1
|
Zhang X, Wang Z, Liu C, Li W, Yuan Z, Li F, Yue X. Multi-omics analysis of chemical composition variation among different muscle types in Hu lamb. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39400907 DOI: 10.1002/jsfa.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Consumers' preferences for lamb meat vary greatly depending on the specific cut. Variations in the chemical composition across different muscle types play a crucial role in determining meat quality, particularly with regard to flavor. Therefore, it is essential to study the variations in chemical composition among different muscle types in lamb, as well as the mechanisms behind their formation, aiming to understand the flavor variation across the muscle types. RESULTS Flank muscles showed significantly higher intramuscular fat content and muscle fiber diameter compared to triceps brachii and biceps femoris (BF), at the same time as displaying a significantly lower percentage of type I muscle fibers. Forty-three differentially abundant volatile compounds (DAVC) were identified across five muscles, with the majority of DAVCs being more abundant in the BF. In total, 161 differentially abundant lipids were identified across five muscles, with triglycerides (TG), phosphatidylcholines (PC), phosphatidyl ethanolamines (PE) and phosphatidylmethanol (PMeOH) showing a strong correlation with DAVCs. A lipid-gene regulatory network was established, encompassing 664 lipids and 11 107 genes, leading to the identification of pathways and genes that regulate the metabolism of PEs, PMeOH, PCs and TGs. CONCLUSION The present study showed the significant variation in flavor compounds among the five edible muscles, as well as the potential reasons for their formation. The results potentially provide a theoretical foundation for improving the meat quality of lamb. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chongyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenqiao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Waghwala SP, Ngo T, Verkaik A. Imaging Phospholipase D Activity with Clickable Alcohols via Transphosphatidylation. Methods Mol Biol 2024; 2816:129-138. [PMID: 38977594 DOI: 10.1007/978-1-0716-3902-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).
Collapse
Affiliation(s)
- Shyamal P Waghwala
- Bascom Palmer Eye Institute, Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL, USA.
- The University of Texas at Southwestern Medical School, Dallas, TX, USA.
| | - Taylor Ngo
- Bascom Palmer Eye Institute, Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL, USA
- California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Ainsely Verkaik
- Bascom Palmer Eye Institute, Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL, USA
- College of Optometry, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
3
|
Su Z, Slivka P, Paulsboe S, Chu K, Wetter JB, Namovic M, Perron D, Kannan A, Wan Q, Manning C, Todorovic V, Smith KM, Lipovsky A, Wang Y, Frank K, McGaraughty S, Loud J, Scott VE, Honore P, Goedken ER. Importance of PLD2 in an IL-23 driven psoriasiform dermatitis model and potential link to human psoriasis. J Dermatol 2023; 50:1321-1329. [PMID: 37455419 DOI: 10.1111/1346-8138.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Phospholipase D2 (PLD2), a major isoform of the PLD family, has been reported to regulate inflammatory responses. Thus far, the relevance of PLD2 in psoriasis, an inflammatory skin disease, has not been explored. In the current study, we examined PLD2 expression in the skin of psoriasis patients and the role of PLD2 in an interleukin (IL)-23-induced mouse model of psoriasiform dermatitis. Both in situ hybridization and bulk RNA sequencing showed PLD2 gene expression is significantly higher in lesional relative to non-lesional skin of psoriasis patients or the skin of healthy subjects. PLD2 expression is also enriched in residual lesions from patients on biologic therapies. Murine in vivo studies showed that PLD2 deficiency significantly reduced psoriasiform inflammation in IL-23-injected ears, as reflected by decreases in ear thickness, expression of defensin beta 4A and the S100 calcium binding protein A7A, macrophage infiltrate, and expression of CXCL10 and IL-6. However, the expression of type 17 cytokines, IL-17A and IL-17F, were not reduced. Dual knockout of PLD1 and PLD2 offered little additional protection compared to PLD2 knockout alone in the IL-23 model. In addition, pharmacological inhibition with a pan-PLD1/PLD2 inhibitor also suppressed IL-23-induced psoriasiform dermatitis. Bone-marrow-derived macrophages from wild type (WT) and PLD2 knockout (KO) mice exhibited little difference in viability and sensitivity to lipopolysaccharide and/or interferon gamma, or resiquimod (R848). PLD2 deficiency did not alter the differentiation and function of Th17 cells in an ex vivo study with splenocytes isolated from WT and PLD2 KO mice. Overall, these data suggest that PLD2 may play a role in the pathophysiology of psoriasis. Reducing macrophage infiltrate and cytokine/chemokine production might contribute to an anti-inflammatory effect observed in PLD2 knockout mice. Further studies are required to better understand the mechanisms by which PLD2 contributes to skin lesions in psoriasis patients and psoriasiform dermatitis models.
Collapse
Affiliation(s)
- Zhi Su
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Peter Slivka
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | | | - Katherine Chu
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Joseph B Wetter
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Marian Namovic
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Denise Perron
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Arun Kannan
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Qi Wan
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Charlene Manning
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Viktor Todorovic
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Kathleen M Smith
- Cambridge Research Center, AbbVie Inc., Cambridge, Massachusetts, USA
| | - Alex Lipovsky
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Yibing Wang
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Kristine Frank
- Centralized Medicinal Chemistry, AbbVie Inc., North Chicago, Illinois, USA
| | | | - Jacqueline Loud
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Victoria E Scott
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Prisca Honore
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Eric R Goedken
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Parinandi NL, Liaugminas A, Oliver PJ, Varadharaj S, Yenigalla A, Elliott AC, Arutla S, Campbell SJ, Kotha SR, Sherwani SI, Kutala VK, McDaniel JC, Maddipati KR, Kuppusamy P, Hund TJ. Classic Phytochemical Antioxidant and Lipoxygenase Inhibitor, Nordihydroguaiaretic Acid, Activates Phospholipase D through Oxidant Signaling and Tyrosine Phosphorylation Leading to Cytotoxicity in Lung Vascular Endothelial Cells. Cell Biochem Biophys 2023:10.1007/s12013-023-01128-1. [PMID: 36820994 DOI: 10.1007/s12013-023-01128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Narasimham L Parinandi
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Alex Liaugminas
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Patrick J Oliver
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Saradhadevi Varadharaj
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anita Yenigalla
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Austin C Elliott
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sukruthi Arutla
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Steven J Campbell
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sainath R Kotha
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Shariq I Sherwani
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Vijay K Kutala
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jodi C McDaniel
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Krishna Rao Maddipati
- Department of Pathology and Lipidomics Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Periannan Kuppusamy
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | - Thomas J Hund
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|