1
|
Buffault J, Brignole-Baudouin F, Labbé A, Baudouin C. An Overview of Current Glaucomatous Trabecular Meshwork Models. Curr Eye Res 2023; 48:1089-1099. [PMID: 37661784 DOI: 10.1080/02713683.2023.2253378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To provide an overview of the existing alternative models for studying trabecular meshwork (TM). METHODS Literature review. RESULTS The TM is a complex tissue that regulates aqueous humor outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first step in the disease process, the underlying mechanisms of TM degeneration associate cell loss and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for preclinical screening, to advance research on this disease's pathophysiology, and to develop new therapeutic strategies targeting the TM. Traditional animal models have been used extensively, albeit with inherent limitations, including ethical concerns and limited translatability to humans. Consequently, there has been an increasing focus on developing alternative in vitro models to study the TM. Recent advancements in three-dimensional cell culture and tissue engineering are still in their early stages and do not yet fully reflect the complexity of the outflow pathway. However, they have shown promise in reducing reliance on animal experimentation in certain aspects of glaucoma research. CONCLUSION This review provides an overview of the existing alternative models for studying TM and their potential for advancing research on the pathophysiology of open-angle glaucoma and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Juliette Buffault
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Biology, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
| | - Antoine Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Christophe Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
| |
Collapse
|
2
|
Ing E, Lozano DC, Cepurna WO, Chan F, Yang YF, Morrison JC, Keller KE. A method describing the microdissection of trabecular meshwork tissue from Brown Norway rat eyes. Exp Eye Res 2023; 228:109367. [PMID: 36740159 PMCID: PMC9991013 DOI: 10.1016/j.exer.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 02/05/2023]
Abstract
Glaucoma is often associated with elevated intraocular pressure (IOP), generally due to obstruction of aqueous humor outflow within the trabecular meshwork (TM). Despite many decades of research, the molecular cause of this obstruction remains elusive. To study IOP regulation, several in vitro models, such as perfusion of anterior segments or mechanical stretching of TM cells, have identified several IOP-responsive genes and proteins. While these studies have proved informative, they do not fully recapitulate the in vivo environment where IOP is subject to additional factors, such as circadian rhythms. Thus, rodent animal models are now commonly used to study IOP-responsive genes in vivo. Several single-cell RNAseq studies have been performed where angle tissue, containing cornea, iris, ciliary body tissue in addition to TM, is dissected. However, it is advantageous to physically separate TM from other tissues because the ratio of TM cells is relatively low compared to the other cell types. In this report, we describe a new technique for rat TM microdissection. Evaluating tissue post-dissection by histology and immunostaining clearly shows successful removal of the TM. In addition, TaqMan PCR primers targeting biomarkers of trabecular meshwork (Myoc, Mgp, Chi3l1) or ciliary body (Myh11, Des) genes showed little contamination of TM tissue by the ciliary body. Finally, pitfalls encountered during TM microdissection are discussed to enable others to successfully perform this microsurgical technique in the rat eye.
Collapse
Affiliation(s)
- Eliesa Ing
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Diana C Lozano
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - William O Cepurna
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Fountane Chan
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - John C Morrison
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Abstract
Glaucoma is an irreversible blinding disease characterized by the loss of retinal ganglion cells. Development of therapeutics relies on suitable models and, given its complex nature, these are typically in vivo models. A widely used model, owing to its relative simplicity, is the microbead model. This model involves the injections of beads into the anterior chamber, which are suitably sized to block the aqueous outflow pathway, leading to an elevation in intraocular pressure and ultimately, retinal ganglion cell death. In this chapter, we describe in detail the materials and methods for modelling glaucoma using microbeads (both magnetic and nonmagnetic).
Collapse
Affiliation(s)
- Ben Mead
- School of Optometry and Vision Sciences, Cardiff, UK.
| |
Collapse
|
4
|
Abstract
Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.
Collapse
Affiliation(s)
- J Cameron Millar
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yogapriya Sundaresan
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Gulab S Zode
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
5
|
Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, Sheridan C, Atkinson SD, Willoughby CE. Genome-Wide RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-β1: Relevance to Pseudoexfoliation Glaucoma. Biomolecules 2022; 12:1693. [PMID: 36421707 PMCID: PMC9687758 DOI: 10.3390/biom12111693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 08/11/2023] Open
Abstract
Pseudoexfoliation glaucoma (XFG) is an aggressive form of secondary open angle glaucoma, characterised by the production of exfoliation material and is estimated to affect 30 million people worldwide. Activation of the TGF-β pathway by TGF-β1 has been implicated in the pathogenesis of pseudoexfoliation glaucoma. To further investigate the role of TGF-β1 in glaucomatous changes in the trabecular meshwork (TM), we used RNA-Seq to determine TGF-β1 induced changes in the transcriptome of normal human trabecular meshwork (HTM) cells. The main purpose of this study was to perform a hypothesis-independent RNA sequencing analysis to investigate genome-wide alterations in the transcriptome of normal HTMs stimulated with TGF-β1 and investigate possible pathophysiological mechanisms driving XFG. Our results identified multiple differentially expressed genes including several genes known to be present in exfoliation material. Significantly altered pathways, biological processes and molecular functions included extracellular matrix remodelling, Hippo and Wnt pathways, the unfolded protein response, oxidative stress, and the antioxidant system. This cellular model of pseudoexfoliation glaucoma can provide insight into disease pathogenesis and support the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Breedge Callaghan
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Chelsey Doyle
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Megan Henry
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - David A. Simpson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK
| | - Carl Sheridan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - Sarah D. Atkinson
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| |
Collapse
|
6
|
Huang L, Wei Z, Wang X, Lan C, Zhu Y, Ye Q. AZD6738 Decreases Intraocular Pressure and Inhibits Fibrotic Response in Trabecular Meshwork through CHK1/P53 Pathway. Biochem Pharmacol 2022; 206:115340. [DOI: 10.1016/j.bcp.2022.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
7
|
Peng M, Margetts TJ, Rayana NP, Sugali CK, Dai J, Mao W. The application of lentiviral vectors for the establishment of TGFβ2-induced ocular hypertension in C57BL/6J mice. Exp Eye Res 2022; 221:109137. [PMID: 35691374 PMCID: PMC10953626 DOI: 10.1016/j.exer.2022.109137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
Elevated levels of TGFβ2 in the aqueous humor is associated with the pathological changes in the trabecular meshwork (TM). These changes lead to ocular hypertension (OHT), the most important risk factor for the development and progression of primary open angle glaucoma (POAG), a leading cause of blindness worldwide. Therefore, TGFβ2 is frequently used to develop OHT models including in perfusion cultured eyes and in mouse eyes. Adenovirus-mediated overexpression of human mutant TGFβ2 has demonstrated great success in increasing intraocular pressure (IOP) in mouse eyes. However, adenoviruses have limited capacity for a foreign gene, induce transient expression, and may cause ocular inflammation. Here, we explored the potential of using lentiviral vectors carrying the mutant human TGFβ2C226S/C228S (ΔhTGFβ2C226S/C228S) gene expression cassette for the induction of OHT in C57BL/6J mice. Lentiviral vectors using CMV or EF1α promoter to drive the expression of ΔhTGFβ2C226S/C228S were injected into one of the mouse eyes and the fellow eye was injected with the same vector but expressing GFP/mCherry as controls. Both intravitreal and intracameral injection routes were tested in male and female mice. We did not observe significant IOP changes using either promoter or injection route at the dose of 8 × 105 PFU/eye. Immunostaining showed normal anterior chamber angle structures and a slight increase in TGFβ2 expression in the TM of the eyes receiving intracameral viral injection but not in those receiving intravitreal viral injection. At the dose of 2 × 106 PFU/eye, intracameral injection of the lentiviral vector with the CMV-ΔhTGFβ2C226S/C228S cassette induced significant IOP elevation and increased the expression of TGFβ2 and fibronectin isoform EDA in the TM. Our data suggest that lentiviral doses are important for establishing the TGFβ2-induced OHT model in the C57BL/6J strain.
Collapse
Affiliation(s)
- Michael Peng
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Tyler J Margetts
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, USA.
| |
Collapse
|
8
|
Patil SV, Kasetti RB, Millar JC, Zode GS. A Novel Mouse Model of TGFβ2-Induced Ocular Hypertension Using Lentiviral Gene Delivery. Int J Mol Sci 2022; 23:6883. [PMID: 35805889 PMCID: PMC9266301 DOI: 10.3390/ijms23136883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) β2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFβ2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFβ2 in the TM. We developed an LV vector-encoding active hTGFβ2C226,228S under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFβ2C226,228S. We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFβ2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFβ2C226,228S exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFβ2C226,228S that induces TM dysfunction and outflow resistance.
Collapse
Affiliation(s)
| | | | | | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.V.P.); (R.B.K.); (J.C.M.)
| |
Collapse
|
9
|
Mavlyutov TA, Myrah JJ, Chauhan AK, Liu Y, McDowell CM. Fibronectin extra domain A (FN-EDA) causes glaucomatous trabecular meshwork, retina, and optic nerve damage in mice. Cell Biosci 2022; 12:72. [PMID: 35619185 PMCID: PMC9137085 DOI: 10.1186/s13578-022-00800-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.
Collapse
Affiliation(s)
- Timur A. Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Justin J. Myrah
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Anil K. Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA USA
| | - Yang Liu
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
10
|
McDowell CM, Kizhatil K, Elliott MH, Overby DR, van Batenburg-Sherwood J, Millar JC, Kuehn MH, Zode G, Acott TS, Anderson MG, Bhattacharya SK, Bertrand JA, Borras T, Bovenkamp DE, Cheng L, Danias J, De Ieso ML, Du Y, Faralli JA, Fuchshofer R, Ganapathy PS, Gong H, Herberg S, Hernandez H, Humphries P, John SWM, Kaufman PL, Keller KE, Kelley MJ, Kelly RA, Krizaj D, Kumar A, Leonard BC, Lieberman RL, Liton P, Liu Y, Liu KC, Lopez NN, Mao W, Mavlyutov T, McDonnell F, McLellan GJ, Mzyk P, Nartey A, Pasquale LR, Patel GC, Pattabiraman PP, Peters DM, Raghunathan V, Rao PV, Rayana N, Raychaudhuri U, Reina-Torres E, Ren R, Rhee D, Chowdhury UR, Samples JR, Samples EG, Sharif N, Schuman JS, Sheffield VC, Stevenson CH, Soundararajan A, Subramanian P, Sugali CK, Sun Y, Toris CB, Torrejon KY, Vahabikashi A, Vranka JA, Wang T, Willoughby CE, Xin C, Yun H, Zhang HF, Fautsch MP, Tamm ER, Clark AF, Ethier CR, Stamer WD. Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35129590 PMCID: PMC8842499 DOI: 10.1167/iovs.63.2.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.
Collapse
Affiliation(s)
- Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Michael H. Elliott
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | | | - J. Cameron Millar
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences and Institute for Vision Research, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Gulab Zode
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ted S. Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics and Department of Ophthalmology and Visual Sciences, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | | | - Jacques A. Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Terete Borras
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - John Danias
- SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Michael Lucio De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | | | - Peter Humphries
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Simon W. M. John
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Mary J. Kelley
- Department of Ophthalmology and Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Ruth A. Kelly
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Krizaj
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California, United States
| | - Raquel L. Lieberman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Paloma Liton
- Department of Ophthalmology and Department of Pathology, Duke University, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Katy C. Liu
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Navita N. Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fiona McDonnell
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Gillian J. McLellan
- Department of Surgical Sciences and Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Philip Mzyk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Andrews Nartey
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Gaurang C. Patel
- Ophthalmology Research, Regeneron Pharmaceuticals, Tarreytown, New York, United States
| | | | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Naga Rayana
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Urmimala Raychaudhuri
- Department of Neurobiology, University of California, Irvine, Irvine, California, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ruiyi Ren
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Douglas Rhee
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - John R. Samples
- Washington State University, Floyd Elson College of Medicine, Spokane, Washington, United States
| | | | - Najam Sharif
- Santen Inc., Emeryville, California, United States
| | - Joel S. Schuman
- Department of Ophthalmology and Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States; Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States
| | - Val C. Sheffield
- Department of Pediatrics and Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Cooper H. Stevenson
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Avinash Soundararajan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yang Sun
- Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California, United States
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States; Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, Ohio, United States
| | | | - Amir Vahabikashi
- Cell and Developmental Biology Department, Northwestern University, Chicago, Illinois, United States
| | - Janice A. Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ting Wang
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hao F. Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | - Michael P. Fautsch
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | | | - Abbot F. Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology; Emory University School of Medicine, Emory University, Atlanta, Georgia, United States
| | - W. Daniel Stamer
- Duke Ophthalmology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
11
|
Meyer KJ, Pellack D, Hedberg-Buenz A, Pomernackas N, Soukup D, Wang K, Fingert JH, Anderson MG. Recombinant adenovirus causes prolonged mobilization of macrophages in the anterior chambers of mice. Mol Vis 2021; 27:741-756. [PMID: 35136346 PMCID: PMC8763664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Ocular tissues of mice have been studied in many ways using replication-deficient species C type 5 adenovirus (Ad5) as a tool for manipulating gene expression. Whereas refinements to injection protocols and tropism have led to several advances in targeting cells of interest, there remains a relative lack of information concerning how Ad5 may influence other ocular cell types capable of confounding experimental interpretation. Here, a slit lamp is used to thoroughly photodocument the sequelae of intraocular Ad5 injections over time in mice, with attention to potentially confounding indices of inflammation. METHODS A cohort of C57BL/6J mice was randomly split into three groups (Virus, receiving unilateral intracameral injection with 5×107 plaque-forming units (pfu) of a cargo-less Ad5 construct; Saline, receiving unilateral balanced salt solution injection; and Naïve, receiving no injections). From this initial experiment, a total of 52 eyes from 26 mice were photodocumented via slit lamp at four time points (baseline and 1, 3, and 10 weeks following initiation of the experiment) by an observer masked to treatments and other parameters of the experimental design. Following the last in vivo exam, tissues were collected. Based on the slit-lamp data, tissues were studied via immunostaining with the macrophage marker F4/80. Subsequently, three iterations of the original experiment were performed with otherwise identical experimental parameters testing the effect of age, intravitreal injection, and A195 buffer, adding slit-lamp photodocumentation of an additional 32 eyes from 16 mice. RESULTS The masked investigator could use the sequential images from each mouse in the initial experiment to assign each mouse to its correct treatment group with near perfect fidelity. Virus-injected eyes were characterized by corneal damage indicative of intraocular injection and a prolonged mobilization of clump cells on the surface of the iris. Saline-injected eyes had only transient corneal opacities indicative of intraocular injections, and Naïve eyes remained normal. Immunostaining with F4/80 was consistent with ascribing the clump cells visualized via slit-lamp imaging as a type of macrophage. Experimental iterations using Ad5 indicate that all virus-injected eyes had the distinguishing feature of a prolonged presence of clump cells on the surface of the iris regardless of injection site. Mice receiving an intraocular injection of Ad5 at an advanced age displayed a protracted course of corneal cloudiness that prevented detailed visualization of the iris at the last time point. CONCLUSIONS Because the eye is often considered an "immune privileged site," we suspect that several studies have neglected to consider that the presence of Ad5 in the eye might evoke strong reactions from the innate immune system. Ad5 injection caused a sustained mobilization of clump cells-that is, macrophages. This change is likely a consequence of either direct macrophage transduction or a secondary response to cytokines produced locally by other transduced cells. Regardless of how these cells were altered, the important implication is that the adenovirus led to long-lasting changes in the environment of the anterior chamber. Thus, these findings describe a caveat of Ad5-mediated studies involving macrophage mobilization, which we encourage groups to use as a bioassay in their experiments and consider in interpretation of their ongoing experiments using adenoviruses.
Collapse
Affiliation(s)
- Kacie J. Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Danielle Pellack
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA
| | - Nicholas Pomernackas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Dana Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| |
Collapse
|
12
|
Gindina S, Barron AO, Hu Y, Dimopoulos A, Danias J. Tissue plasminogen activator rescues steroid-induced outflow facility reduction via non-enzymatic action. Mol Vis 2021; 27:691-705. [PMID: 35002214 PMCID: PMC8684809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Tissue plasminogen activator (tPA) prevents steroid-induced reduction in aqueous humor outflow facility; however, its mechanism of action at the trabecular meshwork (TM) remains unclear. Enzymatic and non-enzymatic domains allow tPA to function as both an enzyme and a cytokine. This study sought to determine whether cytokine activity is sufficient to rescue steroid-induced outflow facility reduction. METHODS Outflow facility was measured in C57BL/6J mice following triamcinolone acetonide exposure and either transfection of the TM using adenoviral vectors, encoding for enzymatically active and inactive tPA, or administration of the respective proteins. Protein injections were also administered to tPA deficient (PlatKO) and Mmp-9 deficient (Mmp-9KO) mice to determine the potential to rescue reductions in outflow facility and determine downstream mechanisms. Gene expression of matrix metalloproteinases (Mmp-2, -9, and -13) was measured in angle ring tissues containing the TM. RESULTS Enzymatically active and inactive tPA (either produced after TM transfection or after direct administration) were equally effective in attenuating steroid-induced outflow facility reduction in C57BL/6J mice. They were also equally effective in rescuing outflow reduction in PlatKO mice and causing enhanced expression of matrix metalloproteinases. However, both enzymatically active and enzymatically inactive tPA did not improve outflow reduction in Mmp-9KO mice or increase the baseline outflow facility in naïve C57BL/6J mice. CONCLUSIONS tPA enzymatic activity is not necessary in the regulation of aqueous humor outflow. tPA can increase the expression of matrix metalloproteinases in a cytokine-mediated fashion. This cascade of events may eventually lead to extracellular matrix remodeling at the TM, which reverses outflow facility reduction caused by steroids.
Collapse
Affiliation(s)
- Sofya Gindina
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Arturo O. Barron
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Yan Hu
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Antonios Dimopoulos
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - John Danias
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY
| |
Collapse
|
13
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
14
|
Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res 2021; 82:100897. [PMID: 32795516 PMCID: PMC7876168 DOI: 10.1016/j.preteyeres.2020.100897] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Glaucoma remains only partially understood, particularly at the level of intraocular pressure (IOP) regulation. Trabecular meshwork (TM) and Schlemm's canal inner wall endothelium (SCE) are key to IOP regulation and their characteristics and behavior are the focus of much investigation. This is becoming more apparent with time. We and others have studied the TM and SCE's extracellular matrix (ECM) extensively and unraveled much about its functions and role in regulating aqueous outflow. Ongoing ECM turnover is required to maintain IOP regulation and several TM ECM manipulations modulate outflow facility. We have established clearly that the outflow pathway senses sustained pressure deviations and responds by adjusting the outflow resistance correctively to keep IOP within an appropriately narrow range which will not normally damage the optic nerve. The glaucomatous outflow pathway has in many cases lost this IOP homeostatic response, apparently due at least in part, to loss of TM cells. Depletion of TM cells eliminates the IOP homeostatic response, while restoration of TM cells restores it. Aqueous outflow is not homogeneous, but rather segmental with regions of high, intermediate and low flow. In general, glaucomatous eyes have more low flow regions than normal eyes. There are distinctive molecular differences between high and low flow regions, and during the response to an IOP homeostatic pressure challenge, additional changes in segmental molecular composition occur. In conjunction with these changes, the biomechanical properties of the juxtacanalicular (JCT) segmental regions are different, with low flow regions being stiffer than high flow regions. The JCT ECM of glaucomatous eyes is around 20 times stiffer than in normal eyes. The aqueous humor outflow resistance has been studied extensively, but neither the exact molecular components that comprise the resistance nor their exact location have been established. Our hypothetical model, based on considerable available data, posits that the continuous SCE basal lamina, which lies between 125 and 500 nm beneath the SCE basal surface, is the primary source of normal resistance. On the surface of JCT cells, small and highly controlled focal degradation of its components by podosome- or invadopodia-like structures, PILS, occurs in response to pressure-induced mechanical stretching. Sub-micron sized basement membrane discontinuities develop in the SCE basement membrane and these discontinuities allow passage of aqueous humor to and through SCE giant vacuoles and pores. JCT cells then relocate versican with its highly charged glycosaminoglycan side chains into the discontinuities and by manipulation of their orientation and concentration, the JCT and perhaps the SCE cells regulate the amount of fluid passage. Testing this outflow resistance hypothesis is ongoing in our lab and has the potential to advance our understanding of IOP regulation and of glaucoma.
Collapse
Affiliation(s)
- Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kate E Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| |
Collapse
|
15
|
Patel PD, Chen YL, Kasetti RB, Maddineni P, Mayhew W, Millar JC, Ellis DZ, Sonkusare SK, Zode GS. Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma. Proc Natl Acad Sci U S A 2021; 118:e2022461118. [PMID: 33853948 PMCID: PMC8072326 DOI: 10.1073/pnas.2022461118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - William Mayhew
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Dorette Z Ellis
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107;
| |
Collapse
|
16
|
Kasetti RB, Maddineni P, Kiehlbauch C, Patil S, Searby CC, Levine B, Sheffield VC, Zode GS. Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin. JCI Insight 2021; 6:143359. [PMID: 33539326 PMCID: PMC8021112 DOI: 10.1172/jci.insight.143359] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation. However, it is not understood how chronic ER stress leads to TM dysfunction and loss. Here, we report that mutant myocilin activated autophagy but was functionally impaired in cultured human TM cells and in a mouse model of myocilin-associated POAG (Tg-MYOCY437H). Genetic and pharmacological inhibition of autophagy worsened mutant myocilin accumulation and exacerbated IOP elevation in Tg-MYOCY437H mice. Remarkably, impaired autophagy was associated with chronic ER stress-induced transcriptional factor CHOP. Deletion of CHOP corrected impaired autophagy, enhanced recognition and degradation of mutant myocilin by autophagy, and reduced glaucoma in Tg-MYOCY437H mice. Stimulating autophagic flux via tat-beclin 1 peptide or torin 2 promoted autophagic degradation of mutant myocilin and reduced elevated IOP in Tg-MYOCY437H mice. Our study provides an alternate treatment strategy for myocilin-associated POAG by correcting impaired autophagy in the TM.
Collapse
Affiliation(s)
- Ramesh B. Kasetti
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Shruti Patil
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Charles C. Searby
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine
- Howard Hughes Medical Institute, and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Val C. Sheffield
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gulab S. Zode
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| |
Collapse
|
17
|
Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC, Zode GS. ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun 2020; 11:5594. [PMID: 33154371 PMCID: PMC7644693 DOI: 10.1038/s41467-020-19352-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway.
Collapse
Affiliation(s)
- Ramesh B Kasetti
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Pinkal D Patel
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Shruti Patil
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA
| | - Charles C Searby
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences and the Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Val C Sheffield
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX, 76107, Fort Worth, USA.
| |
Collapse
|
18
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
19
|
Faralli JA, Filla MS, McDowell CM, Peters DM. Disruption of fibronectin fibrillogenesis affects intraocular pressure (IOP) in BALB/cJ mice. PLoS One 2020; 15:e0237932. [PMID: 32822410 PMCID: PMC7444551 DOI: 10.1371/journal.pone.0237932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Increased deposition of fibronectin fibrils containing EDA+fibronectin by TGFβ2 is thought to be involved in the reduction of aqueous humor outflow across the trabecular meshwork (TM) of the eye and the elevation in intraocular pressure (IOP) observed in primary open angle glaucoma (POAG). Using a fibronectin-binding peptide called FUD that can disrupt fibronectin fibrillogenesis, we examined if disrupting fibronectin fibrillogenesis would affect IOP in the TGFβ2 BALB/cJ mouse model of ocular hypertension. BALB/cJ mice that had been intravitreally injected with an adenovirus (Ad5) expressing a bioactive TGFβ2226/228 showed a significant increase in IOP after 2 weeks. When 1μM FUD was injected intracamerally into mice 2 weeks post Ad5-TGFβ2 injection, FUD significantly reduced IOP after 2 days. Neither mutated FUD (mFUD) nor PBS had any effect on IOP. Four days after FUD was injected, IOP returned to pre-FUD injection levels. In the absence of TGFβ2, intracameral injection of FUD had no effect on IOP. Western blotting of mouse anterior segments expressing TGFβ2 showed that FUD decreased fibronectin levels 2 days after intracameral injection (p<0.05) but not 7 days compared to eyes injected with PBS. mFUD injection had no significant effect on fibronectin levels at any time point. Immunofluorescence microscopy studies in human TM (HTM) cells showed that treatment with 2ng/ml TGFβ2 increased the amount of EDA+ and EDB+ fibronectin incorporated into fibrils and 2μM FUD decreased both EDA+ and EDB+ fibronectin in fibrils. An on-cell western assay validated this and showed that FUD caused a 67% reduction in deoxycholate insoluble fibronectin fibrils in the presence of TGFβ2. FUD also caused a 43% reduction in fibronectin fibrillogenesis in the absence of TGFβ2 while mFUD had no effect. These studies suggest that targeting the assembly of fibronectin fibrillogenesis may represent a way to control IOP.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark S. Filla
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kaufman PL. Deconstructing aqueous humor outflow - The last 50 years. Exp Eye Res 2020; 197:108105. [PMID: 32590004 PMCID: PMC7990028 DOI: 10.1016/j.exer.2020.108105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Herein partially summarizes one scientist-clinician's wanderings through the jungles of primate aqueous humor outflow over the past ~45 years. Totally removing the iris has no effect on outflow facility or its response to pilocarpine, whereas disinserting the ciliary muscle (CM) from the scleral spur/trabecular meshwork (TM) completely abolishes pilocarpine's effect. Epinephrine increases facility in CM disinserted eyes. Cytochalasins and latrunculins increase outflow facility, subthreshold doses of cytochalasins and epinephrine given together increase facility, and phalloidin, which has no effect on facility, partially blocks the effect of both cytochalasins and epinephrine. H-7, ML7, Y27632 and nitric oxide - donating compounds all increase facility, consistent with a mechanosensitive TM/SC. Adenosine A1 agonists increase and angiotensin II decrease facility. OCT and optical imaging techniques now permit visualization and digital recording of the distal outflow pathways in real time. Prostaglandin (PG) F2α analogues increase the synthesis and release of matrix metalloproteinases by the CM cells, causing remodeling and thinning of the interbundle extracellular matrix (ECM), thereby increasing uveoscleral outflow and reducing IOP. Combination molecules (one molecule, two or more effects) and fixed combination products (two molecules in one bottle) simplify drug regimens for patients. Gene and stem cell therapies to enhance aqueous outflow have been successful in laboratory models and may fill an unmet need in terms of patient compliance, taking the patient out of the delivery system. Functional transfer of genes inhibiting the rho cascade or decoupling actin from myosin increase facility, while genes preferentially expressed in the glaucomatous TM decrease facility. In live NHP, reporter genes are expressed for 2+ years in the TM after a single intracameral injection, with no adverse reaction. However, except for one recent report, injection of facility-effective genes in monkey organ cultured anterior segments (MOCAS) have no effect in live NHP. While intracameral injection of an FIV. BOVPGFS-myc.GFP PGF synthase vector construct reproducibly induces an ~2 mmHg reduction in IOP, the effect is much less than that of topical PGF2⍺ analogue eyedrops, and dissipates after 5 months. The turnoff mechanism has yet to be defeated, although proteasome inhibition enhances reporter gene expression in MOCAS. Intracanalicular injection might minimize off-target effects that activate turn-off mechanisms. An AD-P21 vector injected sub-tenon is effective in 'right-timing' wound healing after trabeculectomy in live laser-induced glaucomatous monkeys. In human (H)OCAS, depletion of TM cells by saponification eliminates the aqueous flow response to pressure elevation, which can be restored by either cultured TM cells or by IPSC-derived TM cells. There were many other steps along the way, but much was accomplished, biologically and therapeutically over the past half century of research and development focused on one very small but complex ocular apparatus. I am deeply grateful for this award, named for a giant in our field that none of us can live up to.
Collapse
Affiliation(s)
- Paul L Kaufman
- University of Wisconsin - Madison, School of Medicine & Public Health, Dept of Ophthalmology & Visual Sciences, United States.
| |
Collapse
|
21
|
Roberts AL, Mavlyutov TA, Perlmutter TE, Curry SM, Harris SL, Chauhan AK, McDowell CM. Fibronectin extra domain A (FN-EDA) elevates intraocular pressure through Toll-like receptor 4 signaling. Sci Rep 2020; 10:9815. [PMID: 32555351 PMCID: PMC7299944 DOI: 10.1038/s41598-020-66756-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage, which leads to impaired aqueous humor outflow. Here, we explore a novel molecular mechanism involved in glaucomatous TM damage. We investigated the role of an endogenous Toll-like receptor 4 (TLR4) ligand, fibronectin-EDA (FN-EDA), in TGFβ2-induced ocular hypertension in mice. We utilized transgenic mouse strains that either constitutively express only FN containing the EDA isoform or contain an EDA-null allele and express only FN lacking EDA, with or without a mutation in Tlr4, in our inducible mouse model of ocular hypertension by injection of Ad5.TGFβ2. IOP was measured over time and eyes accessed by immunohistochemistry for total FN and FN-EDA expression. Constitutively active EDA caused elevated IOP starting at 14 weeks of age. Ad5.TGFβ2 induced ocular hypertension in wildtype C57BL/6J mice and further amplified the IOP in constitutively active EDA mice. TLR4 null and EDA null mice blocked Ad5.TGFβ-induced ocular hypertension. Total FN and FN-EDA isoform expression increased in response to Ad5.TGFβ2. These data suggest that both TLR4 and FN-EDA contribute to TGFβ2 induced ocular hypertension.
Collapse
Affiliation(s)
- Amanda L Roberts
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Timur A Mavlyutov
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Tanisha E Perlmutter
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Stacy M Curry
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Sherri L Harris
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Anil K Chauhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Colleen M McDowell
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
22
|
Dey A, Manthey AL, Chiu K, Do CW. Methods to Induce Chronic Ocular Hypertension: Reliable Rodent Models as a Platform for Cell Transplantation and Other Therapies. Cell Transplant 2019; 27:213-229. [PMID: 29637819 PMCID: PMC5898687 DOI: 10.1177/0963689717724793] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel treatment options including neuroprotective and neuroregenerative approaches. Cell transplantation has the potential to play a neuroprotective and/or neuroregenerative role for various ocular cell types (e.g., retinal cells, trabecular meshwork). Notably, glaucoma is often associated with elevated intraocular pressure, and over the past 2 decades, several rodent models of chronic ocular hypertension (COH) have been developed that reflect these changes in pressure. However, the underlying pathophysiology of glaucoma in these models and how they compare to the human condition remains unclear. This limitation is the primary barrier for using rodent models to develop novel therapies to manage glaucoma and glaucoma-related blindness. Here, we review the current techniques used to induce COH-related glaucoma in various rodent models, focusing on the strengths and weaknesses of the each, in order to provide a more complete understanding of how these models can be best utilized. To so do, we have separated them based on the target tissue (pre-trabecular, trabecular, and post-trabecular) in order to provide the reader with an encompassing reference describing the most appropriate rodent COH models for their research. We begin with an initial overview of the current use of these models in the evaluation of cell transplantation therapies.
Collapse
Affiliation(s)
- Ashim Dey
- 1 School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Abby L Manthey
- 2 Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- 2 Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,3 Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.,4 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Wai Do
- 1 School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Raychaudhuri U, Millar JC, Clark AF. Knockout of tissue transglutaminase ameliorates TGFβ2-induced ocular hypertension: A novel therapeutic target for glaucoma? Exp Eye Res 2018. [DOI: 10.1016/j.exer.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Tehrani S, Delf RK, Cepurna WO, Davis L, Johnson EC, Morrison JC. In Vivo Small Molecule Delivery to the Optic Nerve in a Rodent Model. Sci Rep 2018. [PMID: 29535357 PMCID: PMC5849600 DOI: 10.1038/s41598-018-22737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small molecule delivery to the optic nerve would allow for exploration of molecular and cellular pathways involved in normal physiology and optic neuropathies such as glaucoma, and provide a tool for screening therapeutics in animal models. We report a novel surgical method for small molecule drug delivery to the optic nerve head (ONH) in a rodent model. In proof-of-principle experiments, we delivered cytochalasin D (Cyt D; a filamentous actin inhibitor) to the junction of the superior optic nerve and globe in rats to target the actin-rich astrocytic cytoskeleton of the ONH. Cyt D delivery was quantified by liquid chromatography and mass spectrometry of isolated optic nerve tissue. One day after Cyt D delivery, anterior ONH filamentous actin bundle content was significantly reduced as assessed by fluorescent-tagged phalloidin labeling, relative to sham delivery. Anterior ONH nuclear counts and axon-specific beta-3 tubulin levels, as well as peripapillary retinal ganglion cell layer nuclear counts were not significantly altered after Cyt D delivery relative to sham delivery. Lastly, the surgical delivery technique caused minimal observable axon degeneration up to 10 days post-surgery. This small molecule delivery technique provides a new approach to studying optic neuropathies in in vivo rodent models.
Collapse
Affiliation(s)
- Shandiz Tehrani
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| | - R Katherine Delf
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - William O Cepurna
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Lauren Davis
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Elaine C Johnson
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - John C Morrison
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Patel GC, Liu Y, Millar JC, Clark AF. Glucocorticoid receptor GRβ regulates glucocorticoid-induced ocular hypertension in mice. Sci Rep 2018; 8:862. [PMID: 29339763 PMCID: PMC5770444 DOI: 10.1038/s41598-018-19262-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/21/2017] [Indexed: 01/26/2023] Open
Abstract
Prolonged glucocorticoid (GC) therapy can cause GC-induced ocular hypertension (OHT), which if left untreated progresses to iatrogenic glaucoma and permanent vision loss. The alternatively spliced isoform of glucocorticoid receptor GRβ acts as dominant negative regulator of GR activity, and it has been shown that overexpressing GRβ in trabecular meshwork (TM) cells inhibits GC-induced glaucomatous damage in TM cells. The purpose of this study was to use viral vectors to selectively overexpress the GRβ isoform in the TM of mouse eyes treated with GCs, to precisely dissect the role of GRβ in regulating steroid responsiveness. We show that overexpression of GRβ inhibits GC effects on MTM cells in vitro and GC-induced OHT in mouse eyes in vivo. Ad5 mediated GRβ overexpression reduced the GC induction of fibronectin, collagen 1, and myocilin in TM of mouse eyes both in vitro and in vivo. GRβ also reversed DEX-Ac induced IOP elevation, which correlated with increased conventional aqueous humor outflow facility. Thus, GRβ overexpression reduces effects caused by GCs and makes cells more resistant to GC treatment. In conclusion, our current work provides the first evidence of the in vivo physiological role of GRβ in regulating GC-OHT and GC-mediated gene expression in the TM.
Collapse
Affiliation(s)
- Gaurang C Patel
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
26
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
27
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
28
|
Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, Clark AF, Sheffield VC. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci U S A 2017; 114:11199-11204. [PMID: 28973933 PMCID: PMC5651749 DOI: 10.1073/pnas.1706193114] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9-mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.
Collapse
Affiliation(s)
- Ankur Jain
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Gulab Zode
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107;
| | - Ramesh B Kasetti
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Fei A Ran
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Winston Yan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Tasneem P Sharma
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Kevin Bugge
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Charles C Searby
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John H Fingert
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Val C Sheffield
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242;
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
29
|
Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model. Exp Eye Res 2015; 145:173-186. [PMID: 26500195 DOI: 10.1016/j.exer.2015.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG). METHODS Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers. ONHs with peripapillary retina and sclera were embedded, serial sectioned, 3-D reconstructed, delineated, and quantified. Overall and animal-specific EG versus Control eye ONH parameter differences were assessed globally and regionally by linear mixed effect models with significance criteria adjusted for multiple comparisons. RESULTS Expansions of the optic nerve and surrounding anterior scleral canal opening achieved statistical significance overall (p < 0.0022), and in 7 of 8 EG eyes (p < 0.005). In at least 5 EG eyes, significant expansions (p < 0.005) in Bruch's membrane opening (BMO) (range 3-10%), the anterior and posterior scleral canal openings (8-21% and 5-21%, respectively), and the optic nerve at the anterior and posterior scleral canal openings (11-30% and 8-41%, respectively) were detected. Optic nerve expansion was greatest within the superior and inferior quadrants. Optic nerve expansion at the posterior scleral canal opening was significantly correlated to optic nerve damage (R = 0.768, p = 0.042). CONCLUSION In the rat ONH, the optic nerve and surrounding BMO and neurovascular scleral canal expand early in their response to chronic experimental IOP elevation. These findings provide phenotypic landmarks and imaging targets for detecting the development of experimental glaucomatous optic neuropathy in the rat eye.
Collapse
Affiliation(s)
- Marta Pazos
- Hospital de l'Esperança, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, USA
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, USA
| | - William O Cepurna
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Elaine C Johnson
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - John C Morrison
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, USA.
| |
Collapse
|
30
|
Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015; 141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.
Collapse
|