1
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Maniscalchi A, Benzi Juncos ON, Conde MA, Funk MI, Fermento ME, Facchinetti MM, Curino AC, Uranga RM, Alza NP, Salvador GA. New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biol 2024; 71:103074. [PMID: 38367511 PMCID: PMC10879836 DOI: 10.1016/j.redox.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024] Open
Abstract
Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.
Collapse
Affiliation(s)
- Athina Maniscalchi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - Oriana N Benzi Juncos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melania I Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - María E Fermento
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María M Facchinetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Alejandro C Curino
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Química - UNS, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Carbon Monoxide Protects Neural Stem Cells Against Iron Overload by Modulating the Crosstalk Between Nrf2 and NF-κB Signaling. Neurochem Res 2022; 47:1383-1394. [PMID: 35258778 DOI: 10.1007/s11064-022-03537-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
Although accumulating evidences have demonstrated pro-survival effects of CO against various insults, the precise mechanism explaining how neural stem cells (NSCs) are protected by CO also remains largely unknown. Here we report CO pro-survival effect on NSCs against iron overload was comparable to that obtained with pharmacological inhibitors of reactive oxygen species (ROS). Its pro-survival effect was accompanied by the inhibition of ROS and subsequent inhibition of NF-κB which is mediated through nuclear factor erythroid 2-related factor 2 (Nrf2), in that activation of Nrf2 by CO inhibited ROS via up-regulation of NQO-1 while down-regulation of Nrf2 reversed the pro-survival effect of CO both in vitro and in vivo. CO-mediated preconditioning results in Nrf2 up-regulation and NF-κB inhibition, suggesting that these two pathways act in an inverse manner to maintain redox homeostasis. Our findings revealed CO preconditioning as a promising treatment strategy to improve efficacy of NSCs transplantation after hemorrhagic stroke.
Collapse
|
4
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
5
|
Wang K, Zhong Y, Yang F, Hu C, Liu X, Zhu Y, Yao K. Causal Effects of N-6 Polyunsaturated Fatty Acids on Age-related Macular Degeneration: A Mendelian Randomization Study. J Clin Endocrinol Metab 2021; 106:e3565-e3572. [PMID: 33982092 DOI: 10.1210/clinem/dgab338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT Although the role of n-6 polyunsaturated fatty acids (PUFAs) in age-related macular degeneration (AMD) has been studied in previous observational studies, the precise manner in which 1 or more n-6 PUFAs account for this relationship remains unclear. OBJECTIVE Using genetic instruments for n-6 PUFAs traits implemented through mendelian randomization (MR), we aimed to study possible causal associations between n-6 PUFAs and AMD. METHODS The 2-sample MR method was used to obtain unconfounded causal estimates. We selected genetic variants strongly associated (P < 5 × 10-8) with circulating linoleic acid (LA) and arachidonic acid (AA) from a study involving 8 631 individuals and applied to an AMD case-control study (33 526 participants and 16 144 cases). The weighted median and MR Egger methods were used for the sensitivity analysis. RESULTS Our MR analysis suggested that circulating LA was a causal protective factor for AMD, with an odds ratio (OR) estimate of 0.967 (95% CI 0.945 to 0.990; P = .005) per percentage in total fatty acid increase in LA. In contrast, higher genetically predicted circulating AA causally increased the AMD risk (OR = 1.034; 95% CI 1.012 to 1.056; P = .002). Sensitivity analysis provided no indication of unknown pleiotropy. The findings from different single-nucleotide polymorphism selections and analytic methods were consistent, suggesting the robustness of the causal associations. CONCLUSION Our study provided genetic evidence that circulating LA accounted for protective effects of n-6 PUFAs against the risk of AMD, whereas AA was responsible for deleterious effects on higher AMD risk.
Collapse
Affiliation(s)
- Kai Wang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yueyang Zhong
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fangkun Yang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chenyang Hu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xin Liu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanan Zhu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Iglesias González PA, Conde MA, González-Pardo V, Uranga RM, Salvador GA. In vitro 6-hydroxydopamine-induced neurotoxicity: New insights on NFκB modulation. Toxicol In Vitro 2019; 60:400-411. [DOI: 10.1016/j.tiv.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
7
|
Tenconi PE, Bermúdez V, Oresti GM, Giusto NM, Salvador GA, Mateos MV. High glucose-induced phospholipase D activity in retinal pigment epithelium cells: New insights into the molecular mechanisms of diabetic retinopathy. Exp Eye Res 2019; 184:243-257. [PMID: 31059692 DOI: 10.1016/j.exer.2019.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 02/02/2023]
Abstract
Chronic hyperglycemia, oxidative stress and inflammation are key players in the pathogenesis of diabetic retinopathy (DR). In this work we study the role of phospholipase D (PLD) pathway in an in vitro model of high glucose (HG)-induced damage. To this end, we exposed human retinal pigment epithelium (RPE) cell lines (ARPE-19 and D407) to HG concentrations (16.5 or 33 mM) or to normal glucose concentration (NG, 5.5 mM) for 4, 24 or 72 h. Exposure to HG increased reactive oxygen species levels and caspase-3 cleavage and reduced cell viability after 72 h of incubation. In addition, short term HG exposure (4 h) induced the activation of early events, that involve PLD and ERK1/2 signaling, nuclear factor kappa B (NFκB) nuclear translocation and IκB phosphorylation. The increment in pro-inflammatory interleukins (IL-6 and IL-8) and cyclooxygenase-2 (COX-2) mRNA levels was observed after 24 h of HG exposure. The effect of selective pharmacological PLD1 (VU0359595) and PLD2 (VU0285655-1) inhibitors demonstrated that ERK1/2 and NFκB activation were downstream events of both PLD isoforms. The increment in IL-6 and COX-2 mRNA levels induced by HG was reduced to control levels in cells pre-incubated with both PLD inhibitors. Furthermore, the inhibition of PLD1, PLD2 and MEK/ERK pathway prevented the loss of cell viability and the activation of caspase-3 induced by HG. In conclusion, our findings demonstrate that PLD1 and PLD2 mediate the inflammatory response triggered by HG in RPE cells, pointing to their potential use as a therapeutic target for DR treatment.
Collapse
Affiliation(s)
- Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Vicente Bermúdez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina.
| |
Collapse
|
8
|
Proliferative Glioblastoma Cancer Cells Exhibit Persisting Temporal Control of Metabolism and Display Differential Temporal Drug Susceptibility in Chemotherapy. Mol Neurobiol 2018; 56:1276-1292. [PMID: 29881948 DOI: 10.1007/s12035-018-1152-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/24/2018] [Indexed: 01/05/2023]
Abstract
Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.
Collapse
|
9
|
Kheitan S, Minuchehr Z, Soheili ZS. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration. PLoS One 2017; 12:e0181667. [PMID: 28742151 PMCID: PMC5524348 DOI: 10.1371/journal.pone.0181667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.
Collapse
Affiliation(s)
- Samira Kheitan
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail:
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
10
|
Hu X, Ogawa K, Kiwada T, Odani A. Water-soluble metalloporphyrinates with excellent photo-induced anticancer activity resulting from high tumor accumulation. J Inorg Biochem 2017; 170:1-7. [PMID: 28189031 DOI: 10.1016/j.jinorgbio.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
To develop a water-soluble and tumor-targeted photosensitizer for photodynamic therapy (PDT), a porphyrin framework containing the metal ion gallium(III) was combined with platinum(II)-based groups to produce two new pentacationic metalloporphyrinates, Ga-4cisPtTPyP (5,10,15,20-tetrakis{cis-diammine-chloro-platinum(II)}(4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate) and Ga-4transPtTPyP (5,10,15,20-tetrakis{trans-diammine-chloro-platinum(II)} (4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate). Both complexes exhibited high singlet oxygen quantum yields (Φ∆) and remarkable photocytotoxicity with appreciable phototoxic indexes (PIs). In particular, Ga-4cisPtTPyP showed a low IC50 value (Colon 26: 0.12μM; Sarcoma 180: 0.08μM) under illumination and its PI up to 1000. With outstanding tumor accumulation (tumor/muscle ratio>9), Ga-4cisPtTPyP almost completely inhibited tumor growth over two weeks in an in vivo PDT assay. These results imply that Ga-4cisPtTPyP could be a promising anticancer agent for use in PDT.
Collapse
Affiliation(s)
- Xiaojun Hu
- Division of Pharmaceutical Sciences, Graduate School of Medical Science, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tatsuto Kiwada
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Akira Odani
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
11
|
Romano GL, Platania CBM, Forte S, Salomone S, Drago F, Bucolo C. MicroRNA target prediction in glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 220:217-40. [PMID: 26497793 DOI: 10.1016/bs.pbr.2015.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glaucoma is a progressive optic neuropathy and is one of the leading causes of blindness in the industrialized countries. The aim of this study is to investigate microRNA (miRNA) regulation in glaucoma and other neurodegenerative diseases, that share similar pathways, by means of in silico approaches such as bibliographic search and access to bioinformatic resources. First of all, data mining was carried out on Human miRNA Disease Database (HMDD) and miR2Disease databases. Then, predictions of deregulated miRNAs were carried out accessing to microrna.org database. Finally, the potential combinatorial effect of miRNAs, on regulation of biochemical pathways, was studied by an enrichment analysis performed by DIANA-miRPath v.2.0. We found, from literature search, 8 deregulated miRNAs in glaucoma and 9 and 23 in age-related macular degeneration (AMD) and Alzheimer's disease (AD), respectively. One miRNA is commonly deregulated in glaucoma and AMD (miR-23a). Two miRNAs (miR-29a, miR-29b) are common to glaucoma and AD, and four miRNAs were identified to be commonly deregulated in AMD and AD (miR-9, miR-21, miR-34a, miR-146a). The match of the miRNA common to glaucoma and the other two neurodegenerative diseases (AMD and AD) did not generate any output. Enrichment of information has been reached through miRNAs prediction: 88 predicted miRNAs are common to glaucoma and AMD, 19 are common to glaucoma and AD, and 9 are common to AMD and AD. Indeed, predicted miRNAs common to the three neurodegenerative diseases are nine (miR-107, miR-137, miR-146a, miR-181c, miR-197, miR-21, miR-22, miR-590, miR-9). DIANA-miRPath predicted that those nine miRNAs might regulate pathways involved in inflammation. The findings hereby obtained provide a valuable hint to assess deregulation of specific miRNA, as potential biomarkers and therapeutic targets, in glaucoma and other neurodegenerative diseases by means of preclinical and clinical studies.
Collapse
Affiliation(s)
- Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| |
Collapse
|
12
|
Sánchez Campos S, Rodríguez Diez G, Oresti GM, Salvador GA. Dopaminergic Neurons Respond to Iron-Induced Oxidative Stress by Modulating Lipid Acylation and Deacylation Cycles. PLoS One 2015; 10:e0130726. [PMID: 26076361 PMCID: PMC4468124 DOI: 10.1371/journal.pone.0130726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress.
Collapse
Affiliation(s)
- Sofía Sánchez Campos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guadalupe Rodríguez Diez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gerardo Martín Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gabriela Alejandra Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
13
|
Hill JM, Dua P, Clement C, Lukiw WJ. An evaluation of progressive amyloidogenic and pro-inflammatory change in the primary visual cortex and retina in Alzheimer's disease (AD). Front Neurosci 2014; 8:347. [PMID: 25429256 PMCID: PMC4228830 DOI: 10.3389/fnins.2014.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/11/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- James M Hill
- Louisiana State University Neuroscience Center and Departments of Ophthalmology and Pharmacology, Louisiana State University Health Science Center New Orleans, LA, USA
| | - Prerna Dua
- Department of Health Information Management, Louisiana State University Ruston, LA, USA
| | - Christian Clement
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans New Orleans, LA, USA
| | - Walter J Lukiw
- Louisiana State University Neuroscience Center and Departments of Ophthalmology and Pharmacology, Louisiana State University Health Science Center New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Science Center New Orleans, LA, USA
| |
Collapse
|
14
|
Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C. Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 2014; 52:12-27. [PMID: 25319011 DOI: 10.3109/10408363.2014.968703] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to cellular or molecular damage caused by reactive oxygen species, which especially occurs in age-related conditions as a result of an imbalance between the production of reactive oxygen species and the antioxidant defense response. Dry age-related macular degeneration (AMD) and exfoliation syndrome (XFS) are two common and complex age-related conditions that can cause irreversible vision loss. Two subtypes of AMD, which is the leading cause of blindness in the Western world, exist: the most prevalent dry type and the most severe wet type. Early dry AMD is characterized by formation of drusen, which are sub-retinal deposits, in the macular area and may progress to geographic atrophy with more dramatic manifestation. XFS is a systemic disorder of the extracellular matrix characterized by the accumulation of elastic fibrils that leads, in most cases, to glaucoma development with progressive and irreversible vision loss. Due to the aging population, the prevalence of these already-widespread conditions is increasing and is resulting in significant economic and psychological costs for individuals and for society. The exact composition of the abnormal drusen and XFS material as well as the mechanisms responsible for their production and accumulation still remain elusive, and consequently treatment for both diseases is lacking. However, recent epidemiologic, genetic and molecular studies support a major role for oxidative stress in both dry AMD and XFS development. Understanding the early molecular events in their pathogenesis and the exact role of oxidative stress may provide novel opportunities for therapeutic intervention for the prevention of progression to advanced disease.
Collapse
Affiliation(s)
- Dimitrios Chiras
- Department of Ophthalmology, University Hospital of Ioannina , Ioannina , Greece
| | | | | | | | | |
Collapse
|
15
|
Pinazo-Durán MD, Gómez-Ulla F, Arias L, Araiz J, Casaroli-Marano R, Gallego-Pinazo R, García-Medina JJ, López-Gálvez MI, Manzanas L, Salas A, Zapata M, Diaz-Llopis M, García-Layana A. Do nutritional supplements have a role in age macular degeneration prevention? J Ophthalmol 2014; 2014:901686. [PMID: 24672708 PMCID: PMC3941929 DOI: 10.1155/2014/901686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids ( ω -3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and ω -3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of ω -3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and ω -3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- University of Valencia, Spain ; The Ophthalmic Research Unit "Santiago Grisolía", Valencia, Spain
| | - Francisco Gómez-Ulla
- University of Santiago de Compostela, Spain ; The Institute Gomez-Ulla, Santiago de Compostela, Spain ; Foundation RetinaPlus, Spain
| | - Luis Arias
- University of Barcelona, Spain ; Retina Section, Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Javier Araiz
- Vitreous and Retina Department, UPV/EHU and Instituto Clínico Quirúrgico de Oftalmología (ICQO), University of the Basque Country, Bilbao, Spain
| | - Ricardo Casaroli-Marano
- Clinic Institute of Ophthalmology, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain
| | - Roberto Gallego-Pinazo
- Macula Section, Department of Ophthalmology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jose J García-Medina
- University of Murcia, General University Hospital Reina Sofia, Murcia, Spain ; Ophthalmic Reseach Unit "Santiago Grisolia", Valencia, Spain
| | - Maria Isabel López-Gálvez
- The University of Valladolid, Diabetes and Telemedicine Unit at the IOBA, Spain ; The Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Lucía Manzanas
- The University of Valladolid, Spain ; The Vitreo-Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Anna Salas
- Research Institute of the Hospital of Vall Hebron, Barcelona, Spain
| | - Miguel Zapata
- Retina Section of the Hospital of Vall Hebron, The Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Diaz-Llopis
- Faculty of Medicine, University of Valencia, Valencia, Spain ; University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|