 DOI: 10.1016/j.exer.2021.108459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea is a relatively unique tissue in the body in that it possesses specific features such as a lack of blood vessels that contribute to its transparency. The cornea is supplied with soluble blood components such as albumin, globulin, and fibrinogen as well as with nutrients, oxygen, and bioactive substances by diffusion from aqueous humor and limbal vessels as well as a result of its exposure to tear fluid. The healthy cornea is largely devoid of cellular components of blood such as polymorphonuclear leukocytes, monocytes-macrophages, and platelets. The location of the cornea at the ocular surface renders it susceptible to external insults, and its avascular nature necessitates the operation of healing and defense mechanisms in a manner independent of a direct blood supply. The fibrinolytic system, which was first recognized for its role in the degradation of fibrin clots in the vasculature, has also been found to contribute to various biological processes outside of blood vessels. Fibrinolytic factors thus play an important role in biological defense of the cornea. In this review, we address the function of the fibrinolytic system in corneal defense including wound healing and the inflammatory response.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan.
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Nankoku City, Kochi, 783-8505, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan; Division of Cornea and Ocular Surface, Ohshima Eye Hospital, 11-8 Kamigofukumachi, Hakata-ku, Fukuoka City, Fukuoka, 812-0036, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan
| |
Collapse
|
42
|
Abstract
Clear vision is dependent on features that protect the anatomical integrity of the eye (cornea and sclera) and those that contribute to internal ocular homeostasis by conferring hemangiogenic (avascular tissues and antiangiogenic factors), lymphangiogenic (lack of draining lymphatics), and immunologic (tight junctions that form blood-ocular barriers, immunosuppressive cells, and modulators) privileges. The later examples are necessary components that enable the eye to maintain an immunosuppressive environment that responds to foreign invaders in a deviated manner, minimizing destructive inflammation that would impair vision. These conditions allowed for the observations made by Medawar, in 1948, of delayed rejection of allogenic tissue grafts in the anterior chamber of mouse eye and permit the sequestration of foreign invaders (eg, Toxoplasma gondii) within the retina of healthy individuals. Yet successful development of intraocular drugs (biologics and delivery devices) has been stymied by adverse ocular pathology, much of which is driven by immune pathways. The eye can be intolerant of foreign protein irrespective of delivery route, and endogenous ocular cells have remarkable plasticity when recruited to preserve visual function. This article provides a review of current understanding of ocular immunology and the potential role of immune mechanisms in pathology observed with intraocular drug delivery.
Collapse
Affiliation(s)
| | | | - Sharmila Masli
- 12259Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
43
|
Nuwormegbe SA, Kim SW. AMPK Activation by 5-Amino-4-Imidazole Carboxamide Riboside-1-β-D-Ribofuranoside Attenuates Alkali Injury-Induced Corneal Fibrosis. Invest Ophthalmol Vis Sci 2021; 61:43. [PMID: 32561924 PMCID: PMC7415321 DOI: 10.1167/iovs.61.6.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Increased TGF-β1 synthesis after corneal alkali injury is implicated in corneal fibrosis, as it promotes transdifferentiation of keratocytes into myofibroblasts. The activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) by 5-amino-4-imidazole carboxamide riboside-1-β-d-ribofuranoside (AICAR) inhibits TGF-β1-induced fibrosis in other cell types. We investigated the antifibrotic effect of AICAR in corneal fibroblasts after alkali injury. Methods Mouse models of corneal alkali burn, produced by placing 2-mm-diameter filter paper soaked in 0.1-N NaOH on the right cornea for 30 seconds, were treated with the test drugs 4× daily for 21 days. The central cornea was scanned by optical coherence tomography (OCT). Corneal tissues were obtained and processed for western blotting and immunohistochemistry. For in vitro analysis, primary human corneal fibroblasts were treated directly with TGF-β1 to induce fibrosis, with or without AICAR pretreatment. Myofibroblast activation and extracellular matrix (ECM) protein synthesis were detected by western blotting, real-time PCR, and collagen gel contraction assay. Signaling proteins were analyzed by western blotting. Results Alkali injury induced the upregulation of TGF-β1 expression, which led to increased α-smooth muscle actin (α-SMA) and fibronectin synthesis and myofibroblast differentiation. AMPK activation by AICAR significantly suppressed TGF-β1 and ECM protein expression. The antifibrotic effect of AICAR was AMPK dependent, as treatment with the AMPK inhibitor Compound C attenuated the antifibrotic response. Conclusions AMPK activation by AICAR suppresses the myofibroblast differentiation and ECM synthesis that occur after alkali injury in corneal fibroblasts.
Collapse
|
44
|
McNutt PM, Mohan RR. The Need for Improved Therapeutic Approaches to Protect the Cornea Against Chemotoxic Injuries. Transl Vis Sci Technol 2020; 9:2. [PMID: 33200044 PMCID: PMC7645219 DOI: 10.1167/tvst.9.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cornea, a highly specialized transparent tissue, is the major refractive element of the eye. The cornea is highly susceptible to chemotoxic injury through topical exposure to vapors, microparticles, and aqueous drops, as well as through systemically absorbed chemicals that access the cornea via tear film, aqueous humor, and limbal vasculature. Corneal injury activates a carefully orchestrated series of repair processes capable of resolving minor lesions over time, but it often fails to overcome the menace of moderate, severe, and chronic injuries and secondary pathophysiologies that permanently impair vision. The most serious complications of chemical injuries-persistent corneal edema, neovascularization, scarring/haze, limbal stem cell deficiency, and corneal melting-often manifest over months to years, suggesting that a better understanding of endogenous regenerative mechanisms of corneal repair can lead to the development of improved treatments that may attenuate or prevent corneal defects and protect vision.
Collapse
Affiliation(s)
- Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, USA
| | - Rajiv R. Mohan
- Departments of Ophthalmology, Biomedical Sciences, and Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
45
|
Gupta S, Fink MK, Martin LM, Sinha PR, Rodier JT, Sinha NR, Hesemann NP, Chaurasia SS, Mohan RR. A rabbit model for evaluating ocular damage from acrolein toxicity in vivo. Ann N Y Acad Sci 2020; 1480:233-245. [PMID: 33067838 PMCID: PMC9206444 DOI: 10.1111/nyas.14514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Acrolein is a highly reactive and volatile unsaturated aldehyde commonly used for producing scores of commercial products. It has been recognized as a chemical weapon since its use during World War I, and more recently, in Syria. Acrolein exposure causes severe eye, skin, and lung damage in addition to many casualties. In the eye, it causes severe pain, eyelid swelling, corneal burns, and vision impairment. Very little information is available about how acrolein damages the cornea and causes vision loss. At present, the lack of clinically relevant animal models limits evaluation of acrolein toxicity and mechanisms specific to the eye. We aim to standardize the mode of delivery and exposure duration of acrolein, damaging the rabbit eye in vivo as an ocular injury model for studying the toxicity of acrolein and developing medical countermeasures. Rabbit eyes were exposed to two modes of delivery (topical and vapor) for different durations (1-5 minutes). Clinical ophthalmic examinations with a slit lamp, stereomicroscope, fluorescein dye, pachymeter, tonometer, and tearing examinations in live rabbits were performed at various times up to 4 weeks. Corneas were histologically diagnosed for transparency, fibrosis, collagens, and neovascularization. Our study successfully established an in vivo rabbit model for evaluating acrolein toxicity to the eye, accounting for different modes and durations of exposure.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Michael K. Fink
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Jason T. Rodier
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| | - Shyam S. Chaurasia
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
46
|
Differences in sphere-forming cells from keratoconic and normal corneal tissue: Implications for keratoconus pathogenesis. Exp Eye Res 2020; 202:108301. [PMID: 33086037 DOI: 10.1016/j.exer.2020.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
Abstract
Keratoconus is primarily an anterior corneal disorder of unclear aetiology. Stem cells may play a role in the perpetuation of keratoconus, although this has yet to be definitively established. Sphere-forming cells from normal human donor corneas have previously been shown to be a heterogenous mix of epithelial, stromal, stem and progenitor cell components which have potential for treatment of corneal dystrophies. Our work set out to isolate and characterise sphere-forming cells from human keratoconic tissue. Keratoconic donor corneas were successfully used to culture sphere-forming cells in vitro. Time lapse imaging of these spheres on a collagen surface over 8 days revealed keratoconic spheres lack the ability to maintain a central core and have diminished ability to repopulate the surface. Immunocytochemistry showed positive labelling for the stem cell marker 'Adenosine triphosphate-binding cassette sub-family B member 5 (ABCB5)' indicating stem cell retention and the myofibroblast marker alpha smooth muscle actin indicating wound repair while droplet digital Polymerase Chain Reaction confirmed an increase in expression of stem and stromal cell markers in keratoconic spheres compared to spheres cultured from normal donors at day 7 post-placement. Keratoconic sphere-forming cells showed a diminished repopulation ability, a faster wound healing response and lack of central core retention. These results suggest stem cells in keratoconus may be in an elevated state of wound repair and unable to respond appropriately to further injury in corneal maintenance. Sphere forming cell populations in keratoconus appear to be different to those isolated from normal corneas and this may be an important consideration in unearthing keratoconus aetiology.
Collapse
|
47
|
Fernandes-Cunha GM, Chen KM, Chen F, Le P, Han JH, Mahajan LA, Lee HJ, Na KS, Myung D. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci Rep 2020; 10:16671. [PMID: 33028837 PMCID: PMC7542443 DOI: 10.1038/s41598-020-72978-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023] Open
Abstract
Visually significant corneal injuries and subsequent scarring collectively represent a major global human health challenge, affecting millions of people worldwide. Unfortunately, less than 2% of patients who could benefit from a sight-restoring corneal transplant have access to cadaveric donor corneal tissue. Thus, there is a critical need for new ways to repair corneal defects that drive proper epithelialization and stromal remodeling of the wounded area without the need for cadeveric donor corneas. Emerging therapies to replace the need for donor corneas include pre-formed biosynthetic buttons and in situ-forming matrices that strive to achieve the transparency, biocompatibility, patient comfort, and biointegration that is possible with native tissue. Herein, we report on the development of an in situ-forming hydrogel of collagen type I crosslinked via multi-functional polyethylene glycol (PEG)-N-hydroxysuccinimide (NHS) and characterize its biophysical properties and regenerative capacity both in vitro and in vivo. The hydrogels form under ambient conditions within minutes upon mixing without the need for an external catalyst or trigger such as light or heat, and their transparency, degradability, and stiffness are modulated as a function of number of PEG arms and concentration of PEG. In addition, in situ-forming PEG-collagen hydrogels support the migration and proliferation of corneal epithelial and stromal cells on their surface. In vivo studies in which the hydrogels were formed in situ over stromal keratectomy wounds without sutures showed that they supported multi-layered surface epithelialization. Overall, the in situ forming PEG-collagen hydrogels exhibited physical and biological properties desirable for a corneal stromal defect wound repair matrix that could be applied without the need for sutures or an external trigger such as a catalyst or light energy.
Collapse
Affiliation(s)
| | - Karen Mei Chen
- Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fang Chen
- Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Peter Le
- Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ju Hee Han
- Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Leela Ann Mahajan
- Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hyun Jong Lee
- Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyung Sun Na
- Ophthalmology and Visual Science, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - David Myung
- Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Chemical Engineering, Stanford University, Stanford, CA, USA. .,VA Palo Alto HealthCare System, Palo Alto, CA, USA.
| |
Collapse
|
48
|
Saikia P, Crabb JS, Dibbin LL, Juszczak MJ, Willard B, Jang GF, Shiju TM, Crabb JW, Wilson SE. Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep 2020; 10:16717. [PMID: 33028893 PMCID: PMC7541534 DOI: 10.1038/s41598-020-73686-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myofibroblasts are fibroblastic cells that function in wound healing, tissue repair and fibrosis, and arise from bone marrow (BM)-derived fibrocytes and a variety of local progenitor cells. In the cornea, myofibroblasts are derived primarily from stromal keratocytes and from BM-derived fibrocytes after epithelial-stromal and endothelial-stromal injuries. Quantitative proteomic comparison of mature alpha-smooth muscle actin (α-SMA)+ myofibroblasts (verified by immunocytochemistry for vimentin, α-SMA, desmin, and vinculin) generated from rabbit corneal fibroblasts treated with transforming growth factor (TGF) beta-1 or generated directly from cultured BM treated with TGF beta-1 was pursued for insights into possible functional differences. Paired cornea-derived and BM-derived α-SMA+ myofibroblast primary cultures were generated from four New Zealand white rabbits and confirmed to be myofibroblasts by immunocytochemistry. Paired cornea- and BM-derived myofibroblast specimens from each rabbit were analyzed by LC MS/MS iTRAQ technology using an Orbitrap Fusion Lumos Tribrid mass spectrometer, the Mascot search engine, the weighted average quantification method and the UniProt rabbit and human databases. From 2329 proteins quantified with ≥ 2 unique peptides from ≥ 3 rabbits, a total of 673 differentially expressed (DE) proteins were identified. Bioinformatic analysis of DE proteins with Ingenuity Pathway Analysis implicate progenitor-dependent functional differences in myofibroblasts that could impact tissue development. Our results suggest BM-derived myofibroblasts may be more prone to the formation of excessive cellular and extracellular material that are characteristic of fibrosis.
Collapse
Affiliation(s)
- Paramananda Saikia
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jack S Crabb
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Luciana L Dibbin
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Madison J Juszczak
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | | | - Geeng-Fu Jang
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Thomas Michael Shiju
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - John W Crabb
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Lerner Research Institute, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
49
|
Chang YM, Cian AA, Weng TH, Liang CM, Pao SI, Chen YJ. Beneficial Effects of Hypercapnic Acidosis on the Inhibition of Transforming Growth Factor β-1-induced Corneal Fibrosis in Vitro. Curr Eye Res 2020; 46:648-656. [PMID: 32886570 DOI: 10.1080/02713683.2020.1820526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Corneal scarring is a common poor outcome of corneal trauma. Transforming growth factor β-1 plays a vital role in corneal fibrosis, inducing keratocyte transformation to myofibroblasts. Other than corneal transplantation, no other curative treatment methods for corneal scarring are currently available. Hypercapnic acidosis exerts anti-inflammatory and anti-migratory effects on numerous organs; however, its effect on corneal fibroblasts remains unknown. Hence, this study aimed to evaluate the effect of hypercapnic acidosis on transforming growth factor β-1-induced fibrosis in corneal fibroblasts and to elucidate the underlying mechanisms. MATERIALS AND METHODS Corneal fibroblasts were obtained from human limbal tissue and cultured with or without transforming growth factor β-1 under hypercapnic acidosis or no-hypercapnic acidosis conditions, and subjected to scratch wound, cell migration, and collagen matrix contraction assays. Furthermore, immunocytochemistry was performed to evaluate the alpha-smooth muscle actin stress fiber. Finally, western blotting was performed to assess the expression of proteins in the NF-κB and Smad pathways. RESULTS Hypercapnic acidosis suppressed collagen gel contraction capacity in transforming growth factor β-1-treated corneal fibroblasts and inhibited transforming growth factor β-1-induced cell migration. Moreover, hypercapnic acidosis downregulated corneal fibrosis marker alpha-smooth muscle actin in transforming growth factor β-1-treated corneal fibroblasts. Furthermore, hypercapnic acidosis suppressed transforming growth factor β-1-induced fibrosis, at least partly, by inhibiting Smad2/3 phosphorylation and down-regulating p-IκB-dependent and RelB signaling transduction. CONCLUSIONS Hypercapnic acidosis inhibits transforming growth factor β-1-induced corneal fibroblast migration, collagen gel contraction capacity, and alpha smooth muscle actin expression, potentially through the Smad and NF-κB pathways. Therefore, hypercapnic acidosis may be a potentially useful anti-fibrotic therapy for corneal scarring.
Collapse
Affiliation(s)
- Yu-Min Chang
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - An-An Cian
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tzu-Heng Weng
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shu-I Pao
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
50
|
Fukuda K. Corneal fibroblasts: Function and markers. Exp Eye Res 2020; 200:108229. [PMID: 32919991 DOI: 10.1016/j.exer.2020.108229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Corneal stromal keratocytes contribute to the maintenance of corneal transparency and shape by synthesizing and degrading extracellular matrix. They are quiescent in the healthy cornea, but they become activated in response to insults from the external environment that breach the corneal epithelium, with such activation being associated with phenotypic transformation into fibroblasts. Corneal fibroblasts (activated keratocytes) act as sentinel cells to sense various external stimuli-including damage-associated molecular patterns derived from injured cells, pathogen-associated molecular patterns of infectious microorganisms, and inflammatory mediators such as cytokines-under pathological conditions such as trauma, infection, and allergy. The expression of various chemokines and adhesion molecules by corneal fibroblasts determines the selective recruitment and activation of inflammatory cells in a manner dependent on the type of insult. In infectious keratitis, the interaction of corneal fibroblasts with various components of microbes and with cytokines derived from infiltrated inflammatory cells results in excessive degradation of stromal collagen and consequent corneal ulceration. Corneal fibroblasts distinguish between type 1 and type 2 inflammation through recognition of corresponding cytokines, with their activation by type 2 cytokines contributing to the pathogenesis of corneal lesions in severe ocular allergic diseases. Pharmacological targeting of corneal fibroblast function is thus a potential novel therapeutic approach to prevention of excessive corneal stromal inflammation, damage, and scarring.
Collapse
Affiliation(s)
- Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|