1
|
Wu T, Ma Y, Yang Y, Zhang Z, Zhou J, Ju C, Zuo X, Wang X, Hu X, Wang Z. Photobiomodulation reduces spinal cord edema by decreasing the expression of AQP4 in the astrocytes of male spinal cord injury rats via the JAK2/STAT3 signaling pathway. Photodiagnosis Photodyn Ther 2024; 50:104364. [PMID: 39401645 DOI: 10.1016/j.pdpdt.2024.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Spinal cord swelling commonly occurs following SCI. Previous studies suggest that PBM may reduce inflammation and scar formation after SCI. However, whether PBM can alleviate post-spinal cord injury edema and its underlying mechanisms have not yet been reported. This study aims to investigate the effects of PBM on spinal cord swelling in rats following SCI and explore the underlying mechanisms. METHODS A rat model of SCI was established, and the rats received continuous PBM therapy for two weeks. Tissue hydration, motor function, AQP4 expression, and pathological changes in the spinal cord were evaluated at different time points. In vitro, astrocytes were subjected to PBM and treated with either cucurbitacin I or TGN020 following OGD. RESULTS The results indicate that PBM reduces tissue swelling in rats with SCI, improves motor function recovery, and inhibits the upregulation of AQP4 and GFAP associated with SCI. In vitro, PBM reduces abnormal activation of the JAK2/STAT3 signaling pathway in astrocytes, leading to decreased AQP4 synthesis and astrocyte activation. CONCLUSIONS These findings suggest that PBM reduces spinal cord swelling in rats after injury. This effect is associated with the inhibition of JAK2/STAT3 signaling pathway activation in astrocytes and the reduction in AQP4 expression.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Nie FY, Jin RY, Wu SS, Yuan W, Wu YW, Xue SM, Yang XH, Qiao HF. AQP4 is upregulated in schizophrenia and Its inhibition attenuates MK-801-induced schizophrenia-like behaviors in mice. Behav Brain Res 2024; 475:115220. [PMID: 39214422 DOI: 10.1016/j.bbr.2024.115220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The pathophysiology and molecular mechanisms of schizophrenia (SCZ) remain unclear, and the effective treatment resources are still limited. The goal of this study is to identify the expression of AQP4 in SCZ patients and explore whether AQP4 inhibition could ameliorate schizophrenia-like behaviors and its mechanisms. METHODS Microarray datasets of PFC compared with healthy control were searched in the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were analyzed with the GEO2R online tool. The Venny online tool and metascape online software were used to identify common abnormally expressed genes and conduct cell type signature enrichment analysis. SCZ mouse models were induced with MK-801, an NMDA receptor antagonist (intraperitoneal injection, 0.1 mg/kg/day for 7 days), and C6 cell models were treated with 100 μM MK-801. RT-qPCR, Western Blotting, and immunofluorescence were employed to determine the expression of AQP4, proinflammatory cytokines, and GFAP. Open field tests and social interaction tests were performed to evaluate the schizophrenia-like behaviors. RESULTS Bioinformatics analysis identified upregulation of AQP4 in the PFC of SCZ patients compared with healthy controls. Cell type signature enrichment analysis showed that all three DEGs lists were strongly enriched in the FAN EMBRYONIC CTX ASTROCYTE 2 category. Upregulation of AQP4 was also observed in MK-801-treated C6 cells and the PFC of MK-801-induced SCZ mouse model. Moreover, AQP4 inhibition with TGN-020 (an inhibitor of AQP4) improved anxiety-like behavior and social novelty preference defects in MK-801-treated mice. AQP4 inhibition also reduced the expression of IL-1β, IL-6, and TNF-α in MK-801-treated C6 cells and mouse model. CONCLUSIONS AQP4 is upregulated in the PFC of SCZ patients compared with healthy controls. AQP4 inhibition could alleviate the anxiety-like behavior and social novelty defects in MK-801-treated mice, this may be due to the role of AQP4 in the regulation of the expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Fa-Yi Nie
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ru-Yi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shan-Shan Wu
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wei Yuan
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu-Wei Wu
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Si-Meng Xue
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiao-Hang Yang
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Hai-Fa Qiao
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
3
|
Li Y, Nan D, Liu R, Li J, Zhang Z, Deng J, Zhang Y, Yan Z, Hou C, Yao E, Sun W, Wang Z, Huang Y. Aquaporin 4 Mediates the Effect of Iron Overload on Hydrocephalus After Intraventricular Hemorrhage. Neurocrit Care 2024; 40:225-236. [PMID: 37208490 PMCID: PMC10861395 DOI: 10.1007/s12028-023-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Iron overload plays an important role in hydrocephalus development following intraventricular hemorrhage (IVH). Aquaporin 4 (AQP4) participates in the balance of cerebrospinal fluid secretion and absorption. The current study investigated the role of AQP4 in the formation of hydrocephalus caused by iron overload after IVH. METHODS There were three parts to this study. First, Sprague-Dawley rats received an intraventricular injection of 100 µl autologous blood or saline control. Second, rats had IVH and were treated with deferoxamine (DFX), an iron chelator, or vehicle. Third, rats had IVH and were treated with 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a specific AQP4 inhibitor, or vehicle. Rats underwent T2-weighted and T2* gradient-echo magnetic resonance imaging to assess lateral ventricular volume and intraventricular iron deposition at 7, 14, and 28 days after intraventricular injection and were then euthanized. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence analyses were conducted on the rat brains to evaluate the expression of AQP4 at different time points. Hematoxylin and eosin-stained brain sections were obtained to assess the ventricular wall damage on day 28. RESULTS Intraventricular injection of autologous blood caused a significant ventricular dilatation, iron deposition, and ventricular wall damage. There was increased AQP4 mRNA and protein expression in the periventricular tissue in IVH rats through day 7 to day 28. The DFX treatment group had a lower lateral ventricular volume and less intraventricular iron deposition and ventricular wall damage than the vehicle-treated group after IVH. The expression of AQP4 protein in periventricular tissue was also inhibited by DFX on days 14 and 28 after IVH. The use of TGN-020 attenuated hydrocephalus development after IVH and inhibited the expression of AQP4 protein in the periventricular tissue between day 14 and day 28 without a significant effect on intraventricular iron deposition or ventricular wall damage. CONCLUSIONS AQP4 located in the periventricular area mediated the effect of iron overload on hydrocephalus after IVH.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jieyu Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhuangzhuang Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Chao Hou
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ensheng Yao
- Department of Neurology, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
4
|
Abstract
Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.
Collapse
Affiliation(s)
- Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology; Department of Radiology; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
5
|
Liu Y, Di G, Wang Y, Chong D, Cao X, Chen P. Aquaporin 5 Facilitates Corneal Epithelial Wound Healing and Nerve Regeneration by Reactivating Akt Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1974-1985. [PMID: 34390680 DOI: 10.1016/j.ajpath.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are normally expressed in the corneal epithelium. The aim of this study was to determine whether AQP5 played a role in corneal epithelial wound healing. AQP5 knockout (AQP5-/-) mice were constructed using CRISPR/Cas9 technology. A corneal wound healing model was performed using epithelial debridement on corneas. The time to corneal epithelial and nerve regeneration was significantly delayed in the AQP5-/- mice. Reduced Ki-67-positive cells and nerve growth factor (NGF) expression were confirmed in the AQP5-/- mice during healing. The epithelial and nerve regeneration rates were significantly promoted in the AQP5-/- mice by treatment with NGF, which was accompanied by recovered levels of phosphorylated Akt. NGF treatment also improved the recovery of corneal nerve fiber density and sensitivity in the AQP5-/- mice. However, the promotion of NGF induced corneal epithelial and nerve regeneration rates, and Akt reactivation was reversed by Akt inhibitor. The significant impairment of corneal wound healing in the AQP5-/- mice resulted from distinct defects in corneal epithelial cell proliferation and nerve regeneration. The results provided evidence for the involvement of aquaporin in cell proliferation and suggested that AQP5 induction could be a potential therapy for accelerating the resurfacing of corneal defects.
Collapse
Affiliation(s)
- Yaning Liu
- Department of Human Anatomy, Histology and Embryology, Qingdao University, Qingdao, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, Qingdao University, Qingdao, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yihui Wang
- Department of Human Anatomy, Histology and Embryology, Qingdao University, Qingdao, China
| | - Daochen Chong
- 971 Hospital of the Chinese People's Liberation Army Navy, Qingdao, China
| | - Xin Cao
- Department of Human Anatomy, Histology and Embryology, Qingdao University, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, Qingdao University, Qingdao, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Houattongkham S, Yamamoto E, Sithivong N, Inthaphatha S, Kariya T, Saw YM, Vongduangchanh A, Keosavanh O, Hamajima N. Etiologic agents of acute diarrhea in sentinel surveillance sites in Vientiane Capital, Lao People's Democratic Republic, 2012-2015. Eur J Clin Microbiol Infect Dis 2020; 39:1115-1122. [PMID: 31993879 DOI: 10.1007/s10096-020-03827-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/21/2020] [Indexed: 10/23/2022]
Abstract
This study aims to identify the pathogens of diarrhea in Vientiane Capital, Lao People's Democratic Republic (Lao PDR). The data of 2482 patients who visited eight health facilities due to diarrhea in 2012-2015 were retrospectively reviewed. Stool or rectal swabs collected from all patients were tested for bacteria. Children who were under 5 years old were additionally tested for rotavirus. Of 2482 cases, 1566 cases were under 5 years old, and at least one enteropathogen was detected in 475 cases (19.1%). Salmonella species was the most commonly detected bacterial pathogen. Enteropathogenic Escherichia coli (EPEC) and Salmonella species was the major pathogen in the dry season and the wet season, respectively. Eighty-seven patients tested positive for multiple bacteria. Rotavirus was detected in 291 children under 5 years old (32.4%), mostly from October to April. The major bacteria of coinfection with rotavirus were EPEC followed by Salmonella species. Salmonella species was the predominant bacterial pathogen of diarrhea of all ages, and rotavirus was the predominant pathogen among children under 5 years old. Further studies examining other types of pathogens for diarrhea and the introduction of a rotavirus vaccine for children are needed in Lao PDR.
Collapse
Affiliation(s)
- Souphatsone Houattongkham
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Epidemiology Section, Bacteriology Unit, National Center for Laboratory and Epidemiology, Km 3 Thadeau Road, Ban Thaphalarnxay, Sisathanack district, Vientiane Capital, Lao PDR
| | - Eiko Yamamoto
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Noikaseumsy Sithivong
- Laboratory Section, Bacteriology Unit, National Center for Laboratory and Epidemiology, Km 3 Thadeau Road, Ban Thaphalarnxay, Sisathanack district, Vientiane Capital, Lao PDR
| | - Souphalak Inthaphatha
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tetsuyoshi Kariya
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yu Mon Saw
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Arounnapha Vongduangchanh
- Laboratory Section, Bacteriology Unit, National Center for Laboratory and Epidemiology, Km 3 Thadeau Road, Ban Thaphalarnxay, Sisathanack district, Vientiane Capital, Lao PDR
| | - Onechanh Keosavanh
- Epidemiology Section, Bacteriology Unit, National Center for Laboratory and Epidemiology, Km 3 Thadeau Road, Ban Thaphalarnxay, Sisathanack district, Vientiane Capital, Lao PDR.,Laboratory Section, Bacteriology Unit, National Center for Laboratory and Epidemiology, Km 3 Thadeau Road, Ban Thaphalarnxay, Sisathanack district, Vientiane Capital, Lao PDR
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
7
|
Li J, Jia Z, Xu W, Guo W, Zhang M, Bi J, Cao Y, Fan Z, Li G. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Life Sci 2019; 222:148-157. [PMID: 30851336 DOI: 10.1016/j.lfs.2019.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS Identifying drugs that inhibit edema and glial scar formation and increase neuronal survival is crucial to improving outcomes after spinal cord injury (SCI). Here, we used 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a potent selective inhibitor of aquaporin 4 (AQP4), to investigate the effects of TGN-020 on SCI in Sprague-Dawley rats. MAIN METHODS We compressed the spinal cord at T10 using a sterile impounder (35 g, 5 min), to induce moderate injury. TGN-020 (100 mg/kg) or an equal volume of 10% dimethyl sulfoxide was then administered via intraperitoneal injection. Neurological function was evaluated using the Basso-Beattie-Bresnahan open-field locomotor scale 1, 3, 7, 14, 21, and 28 days after SCI. The degree of edema was assessed via determination of the precise spinal cord water content 3 days after SCI. Expression levels of AQP4, glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), and growth-associated protein-43 (GAP-43) were determined via western blotting and immunofluorescence staining 3 days after SCI and 4 weeks after SCI. Numbers of surviving neurons and glial scar sizes were determined using Nissl and hematoxylin-eosin staining, respectively. KEY FINDINGS Our results showed that TGN-020 promoted functional recovery at days 3, 7, 14, 21, and 28, as well as reduced the degree of edema and inhibited the expression of AQP4, GFAP, PCNA at days 3 after SCI. Furthermore, observations 4 weeks after SCI revealed that TGN-020 inhibited the glial scar formation and upregulated GAP-43 expression. SIGNIFICANCE TGN-020 can alleviate spinal cord edema, inhibit glial scar formation, and promote axonal regeneration, conferring beneficial effects on recovery in rats.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhiqiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Xu
- School of Nursing, Jinzhou Medical University, Jinzhou 121000, China
| | - Weidong Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Mingchao Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Bi
- Department of Neurobiology, Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
8
|
Huang ZR, Chen HY, Hu ZZ, Xie P, Liu QH. PTEN knockdown with the Y444F mutant AAV2 vector promotes axonal regeneration in the adult optic nerve. Neural Regen Res 2018; 13:135-144. [PMID: 29451218 PMCID: PMC5840979 DOI: 10.4103/1673-5374.224381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN) enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F) AAV2 vector to efficiently express a short hairpin RNA (shRNA) for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN) 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover, post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.
Collapse
Affiliation(s)
- Zheng-Ru Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Ophthalmology, the Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Hai-Ying Chen
- Department of Ophthalmology, The Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Zi-Zhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Zhao L, Li D, Liu N, Liu L, Zhang Z, Gao C, Kawano H, Zhou FY, Li HP. Correlation of TGN-020 with the analgesic effects via ERK pathway activation after chronic constriction injury. Mol Pain 2018; 14:1744806918796057. [PMID: 30152258 PMCID: PMC6113736 DOI: 10.1177/1744806918796057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular regulated protein kinase (ERK) pathway activation in astrocytes and neurons has been reported to be critical for neuropathic pain development after chronic constriction injury. TGN-020 was found to be the most potent aquaporin 4 inhibitor among the agents studied. The present study aimed to assess whether the inhibition of aquaporin 4 had an analgesic effect on neuropathic pain and whether the inhibition of astrocytic activation and ERK pathway was involved in the analgesic effect of TGN-020. We thus found that TGN-020 upregulated the threshold of thermal and mechanical allodynia, downregulated the expression of interleukin-1β, interleukin-6, and tumor necrosis factor-α, attenuated the astrocytic activation and suppressed the activation of mitogen-activated protein kinase pathways in the spinal dorsal horn and dorsal root ganglion. Additionally, TGN-020 suppressed ERK phosphorylation in astrocytes and neurons after injury. The findings suggested that the analgesic effects of TGN-020 in neuropathic pain were mediated mainly by the downregulation of chronic constriction injury-induced astrocytic activation and inflammation, which is via the inhibition of ERK pathway in the spinal dorsal horn and dorsal root ganglion.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
- Department of Orthopedic Surgery, Shenyang Fifth People’s
Hospital, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Nan Liu
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Lu Liu
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Chao Gao
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Hitoshi Kawano
- Department of Health and Dietetics, Faculty of Health and
Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Fang-Yuan Zhou
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| |
Collapse
|
10
|
Stankowska DL, Mueller BH, Oku H, Ikeda T, Dibas A. Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents. Curr Eye Res 2017; 43:84-95. [PMID: 29111855 DOI: 10.1080/02713683.2017.1383442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of the current study was to assess the potential involvement of acid-sensing ion channel 1 (ASIC1) in retinal ganglion cell (RGC) death and investigate the neuroprotective effects of inhibitors of ASICs in promoting RGC survival following optic nerve crush (ONC). RESULTS ASIC1 protein was significantly increased in optic nerve extracts at day 7 following ONC in rats. Activated calpain-1 increased at 2 and 7 days following ONC as evidenced by increased degradation of α-fodrin, known substrate of calpain. Glial fibrillary acidic protein levels increased significantly at 2 and 7 days post-injury. By contrast, glutamine synthetase increased at 2 days while decreased at 7 days. The inhibition of ASICs with amiloride and psalmotoxin-1 significantly increased RGC survival in rats following ONC (p < 0.05, one-way ANOVA). The mean number of surviving RGCs in rats (n = 6) treated with amiloride (100 µM) following ONC was 1477 ± 98 cells/mm2 compared with ONC (1126 ± 101 cells/mm2), where psalmotoxin-1 (1 μM) treated rats (n = 6) and subjected to ONC had 1441 ± 63 RGCs/mm2 compared with ONC (1065 ± 76 RGCs/mm2). Average number of RGCs in control rats (n = 12) was 2092 ± 46 cells/mm2. Blocking of ASICs also significantly increased RGC survival from ischemic-like insult from 473 ± 80 to 842 ± 49 RGCs/mm2 (for psalmotoxin-1) and from 628 ± 53 RGCs/mm2 to 890 ± 55 RGCs/mm2 (for amiloride) with p ≤ 0.05, using one-way ANOVA. Acidification (a known activator of ASIC1) increased intracellular Ca2+ ([Ca2+]i) in rat primary RGCs, which was statistically blocked by pretreatment with 100 nM psalmotoxin-1. CONCLUSIONS ASIC1 up-regulation-induced influx of extracellular calcium may be responsible for activation of calcium-sensitive calpain-1 in the retina. Calpain-1 induced degradation of α-fodrin and leads to morphological changes and eventually neuronal death. Therefore, blockers of ASIC1 can be used as potential therapeutics in the treatment of optic nerve degeneration. ABBREVIATIONS 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF); acid-sensing ion channels (ASICs); analysis of variance (ANOVA); bicinchoninic acid (BCA); brain-derived neurotrophic factor (BDNF); central nervous system (CNS); ciliary neurotrophic factor (CNTF); dimethyl sulfoxide (DMSO); endoplasmic reticulum (ER); ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA); ethylenediaminetetraacetic acid (EDTA); Food and Drug Administration (FDA); glial fibrillary acidic protein (GFAP); glutamine synthetase (GS); intraocular pressure (IOP); kilodalton (kDa); Krebs-Ringer Buffer (KRB); optic nerve crush (ONC); phosphate-buffered saline (PBS); plasma membrane (PM); polymerase chain reaction (PCR); retinal ganglion cell (RGC); RNA Binding Protein With Multiple Splicing (RBPMS); room temperature (RT); standard error of the mean (SEM).
Collapse
Affiliation(s)
- Dorota L Stankowska
- a North Texas Eye Research Institute , University of North Texas Health Science Center , Fort Worth
| | - Brett H Mueller
- a North Texas Eye Research Institute , University of North Texas Health Science Center , Fort Worth
| | - Hidehiro Oku
- b Department of Ophthalmology , Osaka Medical College , Takatsuki Osaka , Japan
| | - Tsunehiko Ikeda
- b Department of Ophthalmology , Osaka Medical College , Takatsuki Osaka , Japan
| | - Adnan Dibas
- a North Texas Eye Research Institute , University of North Texas Health Science Center , Fort Worth
| |
Collapse
|
11
|
Huang Z, Hu Z, Xie P, Liu Q. Tyrosine-mutated AAV2-mediated shRNA silencing of PTEN promotes axon regeneration of adult optic nerve. PLoS One 2017; 12:e0174096. [PMID: 28323869 PMCID: PMC5360277 DOI: 10.1371/journal.pone.0174096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/04/2017] [Indexed: 11/28/2022] Open
Abstract
Activating PI3K/AKT/mTOR signaling pathway via deleting phosphatase and tensin homolog (PTEN) has been confirmed to enhance intrinsic growth capacity of neurons to facilitate the axons regeneration of central nervous system after injury. Considering conditional gene deletion is currently not available in clinical practice, we exploited capsid residue tyrosine 444 to phenylalanine mutated single-stranded adeno-associated virus serotype 2 (AAV2) as a vector delivering short hairpin RNA to silence PTEN to promote retinal ganglion cells (RGCs) survival and axons regeneration in adult rat optic nerve axotomy paradigm. We found that mutant AAV2 displayed higher infection efficiency to RGCs and Müller cells by intravitreal injection, mediated PTEN suppression, resulted in much more RGCs survival and more robust axons regeneration compared with wild type AAV2, due to the different extent of the mTOR complex-1 activation and glutamate aspartate transporter (GLAST) regulation. These results suggest that high efficiency AAV2-mediated PTEN knockdown represents a practicable therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- ZhengRu Huang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Ophthalmology, the Second People´s Hospital of Changshu, Changshu, Jiangsu Province, China
| | - ZiZhong Hu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ping Xie
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - QingHuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
12
|
Amann B, Kleinwort KJH, Hirmer S, Sekundo W, Kremmer E, Hauck SM, Deeg CA. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species. Int J Mol Sci 2016; 17:ijms17071145. [PMID: 27438827 PMCID: PMC4964518 DOI: 10.3390/ijms17071145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/25/2016] [Accepted: 07/12/2016] [Indexed: 12/28/2022] Open
Abstract
Aquaporins (AQPs) are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11.
Collapse
Affiliation(s)
- Barbara Amann
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
| | - Kristina J H Kleinwort
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
| | - Sieglinde Hirmer
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
| | - Walter Sekundo
- Clinic for Ophthalmology, University Clinic Gießen und Marburg GmbH, Marburg, Baldingerstrasse, D-35033 Marburg, Germany.
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Marchioninistraße 25, D-81377 München, Germany.
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannstr. 1, D-80939 München, Germany.
| | - Cornelia A Deeg
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, D-80539 Munich, Germany.
- Experimental Ophthalmology, Philipps University of Marburg, Baldingerstrasse, D-35033 Marburg, Germany.
| |
Collapse
|