1
|
Schultz A, Albertos-Arranz H, Sáez XS, Morgan J, Darland DC, Gonzalez-Duarte A, Kaufmann H, Mendoza-Santiesteban CE, Cuenca N, Lefcort F. Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy. Glia 2024; 72:2268-2294. [PMID: 39228100 DOI: 10.1002/glia.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jamie Morgan
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Horacio Kaufmann
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Carlos E Mendoza-Santiesteban
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Carr BJ, Skitsko D, Kriese LM, Song J, Li Z, Ju MJ, Moritz OL. prominin-1-null Xenopus laevis develop subretinal drusenoid-like deposits, cone-rod dystrophy and RPE atrophy. J Cell Sci 2024; 137:jcs262298. [PMID: 39355864 PMCID: PMC11586525 DOI: 10.1242/jcs.262298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Prominin-1 (PROM1) variants are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years. We found that prom1-null-associated retinal degeneration in frogs was age-dependent and involved retinal pigment epithelium (RPE) dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurred, aging prom1-null frogs developed larger and increasing numbers of cellular debris deposits in the subretinal space and outer segment layer, which resembled subretinal drusenoid deposits (SDDs) in their location, histology and representation as seen by color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits included infiltration of pigment granules into the deposits, thinning of the RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null-mediated blindness that involves death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.
Collapse
Affiliation(s)
- Brittany J. Carr
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences, Edmonton, AB T6G 2E1, Canada
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Dominic Skitsko
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Vancouver, BC V5Z 0A6, Canada
| | - Linnea M. Kriese
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences, Edmonton, AB T6G 2E1, Canada
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Jun Song
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering, Vancouver, BC V6T 2B9, Canada
| | - Zixuan Li
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences, Edmonton, AB T6G 2E1, Canada
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Myeong Jin Ju
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Vancouver, BC V5Z 0A6, Canada
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering, Vancouver, BC V6T 2B9, Canada
| | - Orson L. Moritz
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Vancouver, BC V5Z 0A6, Canada
| |
Collapse
|
3
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
4
|
Zheng Z, Own CS, Wanner AA, Koene RA, Hammerschmith EW, Silversmith WM, Kemnitz N, Lu R, Tank DW, Seung HS. Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy. Nat Commun 2024; 15:6860. [PMID: 39127683 PMCID: PMC11316758 DOI: 10.1038/s41467-024-50846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Serial section transmission electron microscopy (TEM) has proven to be one of the leading methods for millimeter-scale 3D imaging of brain tissues at nanoscale resolution. It is important to further improve imaging efficiency to acquire larger and more brain volumes. We report here a threefold increase in the speed of TEM by using a beam deflecting mechanism to enable highly efficient acquisition of multiple image tiles (nine) for each motion of the mechanical stage. For millimeter-scale areas, the duty cycle of imaging doubles to more than 30%, yielding a net average imaging rate of 0.3 gigapixels per second. If fully utilized, an array of four beam deflection TEMs should be capable of imaging a dataset of cubic millimeter scale in five weeks.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. High-throughput ultrastructural analysis of macular telangiectasia type 2. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1428777. [PMID: 39140090 PMCID: PMC11319912 DOI: 10.3389/fopht.2024.1428777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Introduction Macular Telangiectasia type 2 (MacTel), is an uncommon form of late-onset, slowly-progressive macular degeneration. Associated with regional Müller glial cell loss in the retina and the amino acid serine synthesized by Müller cells, the disease is functionally confined to a central retinal region - the MacTel zone. Methods We have used high-throughput multi-resolution electron microscopy techniques, optimized for disease analysis, to study the retinas from two women, mother and daughter, aged 79 and 48 years respectively, suffering from MacTel. Results In both eyes, the principal observations made were changes specific to mitochondrial structure both outside and within the MacTel zone in all retinal cell types, with the exception of those in the retinal pigment epithelium (RPE). The lesion areas, which are a hallmark of MacTel, extend from Bruch's membrane and the choriocapillaris, through all depths of the retina, and include cells from the RPE, retinal vascular elements, and extensive hypertrophic basement membrane material. Where the Müller glial cells are lost, we have identified a significant population of microglial cells, exclusively within the Henle fiber layer, which appear to ensheathe the Henle fibers, similar to that seen normally by Müller cells. Discussion Since Müller cells synthesize retinal serine, whereas retinal neurons do not, we propose that serine deficiency, required for normal mitochondrial function, may relate to mitochondrial changes that underlie the development of MacTel. With mitochondrial changes occurring retina-wide, the question remains as to why the Müller cells are uniquely susceptible within the MacTel zone.
Collapse
Affiliation(s)
- Charles L. Zucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - John E. Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Moceri I, Meehan S, Gonzalez E, Park KK, Hackam A, Lee RK, Bhattacharya S. Concept of Normativity in Multi-Omics Analysis of Axon Regeneration. Biomolecules 2024; 14:735. [PMID: 39062450 PMCID: PMC11274927 DOI: 10.3390/biom14070735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Transcriptomes and proteomes can be normalized with a handful of RNAs or proteins (or their peptides), such as GAPDH, β-actin, RPBMS, and/or GAP43. Even with hundreds of standards, normalization cannot be achieved across different molecular mass ranges for small molecules, such as lipids and metabolites, due to the non-linearity of mass by charge ratio for even the smallest part of the spectrum. We define the amount (or range of amounts) of metabolites and/or lipids per a defined amount of a protein, consistently identified in all samples of a multiple-model organism comparison, as the normative level of that metabolite or lipid. The defined protein amount (or range) is a normalized value for one cohort of complete samples for which intrasample relative protein quantification is available. For example, the amount of citrate (a metabolite) per µg of aconitate hydratase (normalized protein amount) identified in the proteome is the normative level of citrate with aconitase. We define normativity as the amount of metabolites (or amount range) detected when compared to normalized protein levels. We use axon regeneration as an example to illustrate the need for advanced approaches to the normalization of proteins. Comparison across different pharmacologically induced axon regeneration mouse models entails the comparison of axon regeneration, studied at different time points in several models designed using different agents. For the normalization of the proteins across different pharmacologically induced models, we perform peptide doping (fixed amounts of known peptides) in each sample to normalize the proteome across the samples. We develop Regen V peptides, divided into Regen III (SEB, LLO, CFP) and II (HH4B, A1315), for pre- and post-extraction comparisons, performed with the addition of defined, digested peptides (bovine serum albumin tryptic digest) for protein abundance normalization beyond commercial labeled relative quantification (for example, 18-plex tandem mass tags). We also illustrate the concept of normativity by using this normalization technique on regenerative metabolome/lipidome profiles. As normalized protein amounts are different in different biological states (control versus axon regeneration), normative metabolite or lipid amounts are expected to be different for specific biological states. These concepts and standardization approaches are important for the integration of different datasets across different models of axon regeneration.
Collapse
Affiliation(s)
- Isabella Moceri
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Sean Meehan
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
- Graduate Program in Molecular Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Emily Gonzalez
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Kevin K. Park
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Abigail Hackam
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Richard K. Lee
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Sanjoy Bhattacharya
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
- Graduate Program in Molecular Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Carr BJ, Skitsko D, Song J, Li Z, Ju MJ, Moritz OL. Prominin-1 null Xenopus laevis develop subretinal drusenoid-like deposits, cone-rod dystrophy, and RPE atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597229. [PMID: 38895468 PMCID: PMC11185615 DOI: 10.1101/2024.06.03.597229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in the PROMININ-1 (PROM1) gene are associated with inherited, non-syndromic vision loss. Here, we used CRISPR/Cas9 to induce truncating prom1-null mutations in Xenopus laevis to create a disease model. We then tracked progression of retinal degeneration in these animals from the ages of 6 weeks to 3 years old. We found that retinal degeneration caused by prom1-null is age-dependent and likely involves death or damage to the retinal pigment epithelium (RPE) that precedes photoreceptor degeneration. As prom1-null frogs age, they develop large cellular debris deposits in the subretinal space and outer segment layer which resemble subretinal drusenoid deposits (SDD) in their location, histology, and representation in color fundus photography and optical coherence tomography (OCT). In older frogs, these SDD-like deposits accumulate in size and number, and they are present before retinal degeneration occurs. Evidence for an RPE origin of these deposits includes infiltration of pigment granules into the deposits, thinning of RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null mediated blindness of death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.
Collapse
Affiliation(s)
- Brittany J Carr
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences
| | - Dominic Skitsko
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences
| | - Jun Song
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering
| | - Zixuan Li
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences
| | - Myeong Jin Ju
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering
| | - Orson L Moritz
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences
| |
Collapse
|
9
|
Li X, Sedlacek M, Nath A, Szatko KP, Grimes WN, Diamond JS. A metabotropic glutamate receptor agonist enhances visual signal fidelity in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591881. [PMID: 38746092 PMCID: PMC11092665 DOI: 10.1101/2024.04.30.591881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Many inherited retinal diseases target photoreceptors, which transduce light into a neural signal that is processed by the downstream visual system. As photoreceptors degenerate, physiological and morphological changes to retinal synapses and circuitry reduce sensitivity and increase noise, degrading visual signal fidelity. Here, we pharmacologically targeted the first synapse in the retina in an effort to reduce circuit noise without sacrificing visual sensitivity. We tested a strategy to partially replace the neurotransmitter lost when photoreceptors die with an agonist of receptors that ON bipolars cells use to detect glutamate released from photoreceptors. In rd10 mice, which express a photoreceptor mutation that causes retinitis pigmentosa (RP), we found that a low dose of the mGluR6 agonist l-2-amino-4-phosphonobutyric acid (L-AP4) reduced pathological noise induced by photoreceptor degeneration. After making in vivo electroretinogram recordings in rd10 mice to characterize the developmental time course of visual signal degeneration, we examined effects of L-AP4 on sensitivity and circuit noise by recording in vitro light-evoked responses from individual retinal ganglion cells (RGCs). L-AP4 decreased circuit noise evident in RGC recordings without significantly reducing response amplitudes, an effect that persisted over the entire time course of rod photoreceptor degeneration. Subsequent in vitro recordings from rod bipolar cells (RBCs) showed that RBCs are more depolarized in rd10 retinas, likely contributing to downstream circuit noise and reduced synaptic gain, both of which appear to be ameliorated by hyperpolarizing RBCs with L-AP4. These beneficial effects may reduce pathological circuit remodeling and preserve the efficacy of therapies designed to restore vision.
Collapse
Affiliation(s)
- Xiaoyi Li
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA 21218
| | - Miloslav Sedlacek
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Klaudia P. Szatko
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - William N. Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
10
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
11
|
Stürmer S, Bolz S, Zrenner E, Ueffing M, Haq W. Sustained Extracellular Electrical Stimulation Modulates the Permeability of Gap Junctions in rd1 Mouse Retina with Photoreceptor Degeneration. Int J Mol Sci 2024; 25:1616. [PMID: 38338908 PMCID: PMC10855676 DOI: 10.3390/ijms25031616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurons build vast gap junction-coupled networks (GJ-nets) that are permeable to ions or small molecules, enabling lateral signaling. Herein, we investigate (1) the effect of blinding diseases on GJ-nets in mouse retinas and (2) the impact of electrical stimulation on GJ permeability. GJ permeability was traced in the acute retinal explants of blind retinal degeneration 1 (rd1) mice using the GJ tracer neurobiotin. The tracer was introduced via the edge cut method into the GJ-net, and its spread was visualized in histological preparations (fluorescent tagged) using microscopy. Sustained stimulation was applied to modulate GJ permeability using a single large electrode. Our findings are: (1) The blind rd1 retinas displayed extensive intercellular coupling via open GJs. Three GJ-nets were identified: horizontal, amacrine, and ganglion cell networks. (2) Sustained stimulation significantly diminished the tracer spread through the GJs in all the cell layers, as occurs with pharmaceutical inhibition with carbenoxolone. We concluded that the GJ-nets of rd1 retinas remain coupled and functional after blinding disease and that their permeability is regulatable by sustained stimulation. These findings are essential for understanding molecular signaling in diseases over coupled networks and therapeutic approaches using electrical implants, such as eliciting visual sensations or suppressing cortical seizures.
Collapse
Affiliation(s)
| | | | | | | | - Wadood Haq
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
12
|
Santhanam A, Shihabeddin E, Wei H, Wu J, O'Brien J. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa. Cell Mol Life Sci 2023; 80:362. [PMID: 37979052 PMCID: PMC10657301 DOI: 10.1007/s00018-023-05021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eyad Shihabeddin
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiaqian Wu
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Kerschensteiner D. Losing, preserving, and restoring vision from neurodegeneration in the eye. Curr Biol 2023; 33:R1019-R1036. [PMID: 37816323 PMCID: PMC10575673 DOI: 10.1016/j.cub.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The retina is a part of the brain that sits at the back of the eye, looking out onto the world. The first neurons of the retina are the rod and cone photoreceptors, which convert changes in photon flux into electrical signals that are the basis of vision. Rods and cones are frequent targets of heritable neurodegenerative diseases that cause visual impairment, including blindness, in millions of people worldwide. This review summarizes the diverse genetic causes of inherited retinal degenerations (IRDs) and their convergence onto common pathogenic mechanisms of vision loss. Currently, there are few effective treatments for IRDs, but recent advances in disparate areas of biology and technology (e.g., genome editing, viral engineering, 3D organoids, optogenetics, semiconductor arrays) discussed here enable promising efforts to preserve and restore vision in IRD patients with implications for neurodegeneration in less approachable brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Pérez-Garza J, Parrish-Mulliken E, Deane Z, Ostroff LE. Rehydration of Freeze Substituted Brain Tissue for Pre-embedding Immunoelectron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1694-1704. [PMID: 37584524 PMCID: PMC10541149 DOI: 10.1093/micmic/ozad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Electron microscopy (EM) volume reconstruction is a powerful tool for investigating the fundamental structure of brain circuits, but the full potential of this technique is limited by the difficulty of integrating molecular information. High quality ultrastructural preservation is necessary for EM reconstruction, and intact, highly contrasted cell membranes are essential for following small neuronal processes through serial sections. Unfortunately, the antibody labeling methods used to identify most endogenous molecules result in compromised morphology, especially of membranes. Cryofixation can produce superior morphological preservation and has the additional advantage of allowing indefinite storage of valuable samples. We have developed a method based on cryofixation that allows sensitive immunolabeling of endogenous molecules, preserves excellent ultrastructure, and is compatible with high-contrast staining for serial EM reconstruction.
Collapse
Affiliation(s)
- Janeth Pérez-Garza
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd. Unit 3156, Storrs, CT 06269-3156, USA
| | - Emily Parrish-Mulliken
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd. Unit 3156, Storrs, CT 06269-3156, USA
| | - Zachary Deane
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd. Unit 3156, Storrs, CT 06269-3156, USA
| | - Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd. Unit 3156, Storrs, CT 06269-3156, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Rd. Unit 1272, Storrs, CT 06269-1272, USA
- Institute of Materials Science, University of Connecticut, 25 King Hill Rd. Unit 3136, Storrs, CT 06269-3136, USA
| |
Collapse
|
15
|
Pedigo BD, Powell M, Bridgeford EW, Winding M, Priebe CE, Vogelstein JT. Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectome. eLife 2023; 12:e83739. [PMID: 36976249 PMCID: PMC10115445 DOI: 10.7554/elife.83739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of 'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.
Collapse
Affiliation(s)
- Benjamin D Pedigo
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Mike Powell
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Eric W Bridgeford
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael Winding
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Carey E Priebe
- Department of Applied Mathematics and Statistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
16
|
Scalabrino ML, Field GD. Neuroscience: Visual restoration with optogenetics. Curr Biol 2023; 33:R110-R112. [PMID: 36750022 DOI: 10.1016/j.cub.2022.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Treating photoreceptor degenerative diseases is an exciting application of optogenetic technologies. However, there are significant challenges, such as producing normal visual signaling as the retina rewires in response to photoreceptor death. However, a new study shows remarkable functional stability in retinal circuits that can be engaged by optogenetics following photoreceptor loss.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Yu WQ, Swanstrom R, Sigulinsky CL, Ahlquist RM, Knecht S, Jones BW, Berson DM, Wong RO. Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. Cell Rep 2023; 42:112006. [PMID: 36680773 PMCID: PMC9946794 DOI: 10.1016/j.celrep.2023.112006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rachael Swanstrom
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,The authors contributed equally
| | - Crystal L. Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA,The authors contributed equally
| | - Richard M. Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195 WA, USA,The authors contributed equally
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,Lead contact,Correspondence:
| |
Collapse
|
18
|
Microglia in Cultured Porcine Retina: Qualitative Immunohistochemical Analyses of Reactive Microglia in the Outer Retina. Int J Mol Sci 2023; 24:ijms24010871. [PMID: 36614320 PMCID: PMC9820911 DOI: 10.3390/ijms24010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
A late stage of several retinal disorders is retinal detachment, a complication that results in rapid photoreceptor degeneration and synaptic damages. Experimental retinal detachment in vivo is an invasive and complicated method performed on anesthetized animals. As retinal detachment may result in visual impairment and blindness, research is of fundamental importance for understanding degenerative processes. Both morphological and ethical issues make the porcine retina a favorable organotypic model for studies of the degenerative processes that follow retinal detachment. In the cultured retina, photoreceptor degeneration and synaptic injuries develop rapidly and correlate with resident microglial cells' transition into a reactive phenotype. In this immunohistochemical study, we have begun to analyze the transition of subsets of reactive microglia which are known to localize close to the outer plexiform layer (OPL) in degenerating in vivo and in vitro retina. Biomarkers for reactive microglia included P2Ry12, CD63 and CD68 and the general microglial markers were CD11b, Iba1 and isolectin B4 (IB4). The reactive microglia markers labeled microglia subpopulations, suggesting that protective or harmful reactive microglia may be present simultaneously in the injured retina. Our findings support the usage of porcine retina cultures for studies of photoreceptor injuries related to retinal detachment.
Collapse
|
19
|
Pfeiffer RL, Jones BW. Retinal Pathoconnectomics: A Window into Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:297-301. [PMID: 37440048 PMCID: PMC11342915 DOI: 10.1007/978-3-031-27681-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Over the past decade, the field of retinal connectomics has made huge strides in describing the precise topologies underlying retinal visual processing. The same techniques that allowed these advancements are also applicable to understanding the progression of rewiring in retinal remodeling: retinal pathoconnectomics. Pathoconnectomics is unique in its unbiased approach to understanding the impacts of deafferentation on the remaining network components and identifying aberrant connectivities leading to visual processing defects. Pathoconnectomics also paves the way for identifying underlying rules of rewiring that may be recapitulated throughout the nervous system in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA.
| | - Bryan W Jones
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
21
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
22
|
Martínez-Gil N, Maneu V, Kutsyr O, Fernández-Sánchez L, Sánchez-Sáez X, Sánchez-Castillo C, Campello L, Lax P, Pinilla I, Cuenca N. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration. Front Neuroanat 2022; 16:984052. [PMID: 36225228 PMCID: PMC9548552 DOI: 10.3389/fnana.2022.984052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.
Collapse
Affiliation(s)
- Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Isabel Pinilla
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, Spain
- Isabel Pinilla,
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- *Correspondence: Nicolás Cuenca,
| |
Collapse
|
23
|
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, Pape C, Parton RG, Schieber NL, Schwab Y, Titze B, Verkade P, Aubrey A, Collinson LM. Volume electron microscopy. NATURE REVIEWS. METHODS PRIMERS 2022; 2:51. [PMID: 37409324 PMCID: PMC7614724 DOI: 10.1038/s43586-022-00131-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 07/07/2023]
Abstract
Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.
Collapse
Affiliation(s)
- Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kimberly Meechan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Present address: Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Constantin Pape
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Yannick Schwab
- Cell Biology and Biophysics Unit/ Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Aubrey Aubrey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| |
Collapse
|
24
|
Francia S, Shmal D, Di Marco S, Chiaravalli G, Maya-Vetencourt JF, Mantero G, Michetti C, Cupini S, Manfredi G, DiFrancesco ML, Rocchi A, Perotto S, Attanasio M, Sacco R, Bisti S, Mete M, Pertile G, Lanzani G, Colombo E, Benfenati F. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat Commun 2022; 13:3677. [PMID: 35760799 PMCID: PMC9237035 DOI: 10.1038/s41467-022-31368-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
Retinal dystrophies such as Retinitis pigmentosa are among the most prevalent causes of inherited legal blindness, for which treatments are in demand. Retinal prostheses have been developed to stimulate the inner retinal network that, initially spared by degeneration, deteriorates in the late stages of the disease. We recently reported that conjugated polymer nanoparticles persistently rescue visual activities after a single subretinal injection in the Royal College of Surgeons rat model of Retinitis pigmentosa. Here we demonstrate that conjugated polymer nanoparticles can reinstate physiological signals at the cortical level and visually driven activities when microinjected in 10-months-old Royal College of Surgeons rats bearing fully light-insensitive retinas. The extent of visual restoration positively correlates with the nanoparticle density and hybrid contacts with second-order retinal neurons. The results establish the functional role of organic photovoltaic nanoparticles in restoring visual activities in fully degenerate retinas with intense inner retina rewiring, a stage of the disease in which patients are subjected to prosthetic interventions. Retinal dystrophies such as Retinitis pigmentosa are among the most prevalent causes of inherited incurable legal blindness. Here the authors demonstrate that conjugated polymer nanoparticles reinstate visual functions in aged rats with fully degenerated and rewired retinas.
Collapse
Affiliation(s)
- S Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - D Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - S Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - G Chiaravalli
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - J F Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - G Mantero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - C Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - S Cupini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - G Manfredi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy.,Novavido s.r.l., Bologna, Italy
| | - M L DiFrancesco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - A Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - S Perotto
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - M Attanasio
- Department of Ophthalmology, IRCCS Sacrocuore Don Calabria Hospital, Negrar, Verona, Italy
| | - R Sacco
- Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - S Bisti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - M Mete
- Department of Ophthalmology, IRCCS Sacrocuore Don Calabria Hospital, Negrar, Verona, Italy
| | - G Pertile
- Department of Ophthalmology, IRCCS Sacrocuore Don Calabria Hospital, Negrar, Verona, Italy
| | - G Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy. .,Department of Physics, Politecnico di Milano, Milan, Italy.
| | - E Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - F Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy. .,IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
25
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
26
|
Kajtna J, Tsang SH, Koch SF. Late-stage rescue of visually guided behavior in the context of a significantly remodeled retinitis pigmentosa mouse model. Cell Mol Life Sci 2022; 79:148. [PMID: 35195763 PMCID: PMC8866266 DOI: 10.1007/s00018-022-04161-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Patients with progressive neurodegenerative disorder retinitis pigmentosa (RP) are diagnosed in the midst of ongoing retinal degeneration and remodeling. Here, we used a Pde6b-deficient RP gene therapy mouse model to test whether treatment at late disease stages can halt photoreceptor degeneration and degradative remodeling, while sustaining constructive remodeling and restoring function. We demonstrated that when fewer than 13% of rods remain, our genetic rescue halts photoreceptor degeneration, electroretinography (ERG) functional decline and inner retinal remodeling. In addition, in a water maze test, the performance of mice treated at 16 weeks of age or earlier was indistinguishable from wild type. In contrast, no efficacy was apparent in mice treated at 24 weeks of age, suggesting the photoreceptors had reached a point of no return. Further, remodeling in the retinal pigment epithelium (RPE) and retinal vasculature was not halted at 16 or 24 weeks of age, although there appeared to be some slowing of blood vessel degradation. These data suggest a novel working model in which restoration of clinically significant visual function requires only modest threshold numbers of resilient photoreceptors, halting of destructive remodeling and sustained constructive remodeling. These novel findings define the potential and limitations of RP treatment and suggest possible nonphotoreceptor targets for gene therapy optimization.
Collapse
Affiliation(s)
- Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Planegg/Martinsried, Germany
| | - Stephen H Tsang
- Jonas Children's Vision Care, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
- Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Planegg/Martinsried, Germany.
| |
Collapse
|
27
|
Paknahad J, Kosta P, Bouteiller JMC, Humayun MS, Lazzi G. Mechanisms underlying activation of retinal bipolar cells through targeted electrical stimulation: a computational study. J Neural Eng 2021; 18. [PMID: 34826830 DOI: 10.1088/1741-2552/ac3dd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
Objective. Retinal implants have been developed to electrically stimulate healthy retinal neurons in the progressively degenerated retina. Several stimulation approaches have been proposed to improve the visual percept induced in patients with retinal prostheses. We introduce a computational model capable of simulating the effects of electrical stimulation on retinal neurons. Leveraging this computational platform, we delve into the underlying mechanisms influencing the sensitivity of retinal neurons' response to various stimulus waveforms.Approach. We implemented a model of spiking bipolar cells (BCs) in the magnocellular pathway of the primate retina, diffuse BC subtypes (DB4), and utilized our multiscale admittance method (AM)-NEURON computational platform to characterize the response of BCs to epiretinal electrical stimulation with monophasic, symmetric, and asymmetric biphasic pulses.Main results. Our investigations yielded four notable results: (a) the latency of BCs increases as stimulation pulse duration lengthens; conversely, this latency decreases as the current amplitude increases. (b) Stimulation with a long anodic-first symmetric biphasic pulse (duration > 8 ms) results in a significant decrease in spiking threshold compared to stimulation with similar cathodic-first pulses (from 98.2 to 57.5µA). (c) The hyperpolarization-activated cyclic nucleotide-gated channel was a prominent contributor to the reduced threshold of BCs in response to long anodic-first stimulus pulses. (d) Finally, extending the study to asymmetric waveforms, our results predict a lower BCs threshold using asymmetric long anodic-first pulses compared to that of asymmetric short cathodic-first stimulation.Significance. This study predicts the effects of several stimulation parameters on spiking BCs response to electrical stimulation. Of importance, our findings shed light on mechanisms underlying the experimental observations from the literature, thus highlighting the capability of the methodology to predict and guide the development of electrical stimulation protocols to generate a desired biological response, thereby constituting an ideal testbed for the development of electroceutical devices.
Collapse
Affiliation(s)
- Javad Paknahad
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America.,Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Pragya Kosta
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America.,Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States of America
| | - Gianluca Lazzi
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America.,Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America.,Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
28
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
29
|
Carrick FR, Azzolino SF, Hunfalvay M, Pagnacco G, Oggero E, D’Arcy RCN, Abdulrahman M, Sugaya K. The Pupillary Light Reflex as a Biomarker of Concussion. Life (Basel) 2021; 11:life11101104. [PMID: 34685475 PMCID: PMC8537991 DOI: 10.3390/life11101104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
The size of our pupils changes continuously in response to variations in ambient light levels, a process known as the pupillary light reflex (PLR). The PLR is not a simple reflex as its function is modulated by cognitive brain function and any long-term changes in brain function secondary to injury should cause a change in the parameters of the PLR. We performed a retrospective clinical review of the PLR of our patients using the BrightLamp Reflex iPhone app. The PLR variables of latency, maximum pupil diameter (MaxPD), minimum pupil diameter (MinPD), maximum constriction velocity (MCV), and the 75% recovery time (75% PRT) were associated with significant differences between subjects who had suffered a concussion and those that had not. There were also significant differences in PLR metrics over the life span and between genders and those subjects with and without symptoms. The differences in PLR metrics are modulated not only by concussion history but also by gender and whether or not the person has symptoms associated with a head injury. A concussive injury to the brain is associated with changes in the PLR that persist over the life span, representing biomarkers that might be used in clinical diagnosis, treatment, and decision making.
Collapse
Affiliation(s)
- Frederick Robert Carrick
- College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
- MGH Institute for Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge CB2 1TN, UK
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Correspondence:
| | - Sergio F. Azzolino
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
| | - Melissa Hunfalvay
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
| | - Guido Pagnacco
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Elena Oggero
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Ryan C. N. D’Arcy
- BrainNET, Health and Technology District, Vancouver, BC V3V 0C6, Canada;
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC V3V 0C6, Canada
- DM Centre for Brain Health, Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahera Abdulrahman
- Health Informatics and Smart Health Department, Health Regulation Sector, Dubai Health Authority, Dubai 7272, United Arab Emirates;
| | - Kiminobu Sugaya
- College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
30
|
Kosta P, Iseri E, Loizos K, Paknahad J, Pfeiffer RL, Sigulinsky CL, Anderson JR, Jones BW, Lazzi G. Model-based comparison of current flow in rod bipolar cells of healthy and early-stage degenerated retina. Exp Eye Res 2021; 207:108554. [PMID: 33794197 DOI: 10.1016/j.exer.2021.108554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022]
Abstract
Retinal degenerative diseases, such as retinitis pigmentosa, are generally thought to initiate with the loss of photoreceptors, though recent work suggests that plasticity and remodeling occurs prior to photoreceptor cell loss. This degeneration subsequently leads to death of other retinal neurons, creating functional alterations and extensive remodeling of retinal networks. Retinal prosthetic devices stimulate the surviving retinal cells by applying external current using implanted electrodes. Although these devices restore partial vision, the quality of restored vision is limited. Further knowledge about the precise changes in degenerated retina as the disease progresses is essential to understand how current flows in retinas undergoing degenerative disease and to improve the performance of retinal prostheses. We developed computational models that describe current flow from rod photoreceptors to rod bipolar cells (RodBCs) in the healthy and early-stage degenerated retina. Morphologically accurate models of retinal cells with their synapses are constructed based on retinal connectome datasets, created using serial section transmission electron microscopy (TEM) images of 70 nm-thick slices of either healthy (RC1) or early-stage degenerated (RPC1) rabbit retina. The passive membrane and active ion currents of each cell are implemented using conductance-based models in the Neuron simulation environment. In response to photocurrent input at rod photoreceptors, the simulated membrane potential at RodBCs in early degenerate tissue is approximately 10-20 mV lower than that of RodBCs of that observed in wild type retina. Results presented here suggest that although RodBCs in RPC1 show early, altered morphology compared to RC1, the lower membrane potential is primarily a consequence of reduced rod photoreceptor input to RodBCs in the degenerated retina. Frequency response and step input analyses suggest that individual cell responses of RodBCs in either healthy or early-degenerated retina, prior to substantial photoreceptor cell loss, do not differ significantly.
Collapse
Affiliation(s)
- Pragya Kosta
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Ege Iseri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kyle Loizos
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Javad Paknahad
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - Gianluca Lazzi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|