1
|
Zhang Z, Zhao R, Wu X, Ma Y, He Y. Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Mol Med Rep 2025; 31:47. [PMID: 39635819 PMCID: PMC11638739 DOI: 10.3892/mmr.2024.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
The cornea is a clear connective tissue membrane at the front of the outer layer of the eyeball wall. It plays a crucial role in the refractive system of the eyeball, making it essential to maintain its transparency. Neovascularization and lymphangiogenesis in the cornea significantly impact corneal transparency and immune privilege. The growth of corneal neovascularization (CNV) and corneal lymphangiogenesis (CL) vessels is interconnected yet independent. Currently, there is a substantial amount of clinical and experimental research on CNV and CL vessels. However, due to the relatively recent focus on CL vessel research compared with CNV research, most scholars tend to concentrate on CNV, with few articles offering a comprehensive comparison and discussion of the two processes. The present review emphasizes the similarities and differences between CNV and CL and summarizes recent research progress on their correlation in animal models, growth characteristics, cytokine effects and related diseases.
Collapse
Affiliation(s)
- Zhaochen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Rongxuan Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xuhui Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yunkun Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
2
|
Li Y, Zhang P, Feng L, Wang Y, Dong X, Hong J. Etiological analysis of ocular herpes virus infection. Graefes Arch Clin Exp Ophthalmol 2024; 262:3965-3970. [PMID: 39023787 DOI: 10.1007/s00417-024-06550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE To do the etiological analysis of ocular herps virus infection, revealing the pathogen species and the distribution of different virus types within the eye. METHODS Samples were collected from 2017 to 2021 at the Department of Ophthalmology, Peking University Third Hospital and tested using real-time PCR for common ocular viruses: herpes simplex virus 1 (HSV-1), cytomegalovirus (CMV), varicella-zoster virus (VZV) and Epstein-Barr virus (EBV). The pathogenesis of the different viruses was classified and analyzed according to the site of infection. RESULTS Viral PCR detections were performed on 3627 samples collected over the 5-years and 649 (17.89%) samples contained one or more of the viruses tested. The overall detection rate of CMV was highest at 9.93%. Of all sample types, aqueous humor was the most common (1752 cases), of which 340 were positive (19.41% positive rate). Corneal samples were the next most common, with 1481 cases and 250 positive results (16.88% positive rate). CMV positivity was higher in aqueous humor and corneal samples than other viruses; vitreous body had the highest positive rate at 36.36% (20/55), among which 18 cases were VZV positive. CONCLUSIONS Distribution of virus types differed among infection sites, with CMV the most common virus type detected in the cornea and aqueous humor, while VZV was the most common virus detected in the vitreous body.
Collapse
MESH Headings
- Humans
- Eye Infections, Viral/virology
- Eye Infections, Viral/diagnosis
- DNA, Viral/analysis
- DNA, Viral/genetics
- Aqueous Humor/virology
- Male
- Female
- Middle Aged
- Adult
- Real-Time Polymerase Chain Reaction
- Retrospective Studies
- Cytomegalovirus/genetics
- Cytomegalovirus/isolation & purification
- Aged
- Young Adult
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/isolation & purification
- Adolescent
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/isolation & purification
- Child
- Cornea/virology
- Herpesviridae Infections/virology
- Herpesviridae Infections/diagnosis
- Vitreous Body/virology
- Keratitis, Herpetic/virology
- Keratitis, Herpetic/diagnosis
- Herpes Zoster Ophthalmicus/virology
- Herpes Zoster Ophthalmicus/diagnosis
- Child, Preschool
- Herpesviridae/genetics
- Herpesviridae/isolation & purification
Collapse
Affiliation(s)
- Yingyu Li
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pei Zhang
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lina Feng
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Xuran Dong
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jing Hong
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Ge J, Li X, Xia Y, Chen Z, Xie C, Zhao Y, Chen K, Shen Y, Tong J. Recent advances in NLRP3 inflammasome in corneal diseases: Preclinical insights and therapeutic implications. Ocul Surf 2024; 34:392-405. [PMID: 39357820 DOI: 10.1016/j.jtos.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
NLRP3 inflammasome is a cytosolic multiprotein complex formed in response to exogenous environmental stress and cellular damage. The three major components of the NLRP3 inflammasome are the innate immunoreceptor protein NLRP3, the adapter protein apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain, and the inflammatory protease enzyme caspase-1. The integrated NLRP3 inflammasome triggers the activation of caspase-1, leading to GSDMD-dependent pyroptosis and facilitating the maturation and release of inflammatory cytokines, namely interleukin (IL)-18 and IL-1β. However, the inflammatory responses mediated by the NLRP3 inflammasome exhibit dual functions in innate immune defense and cellular homeostasis. Aberrant activation of the NLRP3 inflammasome matters in the etiology and pathophysiology of various corneal diseases. Corneal alkali burn can induce pyroptosis, neutrophil infiltration, and corneal angiogenesis via the activation of NLRP3 inflammasome. When various pathogens invade the cornea, NLRP3 inflammasome recognizes pathogen-associated molecular patterns or damage-associated molecular patterns to engage in pro-inflammatory and anti-inflammatory mechanisms. Moreover, chronic inflammation and proinflammatory cascades mediated by the NLRP3 inflammasome contribute to the pathogenesis of diabetic keratopathy. Furthermore, overproduction of reactive oxygen species, mitochondrial dysfunction, and toll-like receptor-mediated activation of nuclear factor kappa B drive the stimulation of NLRP3 inflammasome and participate in the progression of dry eye disease. However, there still exist controversies regarding the regulatory pathways of the NLRP3 inflammasome. In this review, we provide a comprehensive overview of recent advancements in the function of NLRP3 inflammasome in corneal diseases and its regulatory pathways primarily through studies using animal models. Furthermore, we explore prospects for pharmacologically targeting pathways associated with NLRP3.
Collapse
Affiliation(s)
- Jiayun Ge
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Letafati A, Jazayeri SM, Atwan H, Mahmoudi MK, Sarrafzadeh S, Ardekani OS, Norouzi M, Ghaziasadi A. Utilization of multiplex polymerase chain reaction for simultaneous and rapid detection of viral infections from different ocular structures. Sci Rep 2024; 14:17997. [PMID: 39097632 PMCID: PMC11297968 DOI: 10.1038/s41598-024-68171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
The impact of viral keratitis (VK) on individuals and society is notable. Early diagnosis and treatment are crucial in managing viral keratitis effectively. Timely intervention with antiviral medications and supportive care can help mitigate the severity of the infection and improve visual outcomes. We examined the prevalence of varicella-zoster virus (VZV), herpes simplex virus type 1 (HSV-1), adenovirus (AdV) and herpes simplex virus type 2 (HSV-2) in patients suspected for ocular infections. Patients included in the study exhibited various clinical manifestations indicative of ocular pathology, such as infectious keratitis, corneal scar, endogenous endophthalmitis, panuveitis, endothelitis, stromal edema, and other relevant conditions. Four different types of tear fluid, corneal samples epithelium, aqueous humor and vitreous humor were taken. After genome extraction, multiplex real-time PCR was used for diagnosis of viruses. 48 (29.6%) out of the total of 162 (100%) eye specimen were positive. The dominant prevalence was VZV (12.3%) and HSV-1 (11.7%) followed by AdV (4.9%) and HSV-2 (0.6%). There were 4 (8.3%) coinfections within the samples (HSV-1 and VZV). Aqueous humor samples demonstrated superior virus detection ability and our only HSV-2 positive sample was from aqueous humor. The utilization of multiplex real-time PCR assays in differential diagnosis of VK holds promise for expeditious diagnoses while also preventing unwarranted antibiotic prescriptions. Moreover, the aqueous humor appears to be a more sensitive site for detecting viral keratitis.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Hossein Atwan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Karkhaneh Mahmoudi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Sarrafzadeh
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Epidemiology and statistics Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Azam Ghaziasadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Kim CK, Karslioglu MZ, Zhao SH, Lee OL. Infectious Keratitis in Patients Over 65: A Review on Treatment and Preserving Eyesight. Clin Interv Aging 2024; 19:1393-1405. [PMID: 39099749 PMCID: PMC11298191 DOI: 10.2147/cia.s467262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Infectious keratitis (IK) represents a significant global health concern, ranking as the fifth leading cause of blindness worldwide despite being largely preventable and treatable. Elderly populations are particularly susceptible due to age-related changes in immune response and corneal structure. However, research on IK in this demographic remains scarce. Age-related alterations such as increased permeability and reduced endothelial cell density further compound susceptibility to infection and hinder healing mechanisms. Additionally, inflammaging, characterized by chronic inflammation that develops with advanced age, disrupts the ocular immune balance, potentially exacerbating IK and other age-related eye diseases. Understanding these mechanisms is paramount for enhancing IK management, especially in elderly patients. This review comprehensively assesses risk factors, clinical characteristics, and management strategies for bacterial, viral, fungal, and acanthamoeba keratitis in the elderly population, offering crucial insights for effective intervention.
Collapse
Affiliation(s)
- Christine K Kim
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Melisa Z Karslioglu
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Sharon H Zhao
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Olivia L Lee
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
7
|
Jiang J, Zhang D, Liu W, Yang J, Yang F, Liu J, Hu K. Overexpression of NLRP12 enhances macrophage immune response and alleviates herpes simplex keratitis. Front Cell Infect Microbiol 2024; 14:1416105. [PMID: 39119293 PMCID: PMC11306119 DOI: 10.3389/fcimb.2024.1416105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Herpes simplex keratitis (HSK) is a blinding disease caused by corneal infection of Herpes simplex virus type 1 (HSV-1). Effective clearance of HSV-1 from the infected cornea is crucial for HSK management. Macrophages play an important part in the innate immune defense against viral infections. This study investigates the immunomodulatory role of NLRP12 in macrophage immune response during HSV-1 infection. Methods NLRP12 expression post-infection was assessed in various macrophage cell lines. Overexpression of NLRP12 was achieved by lentiviral transfection, and its effect on HSV-1 replication and immune responses were examined. Mechanistic insights into the role of NLRP12 were explored using immunofluorescence and Western Blot. For in vivo studies, ocular adoptive transfer of NLRP12-overexpressing bone marrow derived macrophages (BMDMs) was performed. HSV-1 viral loads, HSK symptoms, and macrophage-mediated immune responses were investigated. Results A significant decrease in NLRP12 expression post-infection was observed in various macrophage cell lines. Overexpression of NLRP12 in macrophages reduced HSV-1 replication. Mechanistically, overexpression of NLRP12 triggered early and robust pyroptosis in response to HSV-1 infection, inducing interleukin (IL)-18 production and activating downstream antiviral responses through the JAK-STAT signaling pathway. In vivo, ocular adoptive transfer of NLRP12-overexpressing BMDMs to mouse corneas alleviated HSK damage and reduced HSV-1 viral loads. NLRP12-overexpressing BMDMs improved antiviral responses in the cornea and promoted the maturation of corneal-infiltrating macrophages and dendritic cells. Additionally, NLRP12-overexpressing BMDMs amplified the adaptive immune response in the submandibular draining lymph nodes. Discussion These findings highlight the role of NLRP12 in macrophage-mediated immune response against HSV-1 infection and suggest its potential for possible immunotherapy for HSK.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Di Zhang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Liu
- Department of Ophthalmology, Linyi Bright Eye Hospital, Linyi, China
| | - Jingya Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junpeng Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Venugopal A, Christy J, Raut V, P P, Patwardhan V, V V, Madkaikar A, P M, Meenakshi R, Ramakrishnan R. Viral Keratitis, Surgical Intervention in Viral Keratitis, Challenges in Diagnosis and Treatment of Viral Keratitis, HSV, HZV. Semin Ophthalmol 2024; 39:340-352. [PMID: 38303587 DOI: 10.1080/08820538.2024.2309533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Viral keratitis is a significant cause of ocular morbidity and visual impairment worldwide. In recent years, there has been a growing understanding of the pathogenesis, clinical manifestations, and diagnostic modalities for viral keratitis. The most common viral pathogens associated with this condition are adenovirus, herpes simplex (HSV), and varicella-zoster virus (VZV). However, emerging viruses such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and Vaccinia virus can also cause keratitis. Non-surgical interventions are the mainstay of treatment for viral keratitis. Antiviral agents such as Acyclovir, Ganciclovir, and trifluridine have effectively reduced viral replication and improved clinical outcomes. Additionally, adjunctive measures such as lubrication, corticosteroids, and immunomodulatory agents have alleviated symptoms by reducing inflammation and facilitating tissue repair. Despite these conservative approaches, some cases of viral keratitis may progress to severe forms, leading to corneal scarring, thinning, or perforation. In such instances, surgical intervention becomes necessary to restore corneal integrity and visual function. This review article aims to provide an overview of the current perspectives and surgical interventions in managing viral keratitis. The choice of surgical technique depends on the extent and severity of corneal involvement. As highlighted in this article, on-going research and advancements in surgical interventions hold promise for further improving outcomes in patients with viral keratitis.
Collapse
Affiliation(s)
- Anitha Venugopal
- Department of Cornea & Refractive services, Aravind Eye, Hospital and postgraduate institute of Ophthalmology, Tirunelveli, Tamil Nadu, India
| | - Josephine Christy
- Department of Cornea & Refractive services, Aravind Eye Hospital, Pondicherry, India
| | - Vaidehi Raut
- Post-Graduate in Ophthalmology Aravind Eye Hospital, Tirunelveli, Tamil Nadu, India
| | - Preethi P
- Post-Graduate in Ophthalmology Aravind Eye Hospital, Tirunelveli, Tamil Nadu, India
| | - Veena Patwardhan
- Medical Consultant, Cornea and Refractive Services, Aravind Eye Hospital, Tirunelveli, Tamil Nadu, India
| | - Veeramma V
- Fellow in Cornea and Refractive surgery, Aravind Eye Hospital, Tirunelveli, Tamil Nadu, India
| | - Aditee Madkaikar
- Department of Cornea & Refractive services, Aravind Eye Hospital, Tirunelveli, Tamil Nadu, India
| | - Mangala P
- Department of Cornea & Refractive services, Aravind Eye Hospital, Coimbatore, Tamil Nadu, India
| | | | | |
Collapse
|
9
|
Borodianskiy-Shteinberg T, Bisht P, Das B, Kinchington PR, Goldstein RS. Commercial human 3D corneal epithelial equivalents for modeling epithelial infection in herpes keratitis. Virology 2024; 595:110096. [PMID: 38710129 DOI: 10.1016/j.virol.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Herpes stromal keratitis is the leading cause of infectious blindness in the western world. Infection by HSV1 is most common, but VZV and hCMV also infect the cornea. Multiple models of HSV1 corneal infection exist, but none for VZV and hCMV because of their host specificity. Here, we used commercially available 3D human corneal epithelial equivalents (HCEE) to study infection by these herpesviruses. HCEE was infected by HSV-1 and hCMV without requiring scarification and resulted in spreading infections. Spread of HSV-1 infection was rapid, while that of hCMV was slow. In contrast, infections with VZV required damage to the HCEE and did not spread. Acyclovir dramatically reduced replication of HSV-1 in this model. We conclude that highly quality-controlled, readily available HCEE is a useful model to study human-restricted herpesvirus infection of the human corneal epithelium and for screening of antiviral drugs for treating HSK in an 3D model system.
Collapse
Affiliation(s)
| | - Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
10
|
Yu C, Xu J, Heidari G, Jiang H, Shi Y, Wu A, Makvandi P, Neisiany RE, Zare EN, Shao M, Hu L. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol 2024; 269:132086. [PMID: 38705321 DOI: 10.1016/j.ijbiomac.2024.132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.
Collapse
Affiliation(s)
- Caiyu Yu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Huijun Jiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India.
| | - Minmin Shao
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Liang Hu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
11
|
Zhang J, Li Y, Xie S, Lou H, Chen H, Zhang G. Baicalein glycymicelle ophthalmic solution: Preparation, in vitro antimicrobial activities, and antimicrobial mechanism evaluations. Int J Pharm 2024; 654:123964. [PMID: 38430948 DOI: 10.1016/j.ijpharm.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The purpose of this study was to develop a novel baicalein (BAI) loaded glycymicelle ophthalmic solution with small molecule phytochemical glycyrrhizin as nanocarriers and to explore this solution's potential as an antimicrobial agent against ocular infections. The optimized BAI glycymicelles had a high encapsulation efficiency (98.76 ± 1.25 %), a small particle size (54.38 ± 2.41 nm), a uniform size distribution (polydispersity index = 0.293 ± 0.083), and a zeta potential of -28.3 ± 1.17 mV. The BAI glycymicelle ophthalmic solution exhibited an excellent short-term storage stability. BAI glycymicelles significantly increased the apparent solubility and in vitro release capability of BAI. The BAI glycymicelle ophthalmic solution exhibited no hen's egg-chorioallantoic membrane' irritation and strong in vivo ocular tolerance in rabbits. The BAI glycymicelles noticeably enhanced the in vivo corneal permeation. The BAI glycymicelles also precipitated increased in vitro antioxidant activity and significantly improved in vitro antipathogen activities. Various antimicrobial mechanisms, including the destruction of the bacterial cell wall, damage to the bacterial cell membranes, interruptions to the biofilm structure, and the apoptosis of bacteria, were inflicted on BAI glycymicelles. These findings provided useful knowledge regarding the development of a novel ophthalmic solution and formulation of BAI.
Collapse
Affiliation(s)
- Jing Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuhang Li
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Sibin Xie
- Qingdao Central Medical Group, Qingdao, China
| | - Huadong Lou
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Hao Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Guowen Zhang
- The Eighth People's Hospital of Qingdao, Qingdao, China.
| |
Collapse
|
12
|
Kryszan K, Wylęgała A, Kijonka M, Potrawa P, Walasz M, Wylęgała E, Orzechowska-Wylęgała B. Artificial-Intelligence-Enhanced Analysis of In Vivo Confocal Microscopy in Corneal Diseases: A Review. Diagnostics (Basel) 2024; 14:694. [PMID: 38611606 PMCID: PMC11011861 DOI: 10.3390/diagnostics14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Artificial intelligence (AI) has seen significant progress in medical diagnostics, particularly in image and video analysis. This review focuses on the application of AI in analyzing in vivo confocal microscopy (IVCM) images for corneal diseases. The cornea, as an exposed and delicate part of the body, necessitates the precise diagnoses of various conditions. Convolutional neural networks (CNNs), a key component of deep learning, are a powerful tool for image data analysis. This review highlights AI applications in diagnosing keratitis, dry eye disease, and diabetic corneal neuropathy. It discusses the potential of AI in detecting infectious agents, analyzing corneal nerve morphology, and identifying the subtle changes in nerve fiber characteristics in diabetic corneal neuropathy. However, challenges still remain, including limited datasets, overfitting, low-quality images, and unrepresentative training datasets. This review explores augmentation techniques and the importance of feature engineering to address these challenges. Despite the progress made, challenges are still present, such as the "black-box" nature of AI models and the need for explainable AI (XAI). Expanding datasets, fostering collaborative efforts, and developing user-friendly AI tools are crucial for enhancing the acceptance and integration of AI into clinical practice.
Collapse
Affiliation(s)
- Katarzyna Kryszan
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Adam Wylęgała
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Health Promotion and Obesity Management, Pathophysiology Department, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Magdalena Kijonka
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Patrycja Potrawa
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Mateusz Walasz
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Bogusława Orzechowska-Wylęgała
- Department of Pediatric Otolaryngology, Head and Neck Surgery, Chair of Pediatric Surgery, Medical University of Silesia, 40-760 Katowice, Poland;
| |
Collapse
|
13
|
Liu M, Song W, Gao W, Jiang L, Pan H, Luo D, Shi L. Impact of Latent Virus Infection in the Cornea on Corneal Healing after Small Incision Lenticule Extraction. Microorganisms 2023; 11:2441. [PMID: 37894101 PMCID: PMC10609374 DOI: 10.3390/microorganisms11102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of the present study is to analyze the impact of cornea virus latent infection on corneal healing after small incision lenticule extraction (SMILE) and predict the positive rate of virus latent infection in corneal stroma. A total of 279 patients who underwent SMILE were included in this study. Fluorescence quantitative PCR was used to detect virus infection in the lenticules, which were taken from the corneal stroma during SMILE. Herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), Epstein-Barr virus (EBV), and cytomegalovirus (CMV) were detected. Postoperative visual acuity, spherical equivalent, intraocular pressure, corneal curvature (Kf and Ks), corneal transparency, and corneal staining were compared between the virus-positive group and the virus-negative group. The number of corneal stromal cells and inflammatory cells, corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), corneal total branch density (CTBD), and corneal nerve fiber width (CNFW) were evaluated using an in vivo confocal microscope. Out of 240 herpes simplex virus (HSV) tested samples, 11 (4.58%) were positive, among which 5 (2.08%) were HSV-1-positive and 6 (2.50%) were HSV-2-positive. None of the 91 CMV- and EBV-tested samples were positive. There was no statistical significance in the postoperative visual acuity, spherical equivalent, intraocular pressure, Kf and Ks, corneal transparency, corneal staining, the number of corneal stromal cells and inflammatory cells, CNFD, CNBD, CNFL, CTBD, and CNFW between the virus-positive and virus-negative groups (p > 0.05). In conclusion, there is a certain proportion of latent HSV infection in the myopia population. Femtosecond lasers are less likely to activate a latent infection of HSV in the cornea. The latent infection of HSV has no significant impact on corneal healing after SMILE.
Collapse
Affiliation(s)
- Ming Liu
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Wenting Song
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei 230001, China; (W.S.); (D.L.)
| | - Wen Gao
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Lili Jiang
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Hongbiao Pan
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Dan Luo
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei 230001, China; (W.S.); (D.L.)
| | - Lei Shi
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| |
Collapse
|
14
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
15
|
Wang W, Ye W, Chen S, Tang Y, Chen D, Lu Y, Wu Z, Huang Z, Ge Y. METTL3-mediated m 6A RNA modification promotes corneal neovascularization by upregulating the canonical Wnt pathway during HSV-1 infection. Cell Signal 2023:110784. [PMID: 37356601 DOI: 10.1016/j.cellsig.2023.110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Corneal neovascularization (CNV) is a symptom of herpes simplex keratitis (HSK), which can result in blindness. The corneal angiogenesis brought on by herpes simplex virus type 1 (HSV-1) is strongly affected by vascular endothelial growth factor A (VEGFA). The N6-methyladenosine (m6A) modification catalyzed by methyltransferase-like 3 (METTL3) is a crucial epigenetic regulatory process for angiogenic properties. However, the roles of METTL3 and m6A in HSK-induced CNV remain unknown. Here, we investigated these roles in vitro and in vivo. METHODS A PCR array in HSV-1-infected human umbilical vein endothelial cells (HUVECs) was used to screen for METTL3 among the epitranscriptomic genes. Tube formation and scratch assays were conducted to investigate cell migration capacity. The global mRNA m6A abundance was evaluated using a dot blot assay. Gene expression was assessed by RT-qPCR, western blotting, and fluorescence immunostaining. In addition, bioinformatic analysis was conducted to identify the downstream molecules of METTL3 in HUVECs. METTL3 knockdown and STM2457 treatment clarified the specific underlying molecular mechanisms affecting HSV-1-induced angiogenesis in vitro. An acute HSK mouse model was established to examine the effects of METTL3 knockdown or inhibition using STM2457 on pathological angiogenic development in vivo. RESULTS METTL3 was highly upregulated in HSV-1-infected HUVECs and led to increased m6A levels. METTL3 knockdown or inhibition by STM2457 further reduced m6A levels and VEGFA expression and impaired migration and tube formation capacity in HUVECs after HSV-1 infection. Mechanistically, METTL3 regulated LRP6 expression through post-transcriptional mRNA modification in an m6A-dependent manner, increasing its stability, upregulating VEGFA expression, and promoting angiogenesis in HSV-1-infected HUVECs. Furthermore, METTL3 knockdown or inhibition by STM2457 reduced CNV in vivo. CONCLUSION Our findings revealed that METTL3 promotes pathological angiogenesis through canonical Wnt and VEGF signaling in vitro and in vivo, providing potential pharmacological targets for preventing the progression of CNV in HSK.
Collapse
Affiliation(s)
- Wenzhe Wang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wei Ye
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Si Chen
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, 210009, China
| | - Yun Tang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University Medical School, Nanjing 210093, China
| | - Yan Lu
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing 210093, China
| | - Zhenping Huang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yirui Ge
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
16
|
Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Yadavalli T, Ames JM, Borase H, Shukla D. Pathophysiology of reinfection by exogenous HSV-1 is driven by heparanase dysfunction. SCIENCE ADVANCES 2023; 9:eadf3977. [PMID: 37115924 PMCID: PMC10146881 DOI: 10.1126/sciadv.adf3977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Limited knowledge exists on exogenous DNA virus reinfections. Herpes simplex virus-1 (HSV-1), a prototype DNA virus, causes multiple human diseases including vision-threatening eye infections. While reinfection with an exogenous HSV-1 strain is considered plausible, little is known about the underlying mechanisms governing its pathophysiology in a host. Heparanase (HPSE), a host endoglycosidase, when up-regulated by HSV-1 infection dictates local inflammatory response by destabilizing tissue architecture. Here, we demonstrate that HSV-1 reinfection in mice causes notable pathophysiology in wild-type controls compared to the animals lacking HPSE. The endoglycosidase promotes infected cell survival and supports a pro-disease environment. In contrast, lack of HPSE strengthens intrinsic immunity by promoting cytokine expression, inducing necroptosis of infected cells, and decreasing leukocyte infiltration into the cornea. Collectively, we report that immunity from a recent prior infection fails to abolish disease manifestation during HSV-1 reinfection unless HPSE is rendered inactive.
Collapse
Affiliation(s)
- Rahul K. Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chandrashekhar D. Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua M. Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Moshirfar M, Kelkar N, Peterson T, Bradshaw J, Parker L, Ronquillo YC, Hoopes PC. The Impact of Antiviral Resistance on Herpetic Keratitis. Eye Contact Lens 2023; 49:127-134. [PMID: 36374154 DOI: 10.1097/icl.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Herpes simplex keratitis resistance to antiviral treatment presents a growing concern. The herpes simplex virus has many different mechanisms of resistance to antiviral treatment, which have been well described. Resistance to acyclovir occurs because of mutations in the viral thymidylate kinase and DNA polymerase that decrease this enzyme's affinity for its substrate. This article discusses factors that explain the prevalence of this resistance, the ability for recurrences in immunocompromised populations, current treatments for acyclovir-resistant herpes simplex keratitis, and novel therapies for this growing concern.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center (M.M., Y.C.R., P.C.H.), Hoopes Vision, Draper, UT; John A. Moran Eye Center (M.M.), Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT; Utah Lions Eye Bank (M.M.), Murray, UT; University of Arizona College of Medicine-Phoenix (N.K.), Phoenix, AZ; and Rocky Vista University College of Osteopathic Medicine (T.P., J.B., L.P.), Ivins, UT
| | | | | | | | | | | | | |
Collapse
|
19
|
Cytokine profile of human limbal myofibroblasts: Key players in corneal antiviral response. Cytokine 2022; 160:156047. [DOI: 10.1016/j.cyto.2022.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
20
|
Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnology 2022; 20:496. [DOI: 10.1186/s12951-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractOcular diseases are increasingly influencing people’s quality of life. Complicated inflammatory mechanisms involved in the pathogenic process of ocular diseases make inflammation-targeting treatment a potential therapeutic approach. The limited efficacy of conventional anti-inflammatory therapeutic strategies, caused by various objective factors, such as complex ocular biological barriers, and subjective factors, such as poor compliance, are promoting the development of new therapeutic methods. With the advantages of considerable tissue permeability, a controllable drug release rate, and selective tissue targeting ability, nanoparticles have successfully captured researchers’ attention and have become a research hotspot in treating ocular diseases. This review will focus on the advantages of nanosystems over traditional therapy, the anti-inflammation mechanisms of nanoparticles, and the anti-inflammatory applications of nanoparticles in different ocular diseases (ocular surface diseases, vitreoretinopathy, uveal diseases, glaucoma, and visual pathway diseases). Furthermore, by analyzing the current situation of nanotherapy and the challenges encountered, we hope to inspire new ideas and incentives for designing nanoparticles more consistent with human physiological characteristics to make progress based on conventional treatments. Overall, some progress has been made in nanoparticles for the treatment of ocular diseases, and nanoparticles have rather broad future clinical translation prospects.
Collapse
|
21
|
Muacevic A, Adler JR. A Clinical Case of Viral Keratitis. Cureus 2022; 14:e30311. [PMID: 36407263 PMCID: PMC9659497 DOI: 10.7759/cureus.30311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Keratitis is a pathological condition involving inflammation of the cornea. It can be an infectious or non-infectious disease. The causative organisms of keratitis are categorized as bacteria, viruses, fungi, or parasites. The viruses responsible for causing keratitis are herpes simplex virus (HSV), varicella-zoster virus, and adenoviruses. The clinical features of this infection may range from pain and redness of the eye to scarring of the cornea or blindness. We present the case of a 71-year-old elderly female patient suffering from viral (HSV) keratitis. She was referred to the department of ophthalmology with complaints of diminution of vision and watering in the right eye associated with pain and redness for one month, which was progressive and gradual in onset. On local examination, the surface of the cornea was irregular in the right eye, with the presence of old keratitis precipitates. Viral infection is the second leading cause of keratitis and is very common in the western world. Because the transmission is due to droplets and fomites, strict measures must be taken to prevent transmission. If anyone comes in contact, prophylactic antiviral therapy can be administered. The prognosis is favorable if adequately treated. It can lead to blindness if not treated on time.
Collapse
|
22
|
Yadavalli T, Patil C, Jaishankar D, Suryawanshi R. Editorial: Ocular infection of herpes: Immunology, pathogenesis, and interventions. Front Microbiol 2022; 13:986859. [PMID: 35958133 PMCID: PMC9361622 DOI: 10.3389/fmicb.2022.986859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Tejabhiram Yadavalli
| | - Chandrashekhar Patil
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Dinesh Jaishankar
- Division of Surgery, Department of Pediatrics, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rahul Suryawanshi
- Gladstone Institute of Virology, Gladstone Institute, San Francisco, CA, United States
| |
Collapse
|
23
|
Thakkar P, Banks JM, Rahat R, Brandini DA, Naqvi AR. Viruses of the oral cavity: Prevalence, pathobiology and association with oral diseases. Rev Med Virol 2022; 32:e2311. [PMID: 34854161 PMCID: PMC11646282 DOI: 10.1002/rmv.2311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
The human oral cavity contains a plethora of habitats and tissue environments, such as teeth, tongue, and gingiva, which are home to a rich microbial flora including bacteria, fungi, and viruses. Given the exposed nature of the mouth, oral tissues constantly encounter infectious agents, forming a complex ecological community. In the past, the discussion of microbiological aspects of oral disease has traditionally focused on bacteria and fungi, but viruses are attracting increasing attention as pathogens in oral inflammatory diseases. Therefore, understanding viral prevalence, pathogenicity, and preference regarding oral tissues is critical to understanding the holistic effects of viruses on oral infections. Recent investigations have demonstrated the abundance of certain viruses in oral inflammatory diseases, suggesting an association between viruses and disease. Human herpesviruses are the most extensively studied viruses in different oral inflammatory diseases. However, challenges in viral detection and the lack of reproducible in vitro and in vivo infection models have limited our progress in understanding viruses and their contribution to oral diseases. This review presents a summary of major mammalian viruses and associated diseases in the human oral cavity. The emergence of a recent pathogen SARS-CoV-2 and its tropism for salivary and periodontal tissues further highlights the relevance of the oral cavity in host-pathogen interaction. Understanding how these different viruses present clinically and influence oral health will advance our understanding of multifactorial oral diseases and their association with viruses.
Collapse
Affiliation(s)
- Pari Thakkar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jonathan M. Banks
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rani Rahat
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela A. Brandini
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Polat HK, Kurt N, Aytekin E, Bozdağ Pehlivan S, Çalış S. Novel Drug Delivery Systems to Improve the Treatment of Keratitis. J Ocul Pharmacol Ther 2022; 38:376-395. [PMID: 35763406 DOI: 10.1089/jop.2021.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Keratitis is a disease characterized by inflammation of the cornea caused by different pathogens. It can cause serious visual morbidity if not treated quickly. Depending on the pathogen causing keratitis, eye drops containing antibacterial, antifungal, or antiviral agents such as besiloxacin, moxifloxacin, ofloxacin, voriconazol, econazole, fluconazole, and acyclovir are used, and these drops need to be applied frequently due to their low bioavailability. Studies are carried out on formulations with extended residence time in the cornea and increased permeability. These formulations include various new drug delivery systems such as inserts, nanoparticles, liposomes, niosomes, cubosomes, microemulsions, in situ gels, contact lenses, nanostructured lipid carriers, carbon quantum dots, and microneedles. Ex vivo and in vivo studies with these formulations have shown that the residence time of the active substances in the cornea is prolonged, and their ocular bioavailability is increased. In addition, in vivo studies have shown that these formulations successfully treat keratitis. However, it has been observed that fluoroquinolones are used in most of the studies; similar drug delivery systems are generally preferred for antifungal drugs, and studies for viral and acanthameba keratitis are limited. There is a need for new studies on different types of keratitis and different drug active substances. At the same time, proving the efficacy of drug delivery systems, which give promising results in in vivo animal models, with clinical studies is of great importance for progress in the treatment of keratitis.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Nihat Kurt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Eren Aytekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Safety, efficacy and delivery of multiple nucleoside analogs via drug encapsulated carbon (DECON) based sustained drug release platform. Eur J Pharm Biopharm 2022; 173:150-159. [PMID: 35314347 PMCID: PMC9113733 DOI: 10.1016/j.ejpb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Acyclovir and similar nucleoside analogs form an essential frontline treatment for various herpesvirus infections of the eye. However, these drugs have low ocular retention when delivered topically and need to be administered several times every day. We have previously demonstrated that acyclovir loaded into activated carbon can be used to significantly decrease dosage frequency in a murine model of ocular infection. In this study, we demonstrate that other nucleoside analogs such as ganciclovir, penciclovir and famciclovir have excellent loading and release profile similar to acyclovir. Similarly we also demonstrate that nucleoside analog loaded carbons termed DECON are effective at very low concentrations in treating active viral infection of human corneal epithelial cells. In this study, using a variety of techniques to evaluate corneal dryness, nerve sensitivity, intraocular pressure, corneal thickness, and somatic inflammation, we report that DECON is well tolerated after administration three times daily over the course of four weeks.
Collapse
|
26
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
27
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|