1
|
Song M, Zhu L, Zhang L, Ge X, Cao J, Teng Y, Tian R. Combination of Molecule-Targeted Therapy and Photodynamic Therapy Using Nanoformulated Verteporfin for Effective Uveal Melanoma Treatment. Mol Pharm 2024; 21:2340-2350. [PMID: 38546166 DOI: 10.1021/acs.molpharmaceut.3c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.
Collapse
Affiliation(s)
- Meijiao Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lei Zhu
- Department of Surgery and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Lumeng Zhang
- Department of Surgery and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jinfeng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yong Teng
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Rui Tian
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
2
|
Sun J, Peterson EA, Chen X, Wang J. hapln1a + cells guide coronary growth during heart morphogenesis and regeneration. Nat Commun 2023; 14:3505. [PMID: 37311876 PMCID: PMC10264374 DOI: 10.1038/s41467-023-39323-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Although several tissues and chemokines orchestrate coronary formation, the guidance cues for coronary growth remain unclear. Here, we profile the juvenile zebrafish epicardium during coronary vascularization and identify hapln1a+ cells enriched with vascular-regulating genes. hapln1a+ cells not only envelop vessels but also form linear structures ahead of coronary sprouts. Live-imaging demonstrates that coronary growth occurs along these pre-formed structures, with depletion of hapln1a+ cells blocking this growth. hapln1a+ cells also pre-lead coronary sprouts during regeneration and hapln1a+ cell loss inhibits revascularization. Further, we identify serpine1 expression in hapln1a+ cells adjacent to coronary sprouts, and serpine1 inhibition blocks vascularization and revascularization. Moreover, we observe the hapln1a substrate, hyaluronan, forming linear structures along and preceding coronary vessels. Depletion of hapln1a+ cells or serpine1 activity inhibition disrupts hyaluronan structure. Our studies reveal that hapln1a+ cells and serpine1 are required for coronary production by establishing a microenvironment to facilitate guided coronary growth.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Jiang Y, Glasstetter LM, Lerman A, Lerman LO. TSG-6 (Tumor Necrosis Factor-α-Stimulated Gene/Protein-6): An Emerging Remedy for Renal Inflammation. Hypertension 2023; 80:35-42. [PMID: 36367104 PMCID: PMC9742181 DOI: 10.1161/hypertensionaha.122.19431] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inflammatory response is a major pathological feature in most kidney diseases and often evokes compensatory mechanisms. Recent evidence suggests that TSG-6 (tumor necrosis factor-α-stimulated gene/protein-6) plays a pivotal role in anti-inflammation in various renal diseases, including immune-mediated and nonimmune-mediated renal diseases. TSG-6 has a diverse repertoire of anti-inflammatory functions: it potentiates antiplasmin activity of IαI (inter-α-inhibitor) by binding to its light chain, crosslinks hyaluronan to promote its binding to cell surface receptor CD44, and thereby regulate the migration and adhesion of lymphocytes, inhibits chemokine-stimulated transendothelial migration of neutrophils by directly interacting with the glycosaminoglycan binding site of CXCL8 (CXC motif chemokine ligand-8), and upregulates COX-2 (cyclooxygenase-2) to produce anti-inflammatory metabolites. Hopefully, further developments can target this anti-inflammatory molecule to the kidney and harness its remedial properties. This review provides an overview of the emerging role of TSG-6 in blunting renal inflammation.
Collapse
Affiliation(s)
- Yamei Jiang
- Division of Nephrology and Hypertension and, Mayo Clinic, Rochester, MN 55905, USA
| | - Logan M. Glasstetter
- Division of Nephrology and Hypertension and, Mayo Clinic, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Casey-Power S, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022; 14:pharmaceutics14071479. [PMID: 35890371 PMCID: PMC9323903 DOI: 10.3390/pharmaceutics14071479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Extensive research is currently being conducted into novel ocular drug delivery systems (ODDS) that are capable of surpassing the limitations associated with conventional intraocular anterior and posterior segment treatments. Nanoformulations, including those synthesised from the natural, hydrophilic glycosaminoglycan, hyaluronic acid (HA), have gained significant traction due to their enhanced intraocular permeation, longer retention times, high physiological stability, inherent biocompatibility, and biodegradability. However, conventional nanoformulation preparation methods often require large volumes of organic solvent, chemical cross-linkers, and surfactants, which can pose significant toxicity risks. We present a comprehensive, critical review of the use of HA in the field of ophthalmology and ocular drug delivery, with a discussion of the physicochemical and biological properties of HA that render it a suitable excipient for drug delivery to both the anterior and posterior segments of the eye. The pivotal focus of this review is a discussion of the formation of HA-based nanoparticles via polyelectrolyte complexation, a mild method of preparation driven primarily by electrostatic interaction between opposing polyelectrolytes. To the best of our knowledge, despite the growing number of publications centred around the development of HA-based polyelectrolyte complexes (HA-PECs) for ocular drug delivery, no review articles have been published in this area. This review aims to bridge the identified gap in the literature by (1) reviewing recent advances in the area of HA-PECs for anterior and posterior ODD, (2) describing the mechanism and thermodynamics of polyelectrolyte complexation, and (3) critically evaluating the intrinsic and extrinsic formulation parameters that must be considered when designing HA-PECs for ocular application.
Collapse
Affiliation(s)
- Saoirse Casey-Power
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
- Correspondence:
| | - Richie Ryan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA;
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| |
Collapse
|
5
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
6
|
Li H, Liu W, Sorenson CM, Sheibani N, Albert DM, Senanayake T, Vinogradov S, Henkin J, Zhang HF. Sustaining Intravitreal Residence With L-Arginine Peptide-Conjugated Nanocarriers. Invest Ophthalmol Vis Sci 2017; 58:5142-5150. [PMID: 28986592 PMCID: PMC5634351 DOI: 10.1167/iovs.17-22160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Intravitreal injection of antiangiogenic agents is becoming a standard treatment for neovascular retinal diseases. Sustained release of therapeutics by injecting colloidal carriers is a promising approach to reduce the injection frequency, which reduces treatment burdens and the risk of complications on patients. Such sustained release often requires carriers to have micrometer-scale dimension that, however, can potentially promote glaucoma and inflammation. Small, polycationic particles can be immobilized in vitreous through multiple cooperative ionic interactions with hyaluronic acid of the vitreous interior, but such particles are generally toxic. Here, we synthesized and examined a biocompatible dextran-based nanocarrier (<50 nm in diameter) conjugated with cationic peptides containing L-arginine with minimal toxicity, aiming to provide sustained release of therapeutic drugs in vitreous. Methods We synthesized the nanocarriers with condensed cholesteryl dextran (CDEX) as core material. Cationic peptides containing 1 to 4 arginine groups, along with fluorescence tags, were conjugated to the CDEX surface. We monitored the carrier diffusion rate ex vivo and half-lives in vivo in rodent vitreous using fluorescence imaging. We evaluated the toxicity by histological examinations at the second, third, eighth, and thirty-sixth week. Results The diffusion rate of nanocarriers was inversely related to zeta potential values in freshly isolated vitreous humor. We observed increased half-lives in vivo with increasing zeta potential (up to 240 days). Histological examinations confirmed no adverse effects on ocular morphology and organization. Conclusions We demonstrated the potential of L-arginine peptide-conjugated nanocarriers toward safe and sustained therapeutic release system for posterior eye diseases.
Collapse
Affiliation(s)
- Hao Li
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Wenzhong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Daniel M Albert
- Department of Ophthalmology, Casey Eye Institute, Oregon Health Sciences University, Portland, Oregon, United States
| | - Thulani Senanayake
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Serguei Vinogradov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, United States
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States.,Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|