1
|
Cui G, Di Y, Yang S, Chen Y, Li Y, Chen D. Proteomic analysis reveals key differences in pro-stromal corneal tissue between highly myopic males and females. Front Med (Lausanne) 2024; 11:1406748. [PMID: 39219796 PMCID: PMC11361967 DOI: 10.3389/fmed.2024.1406748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background and purpose Nowadays, myopia has become a highly prevalent disease globally, especially in East Asia. Epidemiological studies have found that there may be sex differences in the occurrence and progression of myopia, with females having a higher incidence of myopia and higher risk of myopia progression. The purpose of this study was to explore the sex differences in myopic cornea using corneal stroma removed by small incision lenticule extraction (SMILE) surgery. Methods The corneal stroma of females with high myopia (FH) and males with high myopia (MH) were subjected to proteomic assays. Proteomic-related data were statistically analyzed using software such as MaxQuan, KAAS, Proteome Discovery, etc. The total number of proteins in the cornea and the proteins specifically expressed in the two groups were counted, and the differentially expressed proteins in the two groups were identified by expression fold change >2 and p-value <0.05, and volcano plots were constructed, and functional enrichment analysis, subcellular organelle analysis, and molecular interaction were implemented. Results Ten samples from each group were analyzed. Twenty-seven proteins were down-regulated and 27 proteins were up-regulated in the FH group, of which 23 proteins were up-regulated in the range of 2-10-fold and 4 proteins were up-regulated in the range of >10-fold. Comparative proteomic analysis of the cornea of male and female patients with high myopia revealed that the expression of corneal extracellular matrix and collagen I, III, V, and VIII-associated proteins were increased in the cornea of female patients, and the transforming growth factor-β (TGF-β)/Smad pathway was an important pathway obtained by functional analysis. Conclusion Comparative proteomic analysis of cornea from male and female patients with high myopia revealed increased expression of proteins related to extracellular matrix and collagen I, III, V, and VIII in female patients, and the TGF-β/Smad pathway was an important pathway obtained from the functional analysis, suggesting that extracellular matrix remodeling and collagen fiber synthesis may be more active in the cornea of female patients.
Collapse
Affiliation(s)
- Ge Cui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Di
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Wang Y, Zhu R, Zhao L, Wang F, Zhang Y, Liu S, Ding J, Yang L. Characterization of Ocular Morphology in Col4a3-/- Mice as a Murine Model for Alport Syndrome. Transl Vis Sci Technol 2024; 13:16. [PMID: 39042048 PMCID: PMC11268448 DOI: 10.1167/tvst.13.7.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose The purpose of this study was to investigate the ocular morphological characteristics of Col4a3-/- mice as a model of Alport syndrome (AS) and the potential pathogenesis. Methods The expression of collagen IV at 8, 12, and 21 weeks of age was evaluated by immunohistochemistry in wild-type (WT) and Col4a3-/- mice. Hematoxylin and eosin (H&E) staining and thickness measurements were performed to assess the thickness of anterior lens capsule and retina. Ultrastructure analysis of corneal epithelial basement membrane, anterior lens capsule, internal limiting membrane (ILM), and retinal pigment epithelium (RPE) basement membrane was performed using transmission electron microscopy. Finally, Müller cell activation was evaluated by glial fibrillary acidic protein (GFAP) expression. Results Collagen IV was downregulated in the corneal epithelial basement membrane and ILM of Col4a3-/- mice. The hemidesmosomes of Col4a3-/- mice corneal epithelium became flat and less electron-dense than those of the WT group. Compared with those of the WT mice, the anterior lens capsules of Col4a3-/- mice were thinner. Abnormal structure was detected at the ILM Col4a3-/- mice, and the basal folds of the RPE basement membrane in Col4a3-/- mice were thicker and shorter. The retinas of Col4a3-/- mice were thinner than those of WT mice, especially within 1000 µm away from the optic nerve. GFAP expression enhanced in each age group of Col4a3-/- mice. Conclusions Our results suggested that Col4a3-/- mice exhibit ocular anomalies similar to patients with AS. Additionally, Müller cells may be involved in AS retinal anomalies. Translational Relevance This animal model could provide an opportunity to understand the underlying mechanisms of AS ocular disorders and to investigate potential new treatments.
Collapse
MESH Headings
- Animals
- Nephritis, Hereditary/pathology
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/metabolism
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Collagen Type IV/deficiency
- Disease Models, Animal
- Mice
- Basement Membrane/metabolism
- Basement Membrane/pathology
- Basement Membrane/ultrastructure
- Mice, Knockout
- Retinal Pigment Epithelium/pathology
- Retinal Pigment Epithelium/metabolism
- Retinal Pigment Epithelium/ultrastructure
- Microscopy, Electron, Transmission
- Mice, Inbred C57BL
- Lens Capsule, Crystalline/metabolism
- Lens Capsule, Crystalline/pathology
- Lens Capsule, Crystalline/ultrastructure
- Epithelium, Corneal/pathology
- Epithelium, Corneal/ultrastructure
- Epithelium, Corneal/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Glial Fibrillary Acidic Protein/genetics
- Retina/pathology
- Retina/metabolism
- Retina/ultrastructure
- Autoantigens/genetics
- Autoantigens/metabolism
- Ependymoglial Cells/pathology
- Ependymoglial Cells/metabolism
- Ependymoglial Cells/ultrastructure
- Immunohistochemistry
- Male
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Liang Zhao
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | | | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| |
Collapse
|
3
|
Hamedi H, Green SW, Puri R, Luo R, Lee M, Liu J, Cho H, Hansford DJ, Chandler HL, Swindle-Reilly KE. Lens epithelial cell response to polymer stiffness and polymer chemistry. JOURNAL OF POLYMER SCIENCE 2024; 62:1820-1830. [PMID: 39183793 PMCID: PMC11340881 DOI: 10.1002/pol.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 08/27/2024]
Abstract
Posterior capsule opacification (PCO) is the most common complication of cataract surgery, and intraocular lens (IOL) implantation is the standard of care for cataract patients. Induction of post-operative epithelial-mesenchymal transition (EMT) in residual lens epithelial cells (LEC) is the main mechanism by which PCO forms. Previous studies have shown that IOLs made with different materials have varying incidence of PCO. The aim of this paper was to study the interactions between human (h)LEC and polymer substrates. Polymers and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 3-methacryloxypropyl tris (trimethylsiloxy) silane (TRIS) were synthesized and evaluated due to the clinical use of these materials as ocular biomaterials and implants. The chemical properties of the polymer surfaces were evaluated by contact angle, and polymer stiffness and roughness were measured using atomic force microscopy. In vitro studies showed the effect of polymer mechanical properties on the behavior of hLECs. Stiffer polymers increased α-smooth muscle actin expression and induced cell elongation. Hydrophobic and rough polymer surfaces increased cell attachment. These results demonstrate that attachment of hLECs on different surfaces is affected by surface properties in vitro, and evaluating these properties may be useful for investigating prevention of PCO.
Collapse
Affiliation(s)
- Hamid Hamedi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Spencer W Green
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Raima Puri
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Richard Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Michael Lee
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jian Liu
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Hanna Cho
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Grönroos P, Mörö A, Puistola P, Hopia K, Huuskonen M, Viheriälä T, Ilmarinen T, Skottman H. Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink. Stem Cell Res Ther 2024; 15:81. [PMID: 38486306 PMCID: PMC10941625 DOI: 10.1186/s13287-024-03672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Human corneal endothelial cells lack regenerative capacity through cell division in vivo. Consequently, in the case of trauma or dystrophy, the only available treatment modality is corneal tissue or primary corneal endothelial cell transplantation from cadaveric donor which faces a high global shortage. Our ultimate goal is to use the state-of-the-art 3D-bioprint technology for automated production of human partial and full-thickness corneal tissues using human stem cells and functional bioinks. In this study, we explore the feasibility of bioprinting the corneal endothelium using human pluripotent stem cell derived corneal endothelial cells and hydrazone crosslinked hyaluronic acid bioink. METHODS Corneal endothelial cells differentiated from human pluripotent stem cells were bioprinted using optimized hydrazone crosslinked hyaluronic acid based bioink. Before the bioprinting process, the biocompatibility of the bioink with cells was first analyzed with transplantation on ex vivo denuded rat and porcine corneas as well as on denuded human Descemet membrane. Subsequently, the bioprinting was proceeded and the viability of human pluripotent stem cell derived corneal endothelial cells were verified with live/dead stainings. Histological and immunofluorescence stainings involving ZO1, Na+/K+-ATPase and CD166 were used to confirm corneal endothelial cell phenotype in all experiments. Additionally, STEM121 marker was used to identify human cells from the ex vivo rat and porcine corneas. RESULTS The bioink, modified for human pluripotent stem cell derived corneal endothelial cells successfully supported both the viability and printability of the cells. Following up to 10 days of ex vivo transplantations, STEM121 positive cells were confirmed on the Descemet membrane of rat and porcine cornea demonstrating the biocompatibility of the bioink. Furthermore, biocompatibility was validated on denuded human Descemet membrane showing corneal endothelial -like characteristics. Seven days post bioprinting, the corneal endothelial -like cells were viable and showed polygonal morphology with expression and native-like localization of ZO-1, Na+/K+-ATPase and CD166. However, mesenchymal-like cells were observed in certain areas of the cultures, spreading beneath the corneal endothelial-like cell layer. CONCLUSIONS Our results demonstrate the successful printing of human pluripotent stem cell derived corneal endothelial cells using covalently crosslinked hyaluronic acid bioink. This approach not only holds promise for a corneal endothelium transplants but also presents potential applications in the broader mission of bioprinting the full-thickness human cornea.
Collapse
Affiliation(s)
- Pyry Grönroos
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Anni Mörö
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Paula Puistola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Karoliina Hopia
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Maija Huuskonen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
| |
Collapse
|
5
|
Komninou MA, Seiler TG, Enzmann V. Corneal biomechanics and diagnostics: a review. Int Ophthalmol 2024; 44:132. [PMID: 38478103 PMCID: PMC10937779 DOI: 10.1007/s10792-024-03057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Corneal biomechanics is an emerging field and the interest into physical and biological interrelations in the anterior part of the eye has significantly increased during the past years. There are many factors that determine corneal biomechanics such as hormonal fluctuations, hydration and environmental factors. Other factors that can affect the corneas are the age, the intraocular pressure and the central corneal thickness. The purpose of this review is to evaluate the factors affecting corneal biomechanics and the recent advancements in non-destructive, in vivo measurement techniques for early detection and improved management of corneal diseases. METHODS Until recently, corneal biomechanics could not be directly assessed in humans and were instead inferred from geometrical cornea analysis and ex vivo biomechanical testing. The current research has made strides in studying and creating non-destructive and contactless techniques to measure the biomechanical properties of the cornea in vivo. RESULTS Research has indicated that altered corneal biomechanics contribute to diseases such as keratoconus and glaucoma. The identification of pathological corneas through the new measurement techniques is imperative for preventing postoperative complications. CONCLUSIONS Identification of pathological corneas is crucial for the prevention of postoperative complications. Therefore, a better understanding of corneal biomechanics will lead to earlier diagnosis of ectatic disorders, improve current refractive surgeries and allow for a better postoperative treatment.
Collapse
Affiliation(s)
- Maria Angeliki Komninou
- Department of Ophthalmology, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Theo G Seiler
- Department of Ophthalmology, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland
- Klinik Für Augenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
- Institut Für Refraktive Und Opthalmo-Chirurgie (IROC), Zurich, Switzerland
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Garis M, Meyer MD, Lwigale P. Expression of Nephronectin in the Descemet's membrane of mouse corneas during development and adult homeostasis. Exp Eye Res 2024; 240:109797. [PMID: 38246333 DOI: 10.1016/j.exer.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Nephronectin (Npnt) is an extracellular matrix (ECM) protein with pleiotropic functions during organogenesis, disease, and homeostasis. Although the ECM plays a crucial role during development and homeostasis of the adult cornea, little is known about the expression of Npnt in the mammalian cornea. Here, we investigated the expression of Npnt during early embryonic and postnatal development, and in adult mouse corneas. We combined ultrastructural and immunohistochemical analyses to study the early formation of the Descemet's membrane and how the expression of Npnt relates to key basement membrane proteins. Our section in situ hybridization and immunohistochemical analyses revealed that Npnt mRNA is expressed by the nascent corneal endothelial cells at embryonic day (E) 14.5, whereas the protein is localized in the adjacent extracellular matrix. These expression patterns were maintained in the corneal endothelium and Descemet's membrane throughout development and in adult corneas. Ultrastructural analysis revealed discontinuous electron dense regions of protein aggregates at E18.5 that was separated from the endothelial layer by an electron lucent space. At birth (postnatal day, P0), the Descemet's membrane was a single layer, which continuously thickened throughout P4, P8, P10, and P14. Npnt was localized to the Descemet's membrane by E18.5 and overlapped with Collagens IV and VIII, Laminin, and Perlecan. However, the proteins subsequently shifted and formed distinct layers in the adult cornea, whereby Npnt localized between two Collagen VIII bands and anterior to Collagen IV but overlapped with Laminin and Perlecan. Combined, our results reveal the expression of Npnt in the mouse cornea and define its spatiotemporal localization relative to key basement membrane proteins during the formation of the Descemet's membrane and in the adult cornea. Understanding the spatiotemporal expression of Npnt is important for future studies to elucidate its function in the mammalian cornea.
Collapse
Affiliation(s)
- Matthew Garis
- Department of Biosciences, Rice University, Houston, TX, 77019, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77019, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, 77019, USA.
| |
Collapse
|
7
|
Schoenenberger MS, Halfter W, Ferrand A, Halfter K, Tzankov A, Scholl HPN, Henrich PB, Monnier CA. The biophysical and compositional properties of human basement membranes. FEBS J 2024; 291:477-488. [PMID: 37984833 DOI: 10.1111/febs.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.
Collapse
Affiliation(s)
| | - Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum of the University of Basel, Switzerland
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany
| | - Alexandar Tzankov
- Histopathology and Autopsy, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| | | |
Collapse
|
8
|
Avetisov SE, Shitikova AV, Avetisov KS, Borisenko TE, Pateyuk LS, Aslamazova AE, Timashev PS, Efremov YM. [Selective assessment of biomechanical properties of the lens capsule]. Vestn Oftalmol 2024; 140:15-23. [PMID: 39731232 DOI: 10.17116/oftalma202414006115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule. PURPOSE This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans. MATERIAL AND METHODS The study analyzed 73 pairs of central fragments of the AC and PC of the lens, obtained from donor (cadaver) eyes and through anterior and posterior capsulorhexis during microinvasive phaco surgery (38 and 35 paired samples, respectively). Planned biomechanical testing followed a previously developed protocol for examining the anterior capsule, including determination of the Young's modulus using atomic force microscopy. RESULTS Comparing the Young's modulus of lens capsule samples from donor eyes and microinvasive phaco surgery revealed no significant differences in mean values, indirectly indicating minimal postmortem impact on the biomechanical properties of the capsule. General biomechanical patterns observed in the human lens capsule show the Young's modulus (stiffness) is higher in the AC than the PC, and higher on the inner than the outer surface for both the AC and PC. Age-related changes are associated with an increase in stiffness on the outer surface and its decrease on the inner surface, more pronounced in the AC. CONCLUSION The obtained results indicate the need for further investigation into the role of capsule biomechanics in age-related accommodative disorders.
Collapse
Affiliation(s)
- S E Avetisov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A V Shitikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - K S Avetisov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - T E Borisenko
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - L S Pateyuk
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A E Aslamazova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P S Timashev
- Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia
| | - Yu M Efremov
- Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Ek-Vitorin JF, Jiang JX. The Role of Gap Junctions Dysfunction in the Development of Cataracts: From Loss of Cell-to-Cell Transfer to Blurred Vision-Review. Bioelectricity 2023; 5:164-172. [PMID: 37746311 PMCID: PMC10516237 DOI: 10.1089/bioe.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mutations of lens connexins are linked to congenital cataracts. However, the role of connexin mutations in the development of age-related lens opacification remains largely unknown. Here, we present a focused review of the literature on lens organization and factors associated with cataract development. Several lines of evidence indicate that disturbances of the lens circulation by dysfunctional connexin channels, and/or accumulation of protein damage due to oxidative stress, are key factors in cataract development. Phosphorylation by protein kinase A improves the permeability of connexins channels to small molecules and mitigates the lens clouding induced by oxidative stress. We conclude (1) that connexin channels are central to the lens circulation and (2) that their permeability to antioxidant molecules contributes to the maintenance of lens transparency.
Collapse
Affiliation(s)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
10
|
Gupta N, Bhogal M, Vaddavalli PK, Boldini A, Semeraro F, Varshney A, Romano V. A goat eye, wet lab model for training in Descemet membrane endothelial keratoplasty. Indian J Ophthalmol 2023; 71:2230-2233. [PMID: 37202956 PMCID: PMC10391481 DOI: 10.4103/ijo.ijo_1834_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Here we describe a new, non-human, ex-vivo model (goat eye model) for training surgeons in DMEK surgeons. In a wet lab setting, goat eyes were used to obtain a pseudo-DMEK graft of 8 mm from the goat lens capsule that was injected into another goat eye with the same maneuvers described for human DMEK. The DMEK pseudo-graft can be easily prepared, stained, loaded, injected, and unfolded into the goat eye model reproducing the similar maneuvers used for DMEK in a human eye, except for the descemetorhexis, which cannot be performed. The pseudo-DMEK graft behaves similar to human DMEK graft and useful for surgeons to experience and understand steps of DMEK early in learning curve. The concept of a non-human ex-vivo eye model is simple and reproducible and obviates the need for human tissue and the issues of poor visibility in stored corneal tissue.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Cornea and Refractive Services, and Stem Cell Lab, Dr. Shroff's Charity Eye Hospital, Delhi, India
| | | | | | - Alessandro Boldini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Francesco Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Akhil Varshney
- Department of Cornea and Refractive Services, and Stem Cell Lab, Dr. Shroff's Charity Eye Hospital, Delhi, India
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Deng M, Li M, Liu L, Shi Y, Sun L, Ma X, Zou J. Proteomic profiling of human corneal stroma from long-term contact lens wearers reveals activation of inflammatory responses. Cont Lens Anterior Eye 2023; 46:101820. [PMID: 36775668 DOI: 10.1016/j.clae.2023.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/26/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE To investigate the association between proteomic changes and potential pathogenesis in the human cornea with respect to the duration of wearing soft contact lenses (SCLs). METHODS A total of 96 corneal stroma samples, obtained via small incision lenticule extraction (SMILE), were equally grouped according to the duration of wearing SCL: 0Y, did not wear SCL; 5Y, wore SCL for<5 years; 5-10Y, wore SCL for 5-10 years; O10Y, wore SCL for>10 years. Liquid chromatography-tandem mass spectrometry was used to identify and quantify protein profiles in the corneal stroma. Expression levels of CO1A1, CO4A1, NFKB1, and IL6RB were determined using western blot and immunohistochemistry analysis. RESULTS This study quantified a total of 5,668 proteins across samples and identified 2,379 differentially expressed proteins (DEPs) with significantly increased abundance in the three SCL-wearing groups compared with that in the non-SCL-wearing group. Compared with those in the 0Y group, the molecular functions of DEPs in the 5Y, 5-10Y, and O10Y groups were mainly related to translation regulator activity, antigen binding, peptidase inhibitor activity, participation in extracellular matrix (ECM) production, complement activation, and inflammatory responses. Pathway enrichment analysis of DEPs showed that the sphingolipid, phosphatidylinositol 3-kinase-protein kinase B, and hypoxia-inducible factor-1 signaling pathways were activated in the human corneal stroma after long-term SCL use. CONCLUSIONS Inflammation-related proteomic components in human corneal stroma increased after long-term use of SCL and may act as an essential factor in the molecular pathogenesis of corneal stroma damage.
Collapse
Affiliation(s)
- Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yuehui Shi
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lina Sun
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaoyun Ma
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| |
Collapse
|
12
|
Daniele E, Bosio L, Hussain NA, Ferrari B, Ferrari S, Barbaro V, McArdle B, Rassu N, Mura M, Parmeggiani F, Ponzin D. Denuded Descemet's membrane supports human embryonic stem cell-derived retinal pigment epithelial cell culture. PLoS One 2023; 18:e0281404. [PMID: 36745611 PMCID: PMC9901769 DOI: 10.1371/journal.pone.0281404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Recent clinical studies suggest that retinal pigment epithelial (RPE) cell replacement therapy may preserve vision in retinal degenerative diseases. Scaffold-based methods are being tested in ongoing clinical trials for delivering pluripotent-derived RPE cells to the back of the eye. The aim of this study was to investigate human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells survival and behaviour on a decellularized Descemet's Membrane (DM), which may be of clinical relevance in retinal transplantation. DMs were isolated from human donor corneas and treated with thermolysin. The DM surface topology and the efficiency of the denudation method were evaluated by atomic force microscope, scanning electron microscopy and histology. hESC-RPE cells were seeded onto the endothelial-side surface of decellularized DM in order to determine the potential of the membrane to support hESC-RPE cell culture, alongside maintaining their viability. Integrity of the hESC-RPE monolayer was assessed by measuring transepithelial resistance. RPE-specific gene expression and growth factors secretion were assessed to confirm maturation and functionality of the cells over the new substrate. Thermolysin treatment did not affect the integrity of the tissue, thus ensuring a reliable method to standardize the preparation of decellularized DM. 24 hours post-seeding, hESC-RPE cell attachment and initial proliferation rate over the denuded DM were higher than hESC-RPE cells cultured on tissue culture inserts. On the new matrix, hESC-RPE cells succeeded in forming an intact monolayer with mature tight junctions. The resulting cell culture showed characteristic RPE cell morphology and proper protein localization. Gene expression analysis and VEGF secretion demonstrate DM provides supportive scaffolding and inductive properties to enhance hESC-RPE cells maturation. Decellularized DM was shown to be capable of sustaining hESC-RPE cells culture, thus confirming to be potentially a suitable candidate for retinal cell therapy.
Collapse
Affiliation(s)
- Elena Daniele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Veneto Eye Bank Foundation, Venice, Italy
- * E-mail:
| | | | - Noor Ahmed Hussain
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Brian McArdle
- The Eye-Bank for Sight Restoration, Inc., New York City, New York, United States of America
| | - Nicolò Rassu
- Ophthalmic Unit, Ospedale dell’Angelo, Venice, Italy
| | - Marco Mura
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padua, Italy
| | | |
Collapse
|
13
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
14
|
Avetisov SE, Shitikova AV, Avetisov KS. [Anatomical, morphological and biomechanical aspects of accommodation]. Vestn Oftalmol 2022; 138:117-125. [PMID: 36004600 DOI: 10.17116/oftalma2022138041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The article reviews the findings on the anatomy, morphological and biomechanical features of the accommodation apparatus. Modern methods of imaging and biometry confirm the validity of the Helmholtz lenticular theory of accommodation, according to which its mechanism involves three main components: the ciliary body, the zonular fibres and the lens capsule, the lens itself. Based on this, there is certain interest in studying the degree of participation of each of these components in the development of age-related changes in accommodation (presbyopia).
Collapse
Affiliation(s)
- S E Avetisov
- Research Institute of Eye Disease, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - K S Avetisov
- Research Institute of Eye Disease, Moscow, Russia
| |
Collapse
|
15
|
De Maria A, Zientek KD, David LL, Wilmarth PA, Bhorade AM, Harocopos GJ, Huang AJW, Hong AR, Siegfried CJ, Tsai LM, Sheybani A, Bassnett S. Compositional Analysis of Extracellular Aggregates in the Eyes of Patients With Exfoliation Syndrome and Exfoliation Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34964803 PMCID: PMC8740535 DOI: 10.1167/iovs.62.15.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Exfoliation syndrome (XFS) is a condition characterized by the production of insoluble fibrillar aggregates (exfoliation material; XFM) in the eye and elsewhere. Many patients with XFS progress to exfoliation glaucoma (XFG), a significant cause of global blindness. We used quantitative mass spectrometry to analyze the composition of XFM in lens capsule specimens and in aqueous humor (AH) samples from patients with XFS, patients with XFG and unaffected individuals. Methods Pieces of lens capsule and samples of AH were obtained with consent from patients undergoing cataract surgery. Tryptic digests of capsule or AH were analyzed by high-performance liquid chromatography–mass spectrometry and relative differences between samples were quantified using the tandem mass tag technique. The distribution of XFM on the capsular surface was visualized by SEM and super-resolution light microscopy. Results A small set of proteins was consistently upregulated in capsule samples from patients with XFS and patients with XFG, including microfibril components fibrillin-1, latent transforming growth factor-β–binding protein-2 and latent transforming growth factor-β–binding protein-3. Lysyl oxidase-like 1, a cross-linking enzyme associated with XFS in genetic studies, was an abundant XFM constituent. Ligands of the transforming growth factor-β superfamily were prominent, including LEFTY2, a protein best known for its role in establishing the embryonic body axis. Elevated levels of LEFTY2 were also detected in AH from patients with XFG, a finding confirmed subsequently by ELISA. Conclusions This analysis verified the presence of suspected XFM proteins and identified novel components. Quantitative comparisons between patient samples revealed a consistent XFM proteome characterized by strong expression of fibrillin-1, lysyl oxidase-like-1, and LEFTY2. Elevated levels of LEFTY2 in the AH of patients with XFG may serve as a biomarker for the disease.
Collapse
Affiliation(s)
- Alicia De Maria
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Keith D Zientek
- Proteomics Shared Resource, Oregon Health and Science University, Portland, Oregon, United States
| | - Larry L David
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, Oregon, United States
| | - Anjali M Bhorade
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - George J Harocopos
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Andrew J W Huang
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Augustine R Hong
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Carla J Siegfried
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Linda M Tsai
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arsham Sheybani
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven Bassnett
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
16
|
Walker JL, Menko AS. Immune cells in lens injury repair and fibrosis. Exp Eye Res 2021; 209:108664. [PMID: 34126081 DOI: 10.1016/j.exer.2021.108664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Immune cells, both tissue resident immune cells and those immune cells recruited in response to wounding or degenerative conditions, are essential to both the maintenance and restoration of homeostasis in most tissues. These cells are typically provided to tissues by their closely associated vasculatures. However, the lens, like many of the tissues in the eye, are considered immune privileged sites because they have no associated vasculature. Such absence of immune cells was thought to protect the lens from inflammatory responses that would bring with them the danger of causing vision impairing opacities. However, it has now been shown, as occurs in other immune privileged sites in the eye, that novel pathways exist by which immune cells come to associate with the lens to protect it, maintain its homeostasis, and function in its regenerative repair. Here we review the discoveries that have revealed there are both innate and adaptive immune system responses to lens, and that, like most other tissues, the lens harbors a population of resident immune cells, which are the sentinels of danger or injury to a tissue. While resident and recruited immune cells are essential elements of lens homeostasis and repair, they also become the agents of disease, particularly as progenitors of pro-fibrogenic myofibroblasts. There still remains much to learn about the function of lens-associated immune cells in protection, repair and disease, the knowledge of which will provide new tools for maintaining the core functions of the lens in the visual system.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
DeDreu J, Walker JL, Menko AS. Dynamics of the lens basement membrane capsule and its interaction with connective tissue-like extracapsular matrix proteins. Matrix Biol 2021; 96:18-46. [PMID: 33383103 PMCID: PMC7902460 DOI: 10.1016/j.matbio.2020.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022]
Abstract
The lens, suspended in the middle of the eye by tendon-like ciliary zonule fibers and facing three different compartments of the eye, is enclosed in what has been described as the thickest basement membrane in the body. While the protein components of the capsule have been a subject of study for many years, the dynamics of capsule formation, and the region-specific relationship of its basement membrane components to one another as well as to other matrix molecules remains to be explored. Through high resolution confocal and super-resolution imaging of the lens capsule and 3D surface renderings of acquired z-stacks, our studies revealed that each of its basement membrane proteins, laminin, collagen IV, nidogen and perlecan, has unique structure, organization, and distribution specific both to the region of the lens that the capsule is located in and the position of the capsule within the eye. We provide evidence of basal membrane gradients across the depth of the capsule as well as the synthesis of distinct basement membrane lamella within the capsule. These distinctions are most prominent in the equatorial capsule zone where collagen IV and nidogen span the capsule depth, while laminin and perlecan are located in two separate lamellae located at the innermost and outermost capsule domains. We discovered that an extracapsular matrix compartment rich in the connective tissue-like matrix molecules fibronectin, tenascin-C, and fibrillin is integrated with the superficial surface of the lens capsule. Each matrix protein in this extracapsular zone also exhibits region-specific distribution with fibrils of fibrillin, the matrix protein that forms the backbone of the ciliary zonules, inserting within the laminin/perlecan lamella at the surface of the equatorial lens capsule.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 564 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, United States.
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 564 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, United States.
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 564 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, United States.
| |
Collapse
|