1
|
Ya J, Bayraktutan U. Vascular Ageing: Mechanisms, Risk Factors, and Treatment Strategies. Int J Mol Sci 2023; 24:11538. [PMID: 37511296 PMCID: PMC10380571 DOI: 10.3390/ijms241411538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Ageing constitutes the biggest risk factor for poor health and adversely affects the integrity and function of all the cells, tissues, and organs in the human body. Vascular ageing, characterised by vascular stiffness, endothelial dysfunction, increased oxidative stress, chronic low-grade inflammation, and early-stage atherosclerosis, may trigger or exacerbate the development of age-related vascular diseases, which each year contribute to more than 3.8 million deaths in Europe alone and necessitate a better understanding of the mechanisms involved. To this end, a large number of recent preclinical and clinical studies have focused on the exponential accumulation of senescent cells in the vascular system and paid particular attention to the specific roles of senescence-associated secretory phenotype, proteostasis dysfunction, age-mediated modulation of certain microRNA (miRNAs), and the contribution of other major vascular risk factors, notably diabetes, hypertension, or smoking, to vascular ageing in the elderly. The data generated paved the way for the development of various senotherapeutic interventions, ranging from the application of synthetic or natural senolytics and senomorphics to attempt to modify lifestyle, control diet, and restrict calorie intake. However, specific guidelines, considering the severity and characteristics of vascular ageing, need to be established before widespread use of these agents. This review briefly discusses the molecular and cellular mechanisms of vascular ageing and summarises the efficacy of widely studied senotherapeutics in the context of vascular ageing.
Collapse
Affiliation(s)
- Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
2
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
3
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
4
|
Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int J Mol Sci 2022; 23:ijms232416002. [PMID: 36555645 PMCID: PMC9782563 DOI: 10.3390/ijms232416002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human nutrition is a relatively new science based on biochemistry and the effects of food constituents. Ancient medicine considered many foods as remedies for physical performance or the treatment of diseases and, since ancient times, especially Greek, Asian and pre-Christian cultures similarly thought that they had beneficial effects on health, while others believed some foods were capable of causing illness. Hippocrates described the food as a form of medicine and stated that a balanced diet could help individuals stay healthy. Understanding molecular nutrition, the interaction between nutrients and DNA, and obtaining specific biomarkers could help formulate a diet in which food is not only a food but also a drug. Therefore, this study aims to analyze the role of the Mediterranean diet and olive oil on cardiovascular risk and to identify their influence from the genetic and epigenetic point of view to understand their possible protective effects.
Collapse
|
5
|
George S, Yin H, Liu Z, Shen S, Cole I, Khiong CW. Hazard profiling of a combinatorial library of zinc oxide nanoparticles: Ameliorating light and dark toxicity through surface passivation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128825. [PMID: 35430455 DOI: 10.1016/j.jhazmat.2022.128825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Zinc oxide (ZnO) is one of the high-volume production nanoparticles (NPs) currently used in a wide range of consumer and industrial goods. The inevitable seepage into environmental matrices and the photoactive nature of ZnO NPs warrants hazard profiling under environmentally related conditions. In this paper, the influence of simulated solar light (SSL) on dissolution behaviour and phototoxicity of ZnO NPs was studied using a combinatorial library of ZnO NPs with different sizes, surface coatings, dopant chemistry, and aspect ratios in a fish cell line (BF2) and zebrafish embryos. Generally, the cytotoxicity and embryo mortality increased when exposed concomitantly to SSL and ZnO NPs. The increase in toxic potential of ZnO NPs during SSL exposure concurred with release of Zn ions and ROS generation. Surface modification of NPs with poly(methacrylic acid) (PMAA), silica or serum coating decreased toxicity and ZnO with serum coating was the only NP that had no significant effect on any of the cytotoxicity parameters when tested under both dark and SSL conditions. Results from our study show that exposure to light could increase the toxic potential of ZnO NPs to environmental lifeforms and mitigation of ZnO NP toxicity is possible through modifying the surface chemistry.
Collapse
Affiliation(s)
- Saji George
- Centre for Sustainable Nanotechnology, School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore 569830, Singapore; Department of Food Science and Agriculture Chemistry, McGill University, Macdonald Campus, Ste Anne De Bellevue, PQ H9X 3V9, Canada.
| | - Hong Yin
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, VIC 3000 Australia; CSIRO Manufacturing, Bayview Ave, Clayton, Vic 3168, Australia.
| | - Ziruo Liu
- Department of Food Science and Agriculture Chemistry, McGill University, Macdonald Campus, Ste Anne De Bellevue, PQ H9X 3V9, Canada
| | - Shirley Shen
- CSIRO Manufacturing, Bayview Ave, Clayton, Vic 3168, Australia
| | - Ivan Cole
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, VIC 3000 Australia
| | - Chan Woon Khiong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
6
|
Balansky R, La Maestra S, Kancheva VD, Trofimov AV, Djongov L, De Flora S. Clastogenic effects of cigarette smoke and urethane and their modulation by olive oil, curcumin and carotenoids in adult mice and foetuses. Food Chem Toxicol 2021; 155:112383. [PMID: 34224802 DOI: 10.1016/j.fct.2021.112383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
In spite of the overwhelming epidemiological evidence for cigarette smoke (CS) carcinogenicity, less attention has been paid to the effects of CS as a complex mixture. As assessed in a series of experiments in murine models, the whole-body exposure to mainstream CS induced significant increases of micronucleated cells in the respiratory tract, bone marrow and peripheral blood of adult mice as well as in the liver and peripheral blood of foetuses whose mothers had been exposed throughout pregnancy. Urethane was potently clastogenic in the same cells when injected intraperitoneally. The daily administration of extra-virgin olive oil by gavage produced evident and consistent protective effects in all monitored experimental systems. In contrast, sunflower oil exhibited some adverse effects. Curcumin did not produce any significant effect in the bone marrow of both CS-exposed adults and foetuses but it elicited a dose-dependent protective effect traceable in blood erythrocytes. However, the higher curcumin dose further increased the frequency of micronucleated pulmonary alveolar macrophages. The apparent protective effects produced by lycopene and by a carotenoid mix were overwhelmed by those produced by olive oil, and lycopene even exhibited a worsening effect on the frequency of micronucleated erythroblasts in the bone marrow of urethane-treated adult mice.
Collapse
Affiliation(s)
- Roumen Balansky
- University Specialized Hospital for Active Treatment in Oncology, Sofia, 1756, Bulgaria
| | | | - Vessela D Kancheva
- Institute of Organic Chemistry, Center of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Aleksei V Trofimov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Lachezar Djongov
- University Specialized Hospital for Active Treatment in Oncology, Sofia, 1756, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16139, Genoa, Italy.
| |
Collapse
|
7
|
Shannon OM, Ashor AW, Scialo F, Saretzki G, Martin-Ruiz C, Lara J, Matu J, Griffiths A, Robinson N, Lillà L, Stevenson E, Stephan BCM, Minihane AM, Siervo M, Mathers JC. Mediterranean diet and the hallmarks of ageing. Eur J Clin Nutr 2021; 75:1176-1192. [PMID: 33514872 DOI: 10.1038/s41430-020-00841-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Ageing is a multifactorial process associated with reduced function and increased risk of morbidity and mortality. Recently, nine cellular and molecular hallmarks of ageing have been identified, which characterise the ageing process, and collectively, may be key determinants of the ageing trajectory. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Healthier dietary patterns reduce the risk of age-related diseases and increase longevity and may influence positively one or more of these hallmarks. The Mediterranean dietary pattern (MedDiet) is a plant-based eating pattern that was typical of countries such as Greece, Spain, and Italy pre-globalisation of the food system and which is associated with better health during ageing. Here we review the potential effects of a MedDiet on each of the nine hallmarks of ageing, and provide evidence that the MedDiet as a whole, or individual elements of this dietary pattern, may influence each hallmark positively-effects which may contribute to the beneficial effects of this dietary pattern on age-related disease risk and longevity. We also highlight potential avenues for future research.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| | - Ammar W Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Filippo Scialo
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
- Dipartimento di Scienze Mediche Traslazionali, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Carmen Martin-Ruiz
- Bioscience Institute, Bioscreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Jose Lara
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne,, NE1 8ST, UK
| | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds,, LS1 3HE, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds,, LS163QS, UK
| | - Natassia Robinson
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Lionetti Lillà
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Emma Stevenson
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| | - Blossom C M Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham,, NG7 2UH, UK.
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| |
Collapse
|
8
|
Romero-Márquez JM, Varela-López A, Navarro-Hortal MD, Badillo-Carrasco A, Forbes-Hernández TY, Giampieri F, Domínguez I, Madrigal L, Battino M, Quiles JL. Molecular Interactions between Dietary Lipids and Bone Tissue during Aging. Int J Mol Sci 2021; 22:ijms22126473. [PMID: 34204176 PMCID: PMC8233828 DOI: 10.3390/ijms22126473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related bone disorders such as osteoporosis or osteoarthritis are a major public health problem due to the functional disability for millions of people worldwide. Furthermore, fractures are associated with a higher degree of morbidity and mortality in the long term, which generates greater financial and health costs. As the world population becomes older, the incidence of this type of disease increases and this effect seems notably greater in those countries that present a more westernized lifestyle. Thus, increased efforts are directed toward reducing risks that need to focus not only on the prevention of bone diseases, but also on the treatment of persons already afflicted. Evidence is accumulating that dietary lipids play an important role in bone health which results relevant to develop effective interventions for prevent bone diseases or alterations, especially in the elderly segment of the population. This review focuses on evidence about the effects of dietary lipids on bone health and describes possible mechanisms to explain how lipids act on bone metabolism during aging. Little work, however, has been accomplished in humans, so this is a challenge for future research.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alberto Badillo-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Tamara Y. Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irma Domínguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Lorena Madrigal
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Correspondence:
| |
Collapse
|
9
|
Badillo-Carrasco A, Jiménez-Trigo V, Romero-Márquez JM, Rivas-García L, Varela-López A, Navarro-Hortal MD. Evidence supporting beneficial effects of virgin olive oil compared to sunflower and fish oils from the point of view of aging and longevity. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diet plays a central role in aging and in the prevention of age-related diseases. Specifically, dietary lipids have influence on processes like oxidative stress or inflammation. This review summarizes and compares the effects of lifelong feeding on three different fat sources, namely virgin olive oil, sunflower oil or fish oil (which differ in fatty acid profile and minor components content) in the pancreas, liver, alveolar bone and femur of old rats. Also, effects on longevity and causes of death are summarized. Animals fed on virgin olive oil had a lower number of β cells and insulin content in the pancreas, less liver fibrosis, less loss of alveolar bone, and greater bone mass density in the femur. In general, the markers of oxidative damage at the liver, pancreatic, gingival and systemic levels were also lower in animals fed on virgin olive oil compared to those treated with sunflower or fish oil. Finally, although the animals died from similar causes regardless of the experimental group, virgin olive oil increased lifespan compared to sunflower oil. Therefore, it is evidenced the chance to modulate the effects of the physiological aging process by diet and, more specifically, by dietary fat.
Collapse
Affiliation(s)
- Alberto Badillo-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Victoria Jiménez-Trigo
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - José M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| |
Collapse
|
10
|
Yazihan N, Akdas S, Olgar Y, Biriken D, Turan B, Ozkaya M. Olive oil attenuates oxidative damage by improving mitochondrial functions in human keratinocytes. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Bando M, Masumoto S, Kuroda M, Tsutsumi R, Sakaue H. Effect of olive oil consumption on aging in a senescence-accelerated mice-prone 8 (SAMP8) model. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:241-247. [PMID: 31656282 DOI: 10.2152/jmi.66.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background : Mediterranean diets have been linked to a reduced risk of cancer, vascular illnesses, Parkinson's and Alzheimer's disease. Olive oil is the primary fat source in the Mediterranean diet ; however, only a few studies have investigated the effect of olive oil on aging. In the present study, we aimed to determine whether consumption of olive oil significantly influences aging and memory in senescence-accelerated mouse-prone 8 (SAMP8). Methods : SAMP8 and senescence-accelerated mouse resistant 1 (SAMR1) mice were fed either 7% soy oil or 1% olive oil and 6% soy oil during a six-month study period. Reduction in memory in passive avoidance learning was examined after two months from the initiation of the experiment. Results : The weight of organs including the liver, kidney, spleen, and fat tissue changed significantly and memory performance was reduced in SAMP8 than in SAMR1 mice. There were no significant differences in SAMP8 and SAMR1 mice; however, blood triglyceride level decreased significantly in SAMP8 mice fed on olive oil. Conclusions : These results suggest that consuming olive oil may not have a protective role in aging and memory recall, but beneficial effects may be related to improvement in lipid metabolism. J. Med. Invest. 66 : 241-247, August, 2019.
Collapse
Affiliation(s)
- Masahiro Bando
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saeko Masumoto
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Navarro-Hortal MD, Ramírez-Tortosa CL, Varela-López A, Romero-Márquez JM, Ochoa JJ, Ramírez-Tortosa MC, Forbes-Hernández TY, Granados-Principal S, Battino M, Quiles JL. Heart Histopathology and Mitochondrial Ultrastructure in Aged Rats Fed for 24 Months on Different Unsaturated Fats (Virgin Olive Oil, Sunflower Oil or Fish Oil) and Affected by Different Longevity. Nutrients 2019; 11:E2390. [PMID: 31591312 PMCID: PMC6835383 DOI: 10.3390/nu11102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Diet plays a decisive role in heart physiology, with lipids having especial importance in pathology prevention and development. This study aimed to investigate how dietary lipids varying in lipid profile (virgin olive oil, sunflower oil or fish oil) affected the heart of rats during aging. Heart histopathology, mitochondrial morphometry, and oxidative status were assessed. Typical histopathological features associated with aging, such as valvular lesions, endomyocardical hyperplasia, or papillary muscle calcification, were found at a low extent in all the experimental groups. The most relevant finding was that inflammation registered by fish oil group was lower compared to the other treatments. At the ultrastructural level, heart mitochondrial area, perimeter, and aspect ratio were higher in fish oil-fed rats than in those fed on sunflower oil. Concerning oxidative stress markers, there were differences only in coenzyme Q levels and catalase activity, lower in sunflower oil-fed animals compared with those fed on fish oil. In summary, dietary intake for a long period on dietary fats with different fatty acids profile led to differences in some aspects associated with the aging process at the heart. Fish oil seems to be the fat most protective of heart during aging.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - César L Ramírez-Tortosa
- UGC de Anatomía Patológica, Hospital San Cecilio de Granada, Avda, Conocimiento s/n, 18100 Granada, Spain.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - Julio J Ochoa
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - MCarmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Sergio Granados-Principal
- UGC de Oncología Médica, Hospital Universitario de Jaén, Avenida del Ejército Español 10, 23007 Jaén, Spain.
- Genyo, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica, Università Politecnica delle Marche, Ancona, 60131 Ancona, Italy.
- International Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| |
Collapse
|
13
|
Simón L, Saez Lancellotti TE, Cortese L, Veisaga ML, Chantarasinlapin P, Barbieri A, Fornés M. Olive oil addition to the high-fat diet reduces methylglyoxal (MG-H1) levels increased in hypercholesterolemic rabbits. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Layla Simón
- Laboratory of Andrologic Research of Mendoza, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, and Technologic Scientific Center (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tania E. Saez Lancellotti
- Laboratory of Andrologic Research of Mendoza, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, and Technologic Scientific Center (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Leandro Cortese
- Laboratory of Andrologic Research of Mendoza, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, and Technologic Scientific Center (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Maria-Luisa Veisaga
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA; Fairchild Tropical Botanic Garden, Coral Gables, FL, USA; International Center of Tropical Botany, Florida International University, Miami, FL, USA
| | - Preaw Chantarasinlapin
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alejandro Barbieri
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA; Fairchild Tropical Botanic Garden, Coral Gables, FL, USA; International Center of Tropical Botany, Florida International University, Miami, FL, USA
| | - Miguel Fornés
- Laboratory of Andrologic Research of Mendoza, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, and Technologic Scientific Center (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| |
Collapse
|
14
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
15
|
Battino M, Forbes-Hernández TY, Gasparrini M, Afrin S, Cianciosi D, Zhang J, Manna PP, Reboredo-Rodríguez P, Varela Lopez A, Quiles JL, Mezzetti B, Bompadre S, Xiao J, Giampieri F. Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit Rev Food Sci Nutr 2018; 59:893-920. [PMID: 30421983 DOI: 10.1080/10408398.2018.1526165] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The traditional Mediterranean diet (MedDiet) is a well-known dietary pattern associated with longevity and improvement of life quality as it reduces the risk of the most common chronic pathologies, such as cancer and cardiovascular diseases (CVDs), that represent the principal cause of death worldwide. One of the most characteristic foods of MedDiet is olive oil, a very complex matrix, which constitutes the main source of fats and is used in the preparation of foods, both raw as an ingredient in recipes, and in cooking. Similarly, strawberries and raspberries are tasty and powerful foods which are commonly consumed in the Mediterranean area in fresh and processed forms and have attracted the scientific and consumer attention worldwide for their beneficial properties for human health. Besides olive oil and berries, honey has lately been introduced in the MedDiet thanks to its relevant nutritional, phytochemical and antioxidant profile. It is a sweet substance that has recently been classified as a functional food. The aim of this review is to present and discuss the recent evidence, obtained from in vitro, in vivo and epidemiological studies, on the potential roles exerted by these foods in the prevention and progression of different types of cancer and CVDs.
Collapse
Affiliation(s)
- Maurizio Battino
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Tamara Y Forbes-Hernández
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Massimiliano Gasparrini
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Sadia Afrin
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Danila Cianciosi
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Jiaojiao Zhang
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Piera P Manna
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Patricia Reboredo-Rodríguez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,b Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science , University of Vigo, Ourense Campus , Ourense , Spain
| | - Alfonso Varela Lopez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Josè L Quiles
- c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Bruno Mezzetti
- d Dipartimento di Scienze Agrarie, Alimentari e Ambientali , Università Politecnica delle Marche , Ancona , Italy
| | - Stefano Bompadre
- e Dipartimento di Scienze Biomediche e Sanità Pubblica , Università Politecnica delle Marche , Ancona , Italy
| | - Jianbo Xiao
- f Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau , China
| | - Francesca Giampieri
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| |
Collapse
|
16
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J Nutr Biochem 2017; 52:36-44. [PMID: 29144994 DOI: 10.1016/j.jnutbio.2017.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
This study investigates the effect of lifelong intake of different fat sources rich in monounsaturated (virgin olive oil), n6 polyunsaturated (sunflower oil) or n3 polyunsaturated (fish oil) fatty acids in the aged liver. Male Wistar rats fed lifelong on diets differing in the fat source were killed at 6 and at 24 months of age. Liver histopathology, mitochondrial ultrastructure, biogenesis, oxidative stress, mitochondrial electron transport chain, relative telomere length and gene expression profiles were studied. Aging led to lipid accumulation in the liver. Virgin olive oil led to the lowest oxidation and ultrastructural alterations. Sunflower oil induced fibrosis, ultrastructural alterations and high oxidation. Fish oil intensified oxidation associated with age, lowered electron transport chain activity and enhanced the relative telomere length. Gene expression changes associated with age in animals fed virgin olive oil and fish oil were related mostly to mitochondrial function and oxidative stress pathways, followed by cell cycle and telomere length control. Sunflower oil avoided gene expression changes related to age. According to the results, virgin olive oil might be considered the dietary fat source that best preserves the liver during the aging process.
Collapse
|
18
|
Varela-López A, Ochoa JJ, Llamas-Elvira JM, López-Frías M, Planells E, Speranza L, Battino M, Quiles JL. Loss of Bone Mineral Density Associated with Age in Male Rats Fed on Sunflower Oil Is Avoided by Virgin Olive Oil Intake or Coenzyme Q Supplementation. Int J Mol Sci 2017; 18:E1397. [PMID: 28661441 PMCID: PMC5535890 DOI: 10.3390/ijms18071397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
The role of dietary fat unsaturation and the supplementation of coenzyme Q have been evaluated in relation to bone health. Male Wistar rats were maintained for 6 or 24 months on two diets varying in the fat source, namely virgin olive oil, rich in monounsaturated fatty acids, or sunflower oil, rich in n-6 polyunsaturated fatty acids. Both dietary fats were supplemented or not with coenzyme Q10 (CoQ10). Bone mineral density (BMD) was evaluated in the femur. Serum levels of osteocalcin, osteopontin, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), adrenocorticotropin (ACTH) and parathyroid hormone (PTH), as well as urinary F₂-isoprostanes were measured. Aged animals fed on virgin olive oil showed higher BMD than those fed on sunflower oil. In addition, CoQ10 prevented the age-related decline in BMD in animals fed on sunflower oil. Urinary F₂-isoprostanes analysis showed that sunflower oil led to the highest oxidative status in old animals, which was avoided by supplementation with CoQ10. In conclusion, lifelong feeding on virgin olive oil or the supplementation of sunflower oil on CoQ10 prevented, at least in part mediated by a low oxidative stress status, the age-related decrease in BMD found in sunflower oil fed animals.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - José M Llamas-Elvira
- Department of Medicine and Science of Aging, University of Chieti "G. D'Annunzio", 66100 Chieti, Italy.
| | - Magdalena López-Frías
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - Elena Planells
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| | - Lorenza Speranza
- Department of Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Nuclear Medicine Service, Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18014 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento s.n., Armilla, 18016 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, Calle del Prof. Clavera s.n., 18071 Granada, Spain.
| |
Collapse
|
19
|
Varela-López A, Ochoa JJ, Llamas-Elvira JM, López-Frías M, Planells E, Ramirez-Tortosa MC, Ramirez-Tortosa CL, Giampieri F, Battino M, Quiles JL. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q 10 Addition. Nutrients 2017; 9:E176. [PMID: 28241421 PMCID: PMC5331607 DOI: 10.3390/nu9020176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/24/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022] Open
Abstract
During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10), to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA)-based diet for bone mineral density (BMD) preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F₂-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F₂-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | | | - Magdalena López-Frías
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | - Elena Planells
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | - MCarmen Ramirez-Tortosa
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Biochemistry and Molecular Biology II, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| | | | - Francesca Giampieri
- Department of Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Department of Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100 Granada, Spain.
| |
Collapse
|
20
|
Bouamama S, Merzouk H, Medjdoub A, Merzouk-Saidi A, Merzouk SA. Effects of exogenous vitamins A, C, and E and NADH supplementation on proliferation, cytokines release, and cell redox status of lymphocytes from healthy aged subjects. Appl Physiol Nutr Metab 2017; 42:579-587. [PMID: 28177713 DOI: 10.1139/apnm-2016-0201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aging is an inevitable biological event that is associated with immune alterations. These alterations are related to increased cellular oxidative stress and micronutrient deficiency. Antioxidant supplementation could improve these age-related abnormalities. The aim of this study was to determine in vitro effects of vitamin A, vitamin C, vitamin E, and nicotinamide adenine dinucleotide (NADH) on T cell proliferation, cytokine release, and cell redox status in the elderly compared with young adults. Peripheral blood lymphocytes were isolated using a density gradient of Histopaque. They were cultured in vitro and stimulated with concanavalin A in the presence or absence of vitamins. Cell proliferation was determined by conducting MTT assays, and based on interleukin-2 and interleukin-4 secretions. Cell oxidant/antioxidant balance was assessed by assaying reduced glutathione (GSH), malondialdehyde, carbonyl protein levels, and catalase activity. The present study demonstrated that T-lymphocyte proliferation was decreased with aging and was associated with cytokine secretion alterations, GSH depletion, and intracellular oxidative stress. In the elderly, vitamin C, vitamin E, and NADH significantly improved lymphocyte proliferation and mitigated cellular oxidative stress, whereas vitamin A did not affect cell proliferation or cell redox status. In conclusion, vitamin C, vitamin E, and NADH supplementation improved T-lymphocytes response in the elderly, and could contribute to the prevention of age-related immune alterations. Consumption of food items containing these vitamins is recommended, and further investigation is necessary to evaluate the effect of vitamin supplementation in vivo.
Collapse
Affiliation(s)
- Samia Bouamama
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Hafida Merzouk
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Amel Medjdoub
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Amel Merzouk-Saidi
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Sid Ahmed Merzouk
- b Department of Technical Sciences, Faculty of Engineering, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| |
Collapse
|
21
|
Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, Rosignoli P, Rossi T, Taticchi A, Servili M, Galli F. Nutrigenomics of extra-virgin olive oil: A review. Biofactors 2017; 43:17-41. [PMID: 27580701 DOI: 10.1002/biof.1318] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Nutrigenomics data on the functional components of olive oil are still sparse, but rapidly increasing. Olive oil is the main source of fat and health-promoting component of the Mediterranean diet. Positive effects have been observed on genes involved in the pathobiology of most prevalent age- and lifestyle-related human conditions, such as cancer, cardiovascular disease and neurodegeneration. Other effects on health-promoting genes have been identified for bioactive components of olives and olive leafs. Omics technologies are offering unique opportunities to identify nutritional and health biomarkers associated with these gene responses, the use of which in personalized and even predictive protocols of investigation, is a main breakthrough in modern medicine and nutrition. Gene regulation properties of the functional components of olive oil, such as oleic acid, biophenols and vitamin E, point to a role for these molecules as natural homeostatic and even hormetic factors with applications as prevention agents in conditions of premature and pathologic aging. Therapeutic applications can be foreseen in conditions of chronic inflammation, and particularly in cancer, which will be discussed in detail in this review paper as major clinical target of nutritional interventions with olive oil and its functional components. © 2016 BioFactors, 43(1):17-41, 2017.
Collapse
Affiliation(s)
- Marta Piroddi
- Department of Pharmaceutical Sciences, Nutrition and Clinical Biochemistry Lab, University of Perugia, Italy
| | - Adriana Albini
- IRCCS MultiMedica, Scientific and Technology Pole, Milan, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Italy
| | - Lisa Giovannelli
- NEUROFARBA - Section of Phamacology and Toxicology, University of Firenze, Italy
| | - Cristina Luceri
- NEUROFARBA - Section of Phamacology and Toxicology, University of Firenze, Italy
| | - Fausta Natella
- CREA-NUT, Consiglio per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria, Food and Nutrition Research Centre, via Ardeatina 546, 00178, Roma, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Italy
| | - Teresa Rossi
- Research and Statistics, Department, IRCCS "Tecnologie Avanzate E Modelli Assistenziali in Oncologia", Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Agnese Taticchi
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Nutrition and Clinical Biochemistry Lab, University of Perugia, Italy
| |
Collapse
|
22
|
Gautam N, Das S, Kar Mahapatra S, Chakraborty SP, Kundu PK, Roy S. Age associated oxidative damage in lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:275-82. [PMID: 20972374 PMCID: PMC2952088 DOI: 10.4161/oxim.3.4.12860] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocytes are an important immunological cell and have been played a significant role in acquired immune system; hence, may play in pivotal role in immunosenescence. Oxidative stress has been reported to increase in elderly subjects, possibly arising from an uncontrolled production of free radicals with aging and decreased antioxidant defenses. This study was aimed to evaluate the level of lipid-protein damage and antioxidant status in lymphocytes of healthy individuals to correlate between oxidative damage with the aging process. Twenty healthy individuals of each age group (11-20; 21-30; 31-40; 41-50; and 51-60 years) were selected randomly. Blood samples were drawn by medical practitioner and lymphocytes were isolated from blood samples. Malondialdehyde (MDA), protein carbonyls (PC) level were evaluated to determine the lipid and protein damage in lymphocytes. Superoxide dismutase (SOD), catalase (CAT), glutathione and glutathione dependent enzymes were estimated to evaluate the antioxidant status in the lymphocytes. Increased MDA and PC levels strongly support the increased oxidative damage in elderly subject than young subjects. The results indicated that, balance of oxidant and antioxidant systems in lymphocytes shifts in favor of accelerated oxidative damage during aging. Thus oxidative stress in lymphocytes may particular interest in aging and may play important role in immunosenescence.
Collapse
Affiliation(s)
- Nandeslu Gautam
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Subhasis Das
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Santanu Kar Mahapatra
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Subhankari Prasad Chakraborty
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Pratip Kumar Kundu
- Department of Microbiology; Vidyasagar University; Midnapore, West Bengal India
| | - Somenath Roy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| |
Collapse
|
23
|
Fernández del Río L, Gutiérrez-Casado E, Varela-López A, Villalba JM. Olive Oil and the Hallmarks of Aging. Molecules 2016; 21:163. [PMID: 26840281 PMCID: PMC6273542 DOI: 10.3390/molecules21020163] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/30/2022] Open
Abstract
Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the "hallmarks of aging", which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process. Attenuation of aging-related alterations by olive oil or its minor compounds has been observed in cellular, animal and human models. How olive oil targets the hallmarks of aging could explain the improvement of health, reduced risk of aging-associated diseases, and increased longevity which have been associated with consumption of a typical Mediterranean diet containing this edible oil as the predominant fat source.
Collapse
Affiliation(s)
- Lucía Fernández del Río
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain.
| | - Elena Gutiérrez-Casado
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, 18100 Granada, Spain.
| | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain.
| |
Collapse
|
24
|
Lausada N, Arnal N, Astiz M, Marín MC, Lofeudo JM, Stringa P, Tacconi de Alaniz MJ, Tacconi de Gómez Dumm N, Hurtado de Catalfo G, Cristalli de Piñero N, Pallanza de Stringa MC, Illara de Bozzolo EM, Bozzarello EG, Cristalli DO, Marra CA. Dietary fats significantly influence the survival of penumbral neurons in a rat model of chronic ischemic by modifying lipid mediators, inflammatory biomarkers, NOS production, and redox-dependent apoptotic signals. Nutrition 2015; 31:1430-42. [PMID: 26429666 DOI: 10.1016/j.nut.2015.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/01/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Brain stroke is the third most important cause of death in developed countries. We studied the effect of different dietary lipids on the outcome of a permanent ischemic stroke rat model. METHODS Wistar rats were fed diets containing 7% commercial oils (S, soybean; O, olive; C, coconut; G, grape seed) for 35 d. Stroke was induced by permanent middle cerebral artery occlusion. Coronal slices from ischemic brains and sham-operated animals were supravitally stained. Penumbra and core volumes were calculated by image digitalization after 24, 48, and 72 h poststroke. Homogenates and mitochondrial fractions were prepared from different zones and analyzed by redox status, inflammatory markers, ceramide, and arachidonate content, phospholipase A2, NOS, and proteases. RESULTS Soybean (S) and G diets were mainly prooxidative and proinflammatory by increasing the liberation of arachidonate and its transformation into prostaglandins. O was protective in terms of redox homeostatic balance, minor increases in lipid and protein damage, conservation of reduced glutathione, protective activation of NOS in penumbra, and net ratio of anti-to proinflammatory cytokines. Apoptosis (caspase-3, milli- and microcalpains) was less activated by O than by any other diet. CONCLUSION Dietary lipids modulate NOS and PLA2 activities, ceramide production, and glutathione import into the mitochondrial matrix, finally determining the activation of the two main protease systems involved in programmed cell death. Olive oil appears to be a biological source for the isolation of protective agents that block the expansion of brain core at the expense of penumbral neurons.
Collapse
Affiliation(s)
- Natalia Lausada
- LTO (Laboratorio de Transplante de Órganos), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Nathalie Arnal
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariana Astiz
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Cristina Marín
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Manuel Lofeudo
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Stringa
- LTO (Laboratorio de Transplante de Órganos), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María J Tacconi de Alaniz
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Nelva Tacconi de Gómez Dumm
- LTO (Laboratorio de Transplante de Órganos), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Graciela Hurtado de Catalfo
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Norma Cristalli de Piñero
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Cristina Pallanza de Stringa
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eva María Illara de Bozzolo
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Enrique Gustavo Bozzarello
- DAIS (Dirección de Aplicación de Imágenes Satelitarias), Ministerio de Infraestructura de la Pcia. de Buenos Aires, La Plata, Argentina
| | | | - Carlos Alberto Marra
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT-La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
25
|
Varela-Lopez A, Bullon P, Battino M, Ramirez-Tortosa MC, Ochoa JJ, Cordero MD, Ramirez-Tortosa CL, Rubini C, Zizzi A, Quiles JL. Coenzyme Q Protects Against Age-Related Alveolar Bone Loss Associated to n-6 Polyunsaturated Fatty Acid Rich-Diets by Modulating Mitochondrial Mechanisms. J Gerontol A Biol Sci Med Sci 2015. [DOI: 10.1093/gerona/glv063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Effects of Dietary Brazilian Palm Oil (Mauritia flexuosa L.) on Cholesterol Profile and Vitamin A and E Status of Rats. Molecules 2015; 20:9054-70. [PMID: 25996211 PMCID: PMC6272516 DOI: 10.3390/molecules20059054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
In vitro studies have been carried out to establish the nutritional differences between crude and refined vegetable oils; however, the impact of the consumption of these foods on metabolism, in particular the effect of buriti oil, needs to be further evaluated. The aim of this study was to evaluate the biochemical and murine parameters and the vitamin A and E status in young rats fed with diets supplemented with crude or refined buriti oil. The animals (n = 30) were randomized into three groups receiving diet added of soybean oil (control), crude buriti oil (CBO) and refined buriti oil (RBO) for 28 days. Rats fed with diet added of refined buriti oil (RBO) showed reduced total cholesterol (up to 60.27%), LDL (64.75%), triglycerides (55.47%) and enzyme aspartate transaminase (21.57%) compared to those fed with diet added of crude oil. Serum and hepatic retinol and tocopherol were higher by two to three times in CBO and RBO groups compared to the control group, but no differences were observed for murine parameters. The results indicate that buriti oil is an important source of the antioxidant vitamins A and E, and refined buriti oil is suggested as alternative to improve the lipid profile of healthy rats.
Collapse
|
27
|
Zhu SY, Dong Y, Tu J, Zhou Y, Zhou XH, Xu B. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacogn Mag 2014; 10:S92-9. [PMID: 24914315 PMCID: PMC4047594 DOI: 10.4103/0973-1296.127353] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/13/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Background: Silybum marianum has been used as herbal medicine for the treatment of liver disease, liver cirrhosis, and to prevent liver cancer in Europe and Asia since ancient times. Silybum marianum oil (SMO), a by-product of silymarin production, is rich in essential fatty acids, phospholipids, sterols, and vitamin E. However, it has not been very good development and use. Objective: In the present study, we used olive oil as a control to investigate the antioxidant and anti-aging effect of SMO in D-galactose (D-gal)-induced aging mice. Materials and Methods: D-gal was injected intraperitoneally (500 mg/kg body weight daily) for 7 weeks while SMO was simultaneously administered orally. The triglycerides (TRIG) and cholesterol (CHOL) levels were estimated in the serum. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), monoamine oxidase (MAO), malondialdehyde (MDA), caspase-3, and Bcl-2 were determined in the liver and brain. The activities of Na+-K+-adenosine triphosphatase (ATPase), Ca2+-Mg2+-ATPase, membrane potential (ΔΨm), and membrane fluidity of the liver mitochondrial were estimated. Results: SMO decreased levels of TRIG and CHOL in aging mice. SMO administration elevated the activities of SOD, GSH-Px, and T-AOC, which are suppressed by aging. The levels of MAO and MDA in the liver and brain were reduced by SMO administration in aging mice. Enzyme linked immunosorbent assay showed that SMO significantly decreased the concentration of caspase-3 and improved the activity of Bcl-2 in the liver and brain of aging mice. Furthermore, SMO significantly attenuated the D-gal induced liver mitochondrial dysfunction by improving the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, membrane potential (ΔΨm), and membrane fluidity. Conclusion: These results indicate that SMO effectively attenuated oxidative damage and improved apoptosis related factors as well as liver mitochondrial dysfunction in aging mice.
Collapse
Affiliation(s)
- Shu Yun Zhu
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Ying Dong
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jie Tu
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Yue Zhou
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Xing Hua Zhou
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Bin Xu
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
28
|
Diamanti J, Mezzetti B, Giampieri F, Alvarez-Suarez JM, Quiles JL, Gonzalez-Alonso A, Ramirez-Tortosa MDC, Granados-Principal S, Gonzáles-Paramás AM, Santos-Buelga C, Battino M. Doxorubicin-induced oxidative stress in rats is efficiently counteracted by dietary anthocyanin differently enriched strawberry (Fragaria × ananassa Duch.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3935-3943. [PMID: 24580025 DOI: 10.1021/jf405721d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study investigated the effects of two different strawberry cultivars, Adria and Sveva, against doxorubicin (DOX)-induced toxicity in rats. A controlled dietary intervention was conducted over 16 weeks with four groups: (i) normal diet; (ii) normal diet + DOX injection; (iii) Adria supplementation + DOX injection; and (iv) Sveva supplementation + DOX injection. Sveva presented higher total antioxidant capacity value and phenol and and vitamin C levels than Adria, which in turn presented higher anthocyanin contents. DOX drastically increased lymphocyte DNA damage, liver biomarkers of protein and lipid oxidation, and mitochondrial ROS content and markedly decreased plasma retinol level, liver antioxidant enzymes, and mitochondrial functionality. After 2 months of strawberry supplementation, rats presented a significant reduction of DNA damage and ROS concentration and a significant improvement of oxidative stress biomarkers, antioxidant enzyme activities, and mitochondrial performance. These results suggest that strawberry supplementation can counteract DOX toxicity, confirming the potential health benefit of strawberry in vivo against oxidative stress.
Collapse
Affiliation(s)
- Jacopo Diamanti
- Department of Agriculture, Food and Environmental Science, Marche Polytechnic University , 60121 Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol 2000 2013; 64:139-53. [DOI: 10.1111/j.1600-0757.2012.00455.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Roche E, Ramírez-Tortosa CL, Arribas MI, Ochoa JJ, Sirvent-Belando JE, Battino M, Ramírez-Tortosa MC, González-Alonso A, Pérez-López MP, Quiles JL. Comparative analysis of pancreatic changes in aged rats fed life long with sunflower, fish, or olive oils. J Gerontol A Biol Sci Med Sci 2013; 69:934-44. [PMID: 24136874 DOI: 10.1093/gerona/glt157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. We aimed to study the effect of oil consumption on pancreas histology in order to find aging-related signs. To this end, three groups of rats were fed an isocaloric diet for 2 years, where virgin olive, sunflower, or fish oil was included. Pancreatic samples for microscopy and blood samples were collected at the moment of sacrifice. As a result, the sunflower oil-fed rats presented higher β-cell numbers and twice the insulin content than virgin olive oil-fed animals. In addition, rats fed with fish oil developed acinar fibrosis and macrophage infiltrates in peri-insular regions, compared with counterparts fed with virgin olive oil. Inflammation signs were less prominent in the sunflower group. The obtained data emphasize the importance of dietary fatty acids in determining pancreatic structure.
Collapse
Affiliation(s)
- Enrique Roche
- Bioengineering Institute, University Miguel Hernandez, Elche (Alicante), Spain
| | | | - María I Arribas
- Bioengineering Institute, University Miguel Hernandez, Elche (Alicante), Spain
| | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain
| | - José E Sirvent-Belando
- Department of Analytical Chemistry, Nutrition and Bromatology, University of Alicante, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - M Carmen Ramírez-Tortosa
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Biochemistry and Molecular Biology II, University of Granada, Spain
| | - Adrián González-Alonso
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain
| | - M Patricia Pérez-López
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain.
| |
Collapse
|
31
|
Bullon P, Battino M, Varela-Lopez A, Perez-Lopez P, Granados-Principal S, Ramirez-Tortosa MC, Ochoa JJ, Cordero MD, Gonzalez-Alonso A, Ramirez-Tortosa CL, Rubini C, Zizzi A, Quiles JL. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PLoS One 2013; 8:e74234. [PMID: 24066124 PMCID: PMC3774624 DOI: 10.1371/journal.pone.0074234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022] Open
Abstract
Background/Objectives Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. Methods/Findings Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. Conclusions The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.
Collapse
Affiliation(s)
- Pedro Bullon
- Department of Periodontology, Dental School, University of Sevilla, Sevilla, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italia
- * E-mail:
| | - Alfonso Varela-Lopez
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, University of Granada, Granada, Spain
| | - Patricia Perez-Lopez
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, University of Granada, Granada, Spain
| | - Sergio Granados-Principal
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Maria C. Ramirez-Tortosa
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Julio J. Ochoa
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, University of Granada, Granada, Spain
| | - Mario D. Cordero
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, Sevilla, Spain
| | - Adrian Gonzalez-Alonso
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, University of Granada, Granada, Spain
| | | | - Corrado Rubini
- Dipartimento di Scienze Biomediche Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italia
| | - Antonio Zizzi
- Dipartimento di Scienze Biomediche Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italia
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, University of Granada, Granada, Spain
| |
Collapse
|
32
|
Tasset I, Pontes AJ, Hinojosa AJ, de la Torre R, Túnez I. Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington's disease-like rat model. Nutr Neurosci 2013; 14:106-11. [DOI: 10.1179/1476830511y.0000000005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Aan GJ, Zainudin MSA, Karim NA, Ngah WZW. Effect of the tocotrienol-rich fraction on the lifespan and oxidative biomarkers in Caenorhabditis elegans under oxidative stress. Clinics (Sao Paulo) 2013; 68:599-604. [PMID: 23778402 PMCID: PMC3654308 DOI: 10.6061/clinics/2013(05)04] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/02/2012] [Accepted: 01/04/2013] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This study was performed to determine the effect of the tocotrienol-rich fraction on the lifespan and oxidative status of C. elegans under oxidative stress. METHOD Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2'-deoxyguanosine, which were measured using commercially available kits. RESULTS Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2'-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2'-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes. CONCLUSION The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased.
Collapse
Affiliation(s)
- Goon Jo Aan
- Universiti Kebangsaan Malaysia, Department of Biochemistry, Faculty of Medicine, Kuala Lumpur City Campus, 50300 Kuala Lumpur/Malaysia.
| | | | | | | |
Collapse
|
34
|
Tenorio NM, Ribeiro DA, Alvarenga TA, Fracalossi ACC, Carlin V, Hirotsu C, Tufik S, Andersen ML. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats. Clinics (Sao Paulo) 2013; 68:385-9. [PMID: 23644860 PMCID: PMC3611896 DOI: 10.6061/clinics/2013(03)oa16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/22/2012] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. METHOD Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. RESULTS Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. CONCLUSION Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.
Collapse
Affiliation(s)
- Neuli M Tenorio
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ochoa JJ, Pamplona R, Ramirez-Tortosa MC, Granados-Principal S, Perez-Lopez P, Naudí A, Portero-Otin M, López-Frías M, Battino M, Quiles JL. Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q₁₀. Free Radic Biol Med 2011; 50:1053-64. [PMID: 21335087 DOI: 10.1016/j.freeradbiomed.2011.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 01/24/2011] [Accepted: 02/08/2011] [Indexed: 11/23/2022]
Abstract
Mitochondria-related oxidative damage is a primary event in aging and age-related neurodegenerative disorders. Some dietary treatments, such as antioxidant supplementation or the enrichment of mitochondrial membranes with less oxidizable fatty acids, reduce lipid peroxidation and lengthen life span in rodents. This study compares life-long feeding on monounsaturated fatty acids (MUFAs), such as virgin olive oil, and n-6 polyunsaturated fatty acids, such as sunflower oil, with or without coenzyme Q₁₀ supplementation, with respect to age-related molecular changes in rat brain mitochondria. The MUFA diet led to diminished age-related phenotypic changes, with lipoxidation-derived protein markers being higher among the older animals, whereas protein carbonyl compounds were lower. It is noteworthy that the MUFA diet prevented the age-related increase in levels of mitochondrial DNA deletions in the brain mitochondria from aged animals. The findings of this study suggest that age-related oxidative stress is related, at the mitochondrial level, to other age-related features such as mitochondrial electron transport and mtDNA alterations, and it can be modulated by selecting an appropriate dietary fat type and/or by suitable supplementation with low levels of the antioxidant/electron carrier molecule coenzyme Q.
Collapse
Affiliation(s)
- Julio J Ochoa
- Institute of Nutrition and Food Technology José Mataix Verdú, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Edible oils form an essential part of the modern diet. These oils play a role as an energy source, and provide the diet with many beneficial micronutrients. Although a popular conception may be that fat should be avoided, certain edible oils as a dietary supplement may play an important role in the improvement of cardiovascular health. CVD has become one of the leading causes of death worldwide. Dietary supplementation with different oils may have beneficial effects on cardiovascular health. While olive oil and sunflower-seed oil are known to reduce serum cholesterol, fish oil has become well known for reducing potentially fatal cardiac arrhythmias. Recently, red palm oil research has shown beneficial effects on cardiac recovery from ischaemia-reperfusion injury. It is clear that dietary supplementation with edible oils may play a vital role in reducing the mortality rate due to heart disease. The specific benefits and disadvantages of these oils should, however, be explored in greater depth. The present review will attempt to identify the benefits and shortcomings of four popular edible oils, namely olive oil, sunflower-seed oil, fish oil and palm oil. Additionally the present review will aim to reveal potential areas of research which could further enhance our understanding of the effects of edible oils on cardiovascular health.
Collapse
|
37
|
Jacomelli M, Pitozzi V, Zaid M, Larrosa M, Tonini G, Martini A, Urbani S, Taticchi A, Servili M, Dolara P, Giovannelli L. Dietary extra-virgin olive oil rich in phenolic antioxidants and the aging process: long-term effects in the rat. J Nutr Biochem 2010; 21:290-6. [DOI: 10.1016/j.jnutbio.2008.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 12/15/2022]
|
38
|
Alonso-Alvarez C, Pérez-Rodríguez L, García JT, Viñuela J, Mateo R. Age and breeding effort as sources of individual variability in oxidative stress markers in a bird species. Physiol Biochem Zool 2010; 83:110-8. [PMID: 19922287 DOI: 10.1086/605395] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative stress is the imbalance between the production of pro-oxidant substances and the level of antioxidant defenses, which leads to oxidative damage. It has been proposed that senescence is the result of accumulated oxidative damage throughout life. In birds, the sources of individual variability in oxidative stress are still poorly understood. Among these sources, age, as related to senescence, should be particularly relevant. Furthermore, recent findings suggest that breeding effort may also deeply influence susceptibility to oxidative stress. However, there is still no evidence of a link between breeding effort and oxidative damage in any vertebrate. Here we analyzed 288 captive red-legged partridges (Alectoris rufa) across a wide age range (i.e., 1-8 yr old), thus including potentially senescent birds. In spite of limitations due to the cross-sectional approach, results revealed that old birds produced less offspring and endured higher levels of oxidized glutathione and peroxidized lipids in erythrocytes than did middle-aged individuals. Old birds also showed higher plasma total antioxidant status and uric acid levels than did younger birds, but lower amounts of circulating carotenoids. Furthermore, hatching success was negatively correlated to lipid peroxidation in females but not in males, supporting the hypothesis that breeding effort promotes oxidative damage.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Instituto de Investigación en Recursos Cinegéticos (Consejo Superior de Investigaciones Científicas, Universidad de Castilla-La Mancha, Junta de Communidades de Castilla-La Mancha), Ronda de Toledo, s/n. 13071, Ciudad Real, Spain.
| | | | | | | | | |
Collapse
|
39
|
Ramirez-Tortosa MC, Quiles JL, Battino M, Granados S, Morillo JM, Bompadre S, Newman HN, Bullon P. Periodontitis is associated with altered plasma fatty acids and cardiovascular risk markers. Nutr Metab Cardiovasc Dis 2010; 20:133-139. [PMID: 19500957 DOI: 10.1016/j.numecd.2009.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS In periodontitis it has been found that some perturbation exists in lipid biomarkers, such as increased serum total cholesterol and low-density lipoprotein cholesterol. Nevertheless, the relationship between fatty acids and periodontitis has been demonstrated only in a few studies and remains controversial. The aim of this investigation was to explore the effects of periodontitis on a cluster of traditional and novel cardiovascular risk factors such as plasma-lipids profile, types of plasma fatty acids, adhesion molecules and systemic inflammatory markers. METHODS AND RESULTS At a university dental school, 56 patients all over 35 years old were enrolled and invited to participate in the study. Total plasma fatty acids, saturated, n-6 polyunsaturated and monounsaturated fatty acids, peroxidability index, soluble VCAM, TNF-alpha, cholesterol, triacylglycerols, and VLDL-c were significantly higher in the periodontitis group compared to the non-periodontitis group. CONCLUSIONS This close association found between plasma triacylglycerols, LDL-c, saturated fatty acids, polyunsaturated fatty acids, total amount of fatty acids and coenzyme Q(10) with some periodontal data such as periodontal probing depth, recession of the gingival margin and clinical attachment level (Pearson correlation between 0.3 and 0.6), leads to the conclusion that there is an inter-relationship between periodontitis, plasma fatty acids profile and the increase in metabolic risk factors for cardiovascular diseases.
Collapse
Affiliation(s)
- M C Ramirez-Tortosa
- Institute of Nutrition and Food Technology, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Quiles JL, Pamplona R, Ramirez-Tortosa MC, Naudí A, Portero-Otin M, Araujo-Nepomuceno E, López-Frías M, Battino M, Ochoa JJ. Coenzyme Q addition to an n-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart. Mech Ageing Dev 2010; 131:38-47. [DOI: 10.1016/j.mad.2009.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/19/2009] [Accepted: 11/22/2009] [Indexed: 01/22/2023]
|
41
|
Umezawa M, Higuchi K, Mori M, Matushita T, Hosokawa M. Effect of dietary unsaturated fatty acids on senile amyloidosis in senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 2009; 64:646-52. [PMID: 19377016 DOI: 10.1093/gerona/glp047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effects of dietary oils on aging were investigated in senescence-accelerated mice. For 26 weeks, mice were fed purified diets containing 4% olive oil, safflower oil, perilla oil, or fish oil. Serum total, high-density lipoprotein cholesterol, and apolipoprotein A-II (ApoA-II) were significantly lower in the fish oil group than in the perilla oil group, and these were significantly lower than in the olive oil or safflower oil group. The olive oil and safflower oil groups had significantly fewer ApoA-II amyloid fibril (AApoAII) deposits and anti-single-strand DNA (ssDNA) antibodies than the fish oil or perilla oil group, and the fish oil diet induced significantly more AApoAII deposits and anti-ssDNA antibodies than did the perilla oil diet. Survival decreased earlier in the fish oil group than in the other groups (as seen in the survival curve). The results suggest that greater the degree of unsaturation of dietary fatty acids, greater is the tendency for accelerated senescence.
Collapse
Affiliation(s)
- Makiko Umezawa
- Department of Food and Nutrition, Tsu City College, Mie, Japan.
| | | | | | | | | |
Collapse
|
42
|
Jin X, Chan HM, Lok E, Kapal K, Taylor M, Kubow S, Mehta R. Dietary fats modulate methylmercury-mediated systemic oxidative stress and oxidative DNA damage in rats. Food Chem Toxicol 2008; 46:1706-20. [DOI: 10.1016/j.fct.2008.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/11/2007] [Accepted: 01/08/2008] [Indexed: 01/08/2023]
|
43
|
Abstract
Oxidative stress is defined as an imbalance between the oxidant and antioxidant systems of the body, in favor of the oxidants. Oxidative stress produced by free radicals has been linked to the development of several diseases such as cardiovascular, cancer, and neurodegenerative diseases Olive oil is the main source of fat of the Mediterranean diet which has been shown to be effective against oxidative stress associated diseases and also with ageing. Besides its richness in monounsaturated fatty acids, the oleic acid, olive oil contains minor components with antioxidant properties. In this review, we summarize the state of the art, and degree of evidence, of the body of knowledge concerning the protective role of the major and minor components of olive oil on oxidative stress.
Collapse
Affiliation(s)
- Montserrat Fitó
- Lipids and Cardiovascular Epidemiology Unit and Pharmacology Research Unit, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | |
Collapse
|
44
|
Ramirez-Tortosa MC, Granados S, Ramirez-Tortosa CL, Ochoa JJ, Camacho P, García-Valdés L, Battino M, Quiles JL. Oxidative stress status in liver mitochondria and lymphocyte DNA damage of atherosclerotic rabbits supplemented with water soluble coenzyme Q10. Biofactors 2008; 32:263-73. [PMID: 19096124 DOI: 10.1002/biof.5520320131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of the administration of water soluble coenzyme Q10 (25 mg/kg per day) over 30 days, after 50 days feeding on a high-fat diet (3% lard + 1.3% cholesterol), were investigated in the plasma and liver mitochondria of rabbits. Results showed that this atherogenic diet enhanced lipid levels both in plasma and liver mitochondria, reduced plasma and mitochondrial concentrations of retinol and coenzyme Q10, led to higher DNA damage in peripheral blood lymphocytes and reactive oxygen species concentration in liver mitochondria. The treatment of animals with coenzyme Q10 reduced (to the healthy group levels) lipid concentration in liver mitochondria with no effect on plasma lipids, increased mitochondrial levels of alpha-tocopherol, restored mitochondrial coenzyme Q10 and improved alpha-tocopherol levels in plasma. Moreover, coenzyme Q10 supplementation reduced mitochondrial reactive oxygen species levels and decreased DNA damage in peripheral blood lymphocytes. The findings suggest that antioxidant therapy with coenzyme Q10 may be used in the treatment of liver pathologies associated to the intake of high-fat, atherogenic, diets.
Collapse
Affiliation(s)
- M Carmen Ramirez-Tortosa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology (INYTA), University of Granada, Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sirtori CR, Anderson JW, Arnoldi A. Nutritional and nutraceutical considerations for dyslipidemia. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.3.313] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Hwang ES, Bowen PE. DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment. Crit Rev Food Sci Nutr 2007; 47:27-50. [PMID: 17364694 DOI: 10.1080/10408390600550299] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Free radicals and other reactive oxygen or nitrogen species are constantly generated in vivo and can cause oxidative damage to DNA. This damage has been implicated to be important in many diseases, including cancer. The assessment of damage in various biological matrices, such as tissues, cells, and urine, is vital to understanding this role and subsequently devising intervention strategies. During the last 20 years, many analytical techniques have been developed to monitor oxidative DNA base damage. High-performance liquid chromatography-electrochemical detection and gas chromatography-mass spectrometry are the two pioneering contributions to the field. Currently, the arsenal of methods available include the promising high-performance liquid chromatography-tandem mass spectrometry technique, capillary electrophoresis, 32P-postlabeling, antibody-base immunoassays, and assays involving the use of DNA repair glycosylases such as the comet assay. The objective of this review is to discuss the biological significance of oxidative DNA damage, evaluate the effectiveness of several techniques for measurement of oxidative DNA damage in various biological samples and review current research on factors (dietary and non-dietary) that influence DNA oxidative damage using these techniques.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- Department of Human Nutrition, University of Illinois at Chicago. Chicago, IL, 60612, USA
| | | |
Collapse
|
47
|
Machowetz A, Poulsen HE, Gruendel S, Weimann A, Fitó M, Marrugat J, de la Torre R, Salonen JT, Nyyssönen K, Mursu J, Nascetti S, Gaddi A, Kiesewetter H, Bäumler H, Selmi H, Kaikkonen J, Zunft HJF, Covas MI, Koebnick C. Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans. FASEB J 2006; 21:45-52. [PMID: 17110467 DOI: 10.1096/fj.06-6328com] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High consumption of olive oil in the Mediterranean diet has been suggested to protect DNA against oxidative damage and to reduce cancer incidence. We investigated the impact of the phenolic compounds in olive oil, and the oil proper, on DNA and RNA oxidation in North, Central, and South European populations. In a multicenter, double-blind, randomized, controlled crossover intervention trial, the effect of olive oil phenolic content on urinary oxidation products of guanine (8-oxo-guanine, 8-oxo-guanosine and 8-oxo-deoxyguanosine) was investigated. Twenty-five milliliters of three olive oils with low, medium, and high phenolic content were administered to healthy males (n=182) daily for 3 wk. At study baseline the urinary excretion of 8-oxo-guanosine (RNA oxidation) and 8-oxo-deoxyguanosine (DNA oxidation) was higher in the Northern regions of Europe compared with Central and Southern European regions (P=0.035). Urinary excretion of the 8 hydroxylated forms of guanine, guanosine, deoxyguanosine and their nonoxidized forms were not different when comparing olive oils with low, medium, and high phenolic content given for 2 wk. Testing the effect of oil from urinary 8-oxo-deoxyguanosine changes from baseline to post-treatment showed a reduction of DNA oxidation by 13% (P=0.008). These findings support the idea that ingestion of olive oil is beneficial and can reduce the rate of oxidation of DNA. This effect is not due to the phenolic content in the olive oil. The higher DNA and RNA oxidation in Northern European regions compared with that in Central and Southern regions supports the contention that olive oil consumption may explain some of the North-South differences in cancer incidences in Europe.
Collapse
Affiliation(s)
- Anja Machowetz
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bello RI, Gómez-Díaz C, Burón MI, Navas P, Villalba JM. Differential regulation of hepatic apoptotic pathways by dietary olive and sunflower oils in the aging rat. Exp Gerontol 2006; 41:1174-84. [PMID: 17049786 DOI: 10.1016/j.exger.2006.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/16/2022]
Abstract
In this work we have studied how dietary fat affects aging-related changes in a number of factors that regulate rat hepatic apoptosis. Animals were fed lifelong with two experimental diets containing either virgin olive oil or sunflower oil as dietary fat. Caspases of the intrinsic and extrinsic pathways of apoptosis, Bcl-2 and Bax polypeptide levels, and plasma membrane neutral sphingomyelinase activity were determined at 6, 12, and 24 months of age. Caspase-8/10 activity (a marker of the extrinsic pathway) was not affected by either aging or dietary fat, but activities of both caspase-9 (a marker of the intrinsic pathway) and caspase-3 (an executioner caspase) were significantly depressed in liver from animals fed on a sunflower oil-based diet. These decreases were not observed in animals fed with a diet based on virgin olive oil, which also resulted in significantly lower Bcl-2/Bax ratios. On the other hand, in comparison with sunflower, dietary olive oil decreased oxidative stress in liver from aged rats, resulting in lower levels of membrane hydroperoxides and higher coenzyme Q levels in plasma membrane. Plasma membrane Mg(2+)-dependent neutral sphingomyelinase was strongly activated in aged rats fed on the sunflower oil diet, but no aging-related increase was observed in animals fed on the olive oil diet. Our results support that dietary oil can alter significantly the susceptibility of hepatocytes to different apoptotic stimuli by altering both pro- and anti-apoptotic mediators, which reinforces the importance of the diet in aging studies. Because virgin olive oil may increase susceptibility of hepatocytes to apoptosis induced through the intrinsic pathway under conditions of decreased oxidative stress, our results may have important implications to understand the potential beneficial effects of that edible oil against liver carcinogenesis during aging.
Collapse
Affiliation(s)
- Rosario I Bello
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Córdoba 14014, Spain
| | | | | | | | | |
Collapse
|
49
|
Quiles JL, Barja G, Battino M, Mataix J, Solfrizzi V. Role of Olive Oil and Monounsaturated Fatty Acids in Mitochondrial Oxidative Stress and Aging. Nutr Rev 2006. [DOI: 10.1111/j.1753-4887.2006.tb00261.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
50
|
Bello RI, Gómez-Díaz C, Burón MI, Alcaín FJ, Navas P, Villalba JM. Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol 2006; 40:694-706. [PMID: 16125350 DOI: 10.1016/j.exger.2005.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/20/2022]
Abstract
Coenzyme Q10 supplementation increases life-span of rats fed on a diet enriched with polyunsaturated fatty acids (Quiles, J.L., Ochoa, J.J., Huertas, J.R., Mataix, J., 2004b. Coenzyme Q supplementation protects from age-related DNA double-strand breaks and increased lifespan in rats fed on a PUFA-rich diet. Exp. Gerontol. 39, 189-194). Our study was set as a first attempt to establish a mechanistic link between life span extension and CoQ10 supplementation. When rats were fed on a PUFAn-6 plus CoQ10 diet, levels of CoQ10 were increased in plasma membrane at every time point compared to control rats fed on a PUFAn-6-alone diet. Ratios of CoQ9 to CoQ10 were significantly lower at every time point in both liver plasma membranes and homogenates of CoQ10-supplemented animals. CoQ10 supplementation did not affect cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1), which increased significantly with aging, but plasma membrane-bound NQO1 decreased significantly in the CoQ10-supplemented group at 12 months, when maximal incorporation of exogenous CoQ10 was observed. Neither aging nor the diet affected NADH-cytochrome b5 reductase levels. Glutathione-dependent anti-oxidant activities such as cytosolic glutathione-S-transferase (GST) and microsomal Se-independent glutathione peroxidase decreased with aging and supplementation with CoQ10 attenuated this decay. 2,2' Azobis amidinopropane (AAPH)-induced oxidation of membranes was significantly higher in aged rats, and supplementation with CoQ10 also inhibited this increase. Consistent with higher CoQ10 levels and enhanced anti-oxidant protection, plasma membrane Mg2+-dependent neutral sphingomyelinase was inhibited by dietary CoQ10 in aged rats. Our results support the involvement of thiol-dependent mechanisms in the potentiation of the anti-oxidant capacity of membranes in CoQ10-supplemented rats, further supporting the potentially beneficial anti-oxidative role of dietary CoQ10 during aging. The possibility that a decreased CoQ9/CoQ10 ratio in animals fed on the PUFAn-6-rich plus CoQ10 diet could also influence longevity is also discussed.
Collapse
Affiliation(s)
- Rosario I Bello
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Campus Rabanales, Edificio Severo Ochoa, 3a planta; 14014 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|