1
|
James G, Ahern B, Goodwin W, Goss B, Hodges P. Structural changes of muscle spindles in the multifidus muscle after intervertebral disk injury are resolved by targeted muscle activation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08646-x. [PMID: 39810036 DOI: 10.1007/s00586-025-08646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
PURPOSE Fibrosis of muscle spindles (sensory organs) in back muscles induced by intervertebral disc (IVD) degeneration could limit transmission of muscle stretch to the sensory receptor and explain the proprioceptive deficits common in back pain. Exercise reduces back muscles fibrosis. This study investigated whether targeted muscle activation via neurostimulation reverses or resolves muscle spindle fibrosis in a model of IVD injury. METHODS In eighteen sheep, lumbar (L)1-2 and L3-4 IVD degeneration was induced by partial thickness anulus fibrosis incision and a neurostimulator was implanted. After IVD-degeneration developed for 3 months, neurostimulation of the L2 nerve root activated multifidus in nine randomly selected animals. Multifidus muscle adjacent to the spinous process of L2 (non-stimulated) and L4 (stimulated) was harvested 3 months after activation. Muscle spindles were identified in Van Giessen's-stained sections. Connective tissue spindle capsule thickness, and cross-sectional area (CSA) of the spindle, its periaxial fluid and sensory elements were measured. Immunofluorescence assays evaluated Collagen-I and -III. RESULTS Multifidus muscle spindle capsule thickness and Collagen-1 were significantly less in the neurostimulation animals than IVD-injury animals at L4 (stimulated muscle) (P < 0.05), but not L2 (non-stimulated muscle). Spindle capsule thickness was less in lateral than medial regions. CSA of the muscle spindle and sensory elements was less in neurostimulated animals at L4. CONCLUSION Targeted multifidus activation reverses or prevents accumulation of connective tissue of the multifidus muscle spindle capsule caused by IVD injury. Reduced fibrosis should maintain sensory function of this important muscle mechanoreceptor and might provide an effective solution to resolve the commonly identified proprioceptive deficits in back pain and maintain healthy spine function.
Collapse
Affiliation(s)
- Greg James
- University of Queensland, Brisbane, Australia
| | - Ben Ahern
- University of Queensland, Brisbane, Australia
| | | | - Ben Goss
- Mainstay Medical, San Diego, USA
| | - Paul Hodges
- University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Alakhdar AA, Sivakumar S, Kopchak RM, Hunter AN, Ambrosio F, Washburn NR. Age-Related ECM Stiffness Mediates TRAIL Activation in Muscle Stem Cell Differentiation. Adv Biol (Weinh) 2024; 8:e2400334. [PMID: 39601528 DOI: 10.1002/adbi.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Indexed: 11/29/2024]
Abstract
The stiffening of the extracellular matrix (ECM) with age hinders muscle regeneration by causing intrinsic muscle stem cell (MuSC) dysfunction through a poorly understood mechanism. Here, the study aims to study those age-related molecular changes in the differentiation of MuSCs due to age and/or stiffness. Hence, young and aged MuSCs are seeded onto substrates engineered to mimic a soft and stiff ECM microenvironment to study those molecular changes using single-cell RNA sequencing (scRNA). The trajectory of scRNA data of the MuSCs under four different conditions undergoing differentiation is analyzed as well as the active molecular pathways and transcription factors driving those differentiation fates. Data revealed the presence of a branching point within the trajectory leading to the emergence of an age-related fibroblastic population characterized by activation of the TNF-related apoptosis-inducing ligand (TRAIL) pathway, which is significantly activated in aged cells cultured on stiff substrates. Next, using the collagen cross-linking inhibitor β-aminopropionitrile (BAPN) in vivo, the study elucidates stiffness changes on TRAIL downstream apoptotic targets (caspase 8 and caspase 3) using immunostaining. TRAIL activity is significantly inhibited by BAPN in aged animals, indicating a complex mechanism of age-related declines in muscle function through inflammatory and apoptotic mediators.
Collapse
Affiliation(s)
- Amira A Alakhdar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Rylee M Kopchak
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, 02129, USA
| | - Allison N Hunter
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, 02129, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Newell R Washburn
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Madl CM, Wang YX, Holbrook CA, Su S, Shi X, Byfield FJ, Wicki G, Flaig IA, Blau HM. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc Natl Acad Sci U S A 2024; 121:e2406787121. [PMID: 39163337 PMCID: PMC11363279 DOI: 10.1073/pnas.2406787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yu Xin Wang
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Colin A. Holbrook
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Shiqi Su
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Xuechen Shi
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Fitzroy J. Byfield
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Gwendoline Wicki
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Iris A. Flaig
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Helen M. Blau
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Tracking of Nascent Matrix Deposition during Muscle Stem Cell Activation across Lifespan Using Engineered Hydrogels. Adv Biol (Weinh) 2024; 8:e2400091. [PMID: 38616175 DOI: 10.1002/adbi.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.
Collapse
Affiliation(s)
- Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleanor Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Quantification of local matrix deposition during muscle stem cell activation using engineered hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576326. [PMID: 38328131 PMCID: PMC10849481 DOI: 10.1101/2024.01.20.576326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.
Collapse
Affiliation(s)
- Pamela Duran
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eleanor Plaster
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Madeline Eiken
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Hettinger ZR, Hu S, Mamiya H, Sahu A, Iijima H, Wang K, Gilmer G, Miller A, Nasello G, Dâ Amore A, Vorp DA, Rando TA, Xing J, Ambrosio F. Dynamical modeling reveals RNA decay mediates the effect of matrix stiffness on aged muscle stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529950. [PMID: 36865124 PMCID: PMC9980169 DOI: 10.1101/2023.02.24.529950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Loss of muscle stem cell (MuSC) self-renewal with aging reflects a combination of influences from the intracellular (e.g., post-transcriptional modifications) and extracellular (e.g., matrix stiffness) environment. Whereas conventional single cell analyses have revealed valuable insights into factors contributing to impaired self-renewal with age, most are limited by static measurements that fail to capture nonlinear dynamics. Using bioengineered matrices mimicking the stiffness of young and old muscle, we showed that while young MuSCs were unaffected by aged matrices, old MuSCs were phenotypically rejuvenated by young matrices. Dynamical modeling of RNA velocity vector fields in silico revealed that soft matrices promoted a self-renewing state in old MuSCs by attenuating RNA decay. Vector field perturbations demonstrated that the effects of matrix stiffness on MuSC self-renewal could be circumvented by fine-tuning the expression of the RNA decay machinery. These results demonstrate that post-transcriptional dynamics dictate the negative effect of aged matrices on MuSC self-renewal.
Collapse
|
8
|
Use of a novel technique to assess impact of age-related denervation on mouse soleus muscle function. Biogerontology 2023; 24:377-390. [PMID: 36790689 PMCID: PMC10147802 DOI: 10.1007/s10522-023-10021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023]
Abstract
Denervation contributes to loss of force-generating capacity in aged skeletal muscles, but problems with quantification of denervated fibers mean the precise impact of denervation on muscle function remains unclear. This study therefore looked to develop a reliable assay for identifying denervated muscle fibers, and used this to explore the impact of denervation on age-related force-generation in mouse skeletal muscle. Thirteen young (6-month-old) and 10 old (24-months-old) C57Bl/6 J female mice were utilized. Anaesthetized mice were infused with the fluorescent deoxyglucose analog 2[N-(7-nitrobenz-2-oxa-1,2-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG) and the tibial nerve was repeatedly stimulated to label active skeletal muscle fibers by activity-dependent uptake of 2-NBDG. Data on muscle force generation were acquired as part of the stimulation routine. Labeled muscles were removed, snap frozen, sectioned, and slide mounted. Sections were imaged to show accumulation of 2-NBDG in activated fibers and lack of 2-NBDG accumulation in quiescent (denervated) fibers, then processed using immunohistochemistry to allow collection of data on fiber number and morphology. Soleus muscles from older mice had nine times as many denervated fibers as those from young mice (average n = 36 vs 4, old vs young). Older muscles developed significantly more passive force and less specific force, but denervation only partly accounted for age-related deficits in specific force. Further investigations are required to definitively identify contributors to the decrease in force generation that remain unaccounted for.
Collapse
|
9
|
Murtola T, Richards C. The impact of age-related increase in passive muscle stiffness on simulated upper limb reaching. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221453. [PMID: 36778951 PMCID: PMC9905985 DOI: 10.1098/rsos.221453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Ageing changes the musculoskeletal and neural systems, potentially affecting a person's ability to perform daily living activities. One of these changes is increased passive stiffness of muscles, but its contribution to performance is difficult to separate experimentally from other ageing effects such as loss of muscle strength or cognitive function. A computational upper limb model was used to study the effects of increasing passive muscle stiffness on reaching performance across the model's workspace (all points reachable with a given model geometry). The simulations indicated that increased muscle stiffness alone caused deterioration of reaching accuracy, starting from the edges of the workspace. Re-tuning the model's control parameters to match the ageing muscle properties does not fully reverse ageing effects but can improve accuracy in selected regions of the workspace. The results suggest that age-related muscle stiffening, isolated from other ageing effects, impairs reaching performance. The model also exhibited oscillatory instability in a few simulations when the controller was tuned to the presence of passive muscle stiffness. This instability is not observed in humans, implying the presence of natural stabilizing strategies, thus pointing to the adaptive capacity of neural control systems as a potential area of future investigation in age-related muscle stiffening.
Collapse
Affiliation(s)
- Tiina Murtola
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Christopher Richards
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
10
|
Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022; 32. [PMID: 35234025 PMCID: PMC8992679 DOI: 10.4081/ejtm.2022.10416] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise», is now being reprinted for the second issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.
Collapse
Affiliation(s)
- Claudia Coletti
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Gilberto F Acosta
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Stefan Keslacy
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Dario Coletti
- DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France; Interuniversity institute of Myology, Ro.
| |
Collapse
|
11
|
Age-Related Alterations of Hyaluronan and Collagen in Extracellular Matrix of the Muscle Spindles. J Clin Med 2021; 11:jcm11010086. [PMID: 35011824 PMCID: PMC8745670 DOI: 10.3390/jcm11010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Muscle spindles (MSs) play a crucial role in proprioception and locomotor coordination. Although the elasticity and viscosity of the extracellular matrix (ECM) within which MSs are embedded may play a key role in MS function, the impact of aging on ECM components is unclear. The aim of the current study was to investigate the age-related physiological changes of the ECM and to verify if these could be due to alterations of the environment directly surrounding MSs. Methods: Hematoxylin Eosin and picrosirius-red staining was carried out; collagen types I (COLI) and III (COLIII) were assessed, and biotinylated hyaluronan binding protein (HABP) immunohistochemical analysis was undertaken to evaluate alterations of the ECM in the intramuscular connective tissue (IMCT) of the hindlimbs of C57BL/6J male mice. Assessments were carried out on 6-week-old (Group A), 8-month-old (Group B), and 2-year-old (Group C) laboratory mice. Results: The capsule’s outer layer became progressively thicker with aging (it was 3.02 ± 0.26 μm in Group A, 3.64 ± 0.31 μm in Group B, and 5.81 ± 0.85 μm in Group C). The collagen in IMCT around and within the MSs was significantly higher in Group C, but there were no significant differences between Groups A and B. The MS capsules and continuous IMCT were primarily made up of COLI and COLIII. The average optical density (AOD) values of COLI in IMCT surrounding MS were significantly higher after aging (p < 0.05), but there were no significant differences in COLIII in the three groups (p > 0.05). HA was present in IMCT and filled the MSs capsule. The AOD of HABP of MS showed that there were lower HA levels in Group C with respect to Group A (p = 0.022); no significant differences were noted neither between Groups A and B nor between Groups B and C (p > 0.05). Conclusion: Age-related collagen accumulation and lower HA in the ECM in which the MSs were embedded may probably cause more stiffness in the ECM in vivo, which could help to partly explain the peripheral mechanisms underlying the age-related decline in functional changes related to MSs.
Collapse
|
12
|
Leichsenring K, Viswanathan A, Kutschke S, Siebert T, Böl M. Age-dependent mechanical and microstructural properties of the rabbit soleus muscle. Acta Biomater 2021; 134:453-465. [PMID: 34343717 DOI: 10.1016/j.actbio.2021.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
During growth there are serious changes in the skeletal muscles to compensate for the changed requirements in terms of body weight and size. In this study, the age-dependent (between 21 and 100 days) mechanical and microstructural properties of rabbit soleus muscle tissue were investigated. For this purpose, morphological properties (animal mass, soleus muscle mass, tibial length) were measured at 5 different times during aging. On the other hand, fibre orientation-dependent axial and semi-confined compression experiments were realised. In addition, the essential components (muscle fibres, extracellular matrix, remaining components), dominating the microstructure of muscle tissue, were analysed. While the mechanical results show hardly any age-dependent differences, the morphological and microstructural results show clear age-dependent differences. All morphological parameters increase significantly (animal mass by 839.2%, muscle mass 1050.6%, tibial length 233.6%). In contrast, microstructural parameters change differently. The percentage of fibres (divided into slow-twitch (ST) and fast-twitch (FT) fibres) increases significantly (137.6%), while the proportions of the extracellular matrix and the remaining components (48.2% and 46.1%) decrease. At the same time, the cross-sectional area of the fibres increases significantly (697.9%). The totality of this age-dependent information provides a deeper understanding of age-related changes in muscle structure and function and may contribute to successful development and validation of growth models in the future. STATEMENT OF SIGNIFICANCE: This article reports the first comprehensive data set on age-dependent morphological (animal mass, soleus muscle mass, tibial length), mechanical (axial and semi-confined compression), and microstructural (muscle fibres, extracellular matrix, remaining components) properties of the rabbit soleus muscle. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to understanding of load transfer mechanisms inside the muscle tissue during growth. On the other hand, these results are relevant to the fields of constitutive formulation of age-dependent muscle tissue.
Collapse
|
13
|
Xu J, Fu SN, Hug F. Age-related increase in muscle stiffness is muscle length dependent and associated with muscle force in senior females. BMC Musculoskelet Disord 2021; 22:829. [PMID: 34579696 PMCID: PMC8477537 DOI: 10.1186/s12891-021-04519-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Background In aging, muscle stiffness is considered as one of the factors associated with the reduction of force generation capability. There have been inconsistent findings on age-related alteration in the passive stiffness of quadriceps muscle in the female adults. Thus, the aim of this study was to determine the effect of aging on the shear moduli of the superficial muscle heads of the quadriceps and to explore its relationship with knee extension force. Methods Passive shear moduli of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) were measured at rest using shear wave elastography in 20 young and 20 senior female adults. Measurements were repeated at four knee joint positions, that is, 30°, 60°, 90°, and 105° of knee flexion. Maximal isometric voluntary knee extension force was assessed at 30°, 60°, and 90° of knee flexion. Results As per our findings, senior adults were determined to have significantly higher passive muscle shear moduli in the RF (by 34% – 68%; all p < 0.05) and the VL muscle heads (by 13%–16%, all p < 0.05) at and beyond 60° of knee flexion. Age-related increase in the VM was evident at 105° knee flexion (by11%, p = 0.020). The RF shear modulus was negatively correlated to the maximal isometric voluntary contraction force measured at 60° (r = − 0.485, p = 0.030) in senior adults. Conclusions Senior female adults had greater passive stiffness at the superficial muscle heads of the quadriceps muscles when measured at long muscle length. Among the senior female adults, the passive stiffness of RF has been determined to have a negative association with the knee extensor force only at 60° knee flexion. No significant association was noted for other angles and muscles.
Collapse
Affiliation(s)
- Jingfei Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.,Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, PR China
| | - Siu Ngor Fu
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong, China.
| | - François Hug
- University of Nantes, Faculty of Sport Sciences, Laboratory "Movement, Interactions, Performance" (EA 4334), Nantes, France.,InstitutUniversitaire de France (IUF), Paris, France
| |
Collapse
|
14
|
Maeda A, Yamagishi M, Otsuka Y, Izumo T, Rogi T, Shibata H, Fukuda M, Arimitsu T, Yamada Y, Miyamoto N, Hashimoto T. Characteristics of the Passive Muscle Stiffness of the Vastus Lateralis: A Feasibility Study to Assess Muscle Fibrosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178947. [PMID: 34501539 PMCID: PMC8430484 DOI: 10.3390/ijerph18178947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle fibrosis occurs with aging and has been suggested to impair muscle performance, thereby decreasing quality of life. Recently, muscle stiffness, a surrogate measure of muscle fibrosis, was noninvasively quantified as the shear modulus using ultrasound shear wave elastography (SWE) in humans. We aimed to investigate thigh muscle stiffness in females and males, respectively, across a broad range of ages by using SWE. Eighty-six community-dwelling Japanese people who were aged 30 to 79 years and did not regularly exercise participated in this study. The vastus lateralis (VL) shear modulus was measured at three different knee joint angles: full extension, 90° of flexion, and full flexion. There were no significant main effects of sex or age on the VL shear modulus in full extension or 90° of flexion of the knee. However, the VL shear modulus in knee full flexion was significantly smaller in females than in males and increased with age from 47.9 years. The results suggest that the accelerated increase in VL stiffness that occurs after an individual passes their late 40s may be an important therapeutic target for developing effective treatments and programs that preserve and improve quality of life.
Collapse
Affiliation(s)
- Akifumi Maeda
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga 525-8577, Japan; (A.M.); (M.Y.); (T.A.)
- Suntory Global Innovation Center Ltd., Research Institute, Kyoto 619-0284, Japan
| | - Maito Yamagishi
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga 525-8577, Japan; (A.M.); (M.Y.); (T.A.)
| | - Yuta Otsuka
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto 619-0284, Japan; (Y.O.); (T.I.); (T.R.); (H.S.)
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto 619-0284, Japan; (Y.O.); (T.I.); (T.R.); (H.S.)
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto 619-0284, Japan; (Y.O.); (T.I.); (T.R.); (H.S.)
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto 619-0284, Japan; (Y.O.); (T.I.); (T.R.); (H.S.)
| | | | - Takuma Arimitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga 525-8577, Japan; (A.M.); (M.Y.); (T.A.)
- Undergraduate Department of Human Health, Faculty of Health Care, Hachinohe Gakuin University, Aomori 031-8588, Japan
| | - Yosuke Yamada
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan;
| | - Naokazu Miyamoto
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan;
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga 525-8577, Japan; (A.M.); (M.Y.); (T.A.)
- Correspondence:
| |
Collapse
|
15
|
Madl CM, Flaig IA, Holbrook CA, Wang YX, Blau HM. Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Biomaterials 2021; 275:120973. [PMID: 34224984 DOI: 10.1016/j.biomaterials.2021.120973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Skeletal muscle stem cells (MuSCs) are essential for efficacious muscle repair, making MuSCs promising therapeutic targets for tissue engineering and regenerative medicine. MuSCs are presented with a diverse and temporally defined set of cues from their microenvironment during regeneration that direct stem cell expansion, differentiation, and return to quiescence. Understanding the complex interplay among these biophysical and biochemical cues is necessary to develop therapies targeting or employing MuSCs. To probe the role of mechanical cues presented by the extracellular matrix, we leverage chemically defined hydrogel substrates with controllable stiffness and adhesive ligand composition to characterize the MuSC response to matrix cues presented during early and late phases of regeneration. We demonstrate that relatively soft hydrogels recapitulating healthy muscle stiffness promote MuSC activation and expansion, while relatively stiff hydrogels impair MuSC proliferation and arrest myogenic progression. These effects are seen on soft and stiff hydrogels presenting laminin-111 and exacerbated on hydrogels presenting RGD adhesive peptides. Soluble factors present in the MuSC niche during different phases of regeneration, prostaglandin E2 and oncostatin M, synergize with matrix-presented cues to enhance stem cell expansion on soft substrates and block myogenic progression on stiff substrates. To determine if temporally varied matrix stiffness reminiscent of the regenerating microenvironment alters MuSC fate, we developed a photoresponsive hydrogel system with accelerated reaction kinetics that can be rapidly softened on demand. MuSCs cultured on these materials revealed that the cellular response to a stiff microenvironment is fixed within the first three days of culture, as subsequent softening back to a healthy stiffness did not rescue MuSC proliferation or myogenic progression. These results highlight the importance of temporally controlled biophysical and biochemical cues in regulating MuSC fate that can be harnessed to improve regenerative medicine approaches to restore skeletal muscle tissue.
Collapse
Affiliation(s)
- Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Iris A Flaig
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Colin A Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Madden JF, Davis OC, Boyle KA, Iredale JA, Browne TJ, Callister RJ, Smith DW, Jobling P, Hughes DI, Graham BA. Functional and Molecular Analysis of Proprioceptive Sensory Neuron Excitability in Mice. Front Mol Neurosci 2020; 13:36. [PMID: 32477061 PMCID: PMC7232575 DOI: 10.3389/fnmol.2020.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Neurons located in dorsal root ganglia (DRG) are crucial for transmitting peripheral sensations such as proprioception, touch, temperature, and nociception to the spinal cord before propagating these signals to higher brain structures. To date, difficulty in identifying modality-specific DRG neurons has limited our ability to study specific populations in detail. As the calcium-binding protein parvalbumin (PV) is a neurochemical marker for proprioceptive DRG cells we used a transgenic mouse line expressing green fluorescent protein (GFP) in PV positive DRGs, to study the functional and molecular properties of putative proprioceptive neurons. Immunolabeled DRGs showed a 100% overlap between GFP positive (GFP+) and PV positive cells, confirming the PVeGFP mouse accurately labeled PV neurons. Targeted patch-clamp recording from isolated GFP+ and GFP negative (GFP−) neurons showed the passive membrane properties of the two groups were similar, however, their active properties differed markedly. All GFP+ neurons fired a single spike in response to sustained current injection and their action potentials (APs) had faster rise times, lower thresholds and shorter half widths. A hyperpolarization-activated current (Ih) was observed in all GFP+ neurons but was infrequently noted in the GFP− population (100% vs. 11%). For GFP+ neurons, Ih activation rates varied markedly, suggesting differences in the underlying hyperpolarization-activated cyclic nucleotide-gated channel (HCN) subunit expression responsible for the current kinetics. Furthermore, quantitative polymerase chain reaction (qPCR) showed the HCN subunits 2, 1, and 4 mRNA (in that order) was more abundant in GFP+ neurons, while HCN 3 was more highly expressed in GFP− neurons. Likewise, immunolabeling confirmed HCN 1, 2, and 4 protein expression in GFP+ neurons. In summary, certain functional properties of GFP+ and GFP− cells differ markedly, providing evidence for modality-specific signaling between the two groups. However, the GFP+ DRG population demonstrates considerable internal heterogeneity when hyperpolarization-activated cyclic nucleotide-gated channel (HCN channel) properties and subunit expression are considered. We propose this heterogeneity reflects the existence of different peripheral receptors such as tendon organs, muscle spindles or mechanoreceptors in the putative proprioceptive neuron population.
Collapse
Affiliation(s)
- Jessica F Madden
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Olivia C Davis
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacqueline A Iredale
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Douglas W Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
17
|
Age-associated changes in the mechanical properties of human cadaveric pelvic floor muscles. J Biomech 2019; 98:109436. [PMID: 31708240 DOI: 10.1016/j.jbiomech.2019.109436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Proper function of the female pelvic floor requires intact pelvic floor muscles (PFMs). The prevalence of pelvic floor disorders (PFDs) increases substantially with age, in part due to clinically identified deterioration of PFM function with age. However, the etiology of this decline remains largely unknown. We previously demonstrated that PFMs undergo age-related fibrotic changes. This study sought to determine whether aging also impacts PFMs' passive mechanical properties that are largely determined by the intramuscular extracellular matrix. Biopsies from younger (≤52y) and older (>52y) female cadaveric donors were procured from PFMs, specifically coccygeus (C) and two portions of the levator ani - iliococcygeus (IC) and pubovisceralis (PV), and the appendicular muscles - obturator internus (OI) and vastus lateralis (VL). Muscle bundles were subjected to a passive loading protocol, and stress-sarcomere length (Ls) relationships calculated. Muscle stiffness was compared between groups using 2-way ANOVA and Sidak pairwise comparisons, α < 0.05. The mean age was 43.4 ± 11.6y and 74.9 ± 11.9y in younger (N = 5) and older (N = 10) donors, respectively. In all PFMs, the quadratic coefficient of parabolic regression of the stress-Ls curve, a measure of stiffness, was lower in the younger versus older group: C: 33.7 ± 13.9 vs 87.2 ± 10.7, P = 0.02; IC: 38.3 ± 12.7 vs 84.5 ± 13.9, P = 0.04; PV: 24.7 ± 8.8 vs 74.6 ± 9.6, P = 0.04. In contrast, non-PFM stiffness was not affected by aging: OI: 14.5 ± 4.7 vs 32.9 ± 6.2, P = 0.8 and VL: 13.6 ± 5.7 vs 30.1 ± 5.3, P = 0.9. Age-associated increase in PFM stiffness is predicted to negatively impact PFM function by diminishing muscle load-bearing, excursional, contractile, and regenerative capacity, thus predisposing older women to PFDs.
Collapse
|
18
|
Andrews MAW. Stretch Receptor and Somatic Dysfunction: A Narrative Review. J Osteopath Med 2019; 119:511-519. [PMID: 31355890 DOI: 10.7556/jaoa.2019.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
From its founding by Andrew Taylor Still, MD, DO, through the work of many contributors, one of the cornerstones of osteopathic medicine has been its ability to aid health by promoting neuromuscular homeostasis. As part of the understanding of osteopathic medicine since the time of Still, the proper functioning of stretch receptor organs (SROs) of skeletal muscle have been recognized as having a central role in this homeostasis. In doing so, the complexities of these numerous and vital sensors are described, including recent findings regarding their structure, function, and the nature of their neural connections. In their homeostatic role, SROs conduct information centrally for integration in proprioceptive and autonomic reflexes. By virtue of their integral role in muscle reflexes, they are putatively involved in somatic dysfunction and segmental facilitation. In reviewing some well-established knowledge regarding the SRO and introducing more recent scientific findings, an attempt is made to offer insights on how this knowledge may be applied to better understand somatic dysfunction.
Collapse
|
19
|
Age-Related Impairment of Hand Movement Perception Based on Muscle Proprioception and Touch. Neuroscience 2018; 381:91-104. [DOI: 10.1016/j.neuroscience.2018.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/17/2022]
|
20
|
Diet induced obesity alters muscle spindle afferent function in adult mice. PLoS One 2018; 13:e0196832. [PMID: 29718979 PMCID: PMC5931673 DOI: 10.1371/journal.pone.0196832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/20/2018] [Indexed: 01/09/2023] Open
Abstract
Populations with obesity are more likely to fall and exhibit balance instability. The reason for this is likely multifactorial, but there is some evidence that sensory function is impaired during obesity. We tested the hypothesis that muscle proprioceptor function is compromised in a mouse model of diet induced obesity. An in vitro muscle-nerve preparation was used to record muscle spindle afferent responses to physiological stretch and sinusoidal vibration. We compared the responses of C57/Bl6 male and female mice on a control diet (10% kcal fat) with those eating a high fat diet (HFD; 60% kcal fat) for 10 weeks (final age 14–15 weeks old). Following HFD feeding, adult mice of both sexes exhibited decreased muscle spindle afferent responses to muscle movement. Muscle spindle afferent firing rates during the plateau phase of stretch were significantly lower in both male and female HFD animals as were two measures of dynamic sensitivity (dynamic peak and dynamic index). Muscle spindle afferents in male mice on a HFD were also significantly less likely to entrain to vibration. Due to the importance of muscle spindle afferents to proprioception and motor control, decreased muscle spindle afferent responsiveness may contribute to balance instability during obesity.
Collapse
|
21
|
Vaughan SK, Stanley OL, Valdez G. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice. J Gerontol A Biol Sci Med Sci 2017; 72:771-779. [PMID: 27688482 DOI: 10.1093/gerona/glw175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Graduate Program in Translational Biology, Medicine, and Health and
| | - Olivia L Stanley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Department of Biological Sciences, Virginia Tech, Blacksburg
| |
Collapse
|
22
|
Clites TR, Carty MJ, Srinivasan S, Zorzos AN, Herr HM. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J Neural Eng 2017; 14:036002. [PMID: 28211795 DOI: 10.1088/1741-2552/aa614b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. APPROACH (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. MAIN RESULTS Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. SIGNIFICANCE These results indicate that the AMI has the potential to communicate meaningful kinesthetic feedback from a prosthetic limb by replicating the agonist-antagonist relationships that are fundamental to physiological proprioception.
Collapse
Affiliation(s)
- Tyler R Clites
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | | | | | | | | |
Collapse
|
23
|
Fry CS, Kirby TJ, Kosmac K, McCarthy JJ, Peterson CA. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy. Cell Stem Cell 2016; 20:56-69. [PMID: 27840022 DOI: 10.1016/j.stem.2016.09.010] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/28/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023]
Abstract
Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation.
Collapse
Affiliation(s)
- Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tyler J Kirby
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Charlotte A Peterson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
24
|
Mizuno S, Sonoda S, Takeda K, Maeshima S. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia. J Stroke Cerebrovasc Dis 2016; 25:946-53. [PMID: 26851973 DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Quantification of increased muscle tone for patients with spasticity has been performed to date using various devices to replace the manual scales, such as the modified Ashworth scale or the Tardieu scale. We developed a device that could measure resistive plantar flexion (PF) torque of the ankle during passive dorsiflexion (DF) as an indicator of muscle tone of ankle plantar flexors. METHODS The primary objective was to explore the test-retest intrarater reliability of a custom-built device. Participants were 11 healthy subjects (7 men, 4 women; mean age 47.0 years) and 22 patients with poststroke hemiplegia (11 hemorrhagic, 11 ischemic; 14 men, 8 women; mean age 57.2 years). The device was affixed to the ankle. Subjects were seated with knees either flexed or extended. The ankle was passively dorsiflexed from 20° of PF to more than 10° of DF at 5°/second (slow stretch) or 90°/second (fast stretch). Angle and torque were measured twice during the stretches. The intraclass correlation coefficients (ICCs) of torque at 10° of DF (T10) in the 4 conditions-slow and fast stretches with knee flexed or extended-were calculated. RESULTS The T10 ICCs of the 4 conditions were .95-.99 in both groups. The healthy subjects showed significantly higher T10 of knee extension than of knee flexion during slow and fast stretches. The patients showed increased velocity-dependent torque during fast stretches. CONCLUSIONS Excellent reliability was observed. The device is suitable for measuring resistive PF torque during passive stretch in a flexed knee condition.
Collapse
Affiliation(s)
- Shiho Mizuno
- School of Medicine, Department of Rehabilitation Medicine II, Fujita Health University, Mie, Japan.
| | - Shigeru Sonoda
- School of Medicine, Department of Rehabilitation Medicine II, Fujita Health University, Mie, Japan
| | - Kotaro Takeda
- Fujita Memorial Nanakuri Institute, Fujita Health University, Mie, Japan
| | - Shinichiro Maeshima
- School of Medicine, Department of Rehabilitation Medicine II, Fujita Health University, Mie, Japan
| |
Collapse
|
25
|
Blau HM, Cosgrove BD, Ho ATV. The central role of muscle stem cells in regenerative failure with aging. Nat Med 2015; 21:854-62. [PMID: 26248268 DOI: 10.1038/nm.3918] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell-intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged.
Collapse
Affiliation(s)
- Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Lynch K, Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis 2015; 10:289-98. [PMID: 25482504 DOI: 10.4161/15476278.2014.970089] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. (1) ). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain "stemness" of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.
Collapse
Key Words
- ACAN, aggrecan
- ADSC, adipose derived mesenchymal stem cell
- ALP, alkaline phosphatase
- BMSC, bone marrow derived mesenchymal stem cell
- CBFA1, core binding factor α 1
- CFU-OB, colony forming unit of osteoblasts
- COL2A1, collagen type 2 alpha1
- DECM, decellularized extracellular matrix
- ECM, extracellular matrix
- ESC, embryonic stem cell
- FGF2, fibroblast growth factor basic
- GAG, glycosaminoglycan
- HGF, hepatocyte growth factor
- HSC, haematopoietic stem cell
- IGF-I, insulin-like growth factor I
- LOXL1, lysyl oxidase-like 1
- LPL, lipopolysaccharide
- LV, left ventricle
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cell
- ON, osteonectin
- PPARG, peroxisome proliferator active receptor gamma
- ROS, reactive oxygen species
- RUNX2, runt-related transcription factor 2
- SD, Sprague-Dawley
- SDSC, synovium derived stem cell
- SIS-ECM, small intestinal submucosa extracellular matrix
- SOX9, SRY (sex determining region-Y)-box 9
- SPARC, secreted protein, acidic and rich in cysteine
- TGFβ, transforming growth factor β
- TIMP, tissue inhibitor of metalloproteinases
- UDSC, umbilical cord derived mesenchymal stem cell
- VEGF, vascular endothelial growth factor
- aging
- differentiation
- extracellular matrix
- mRNA, mRNA
- mesenchymal stem cells
- miRNA, micro-RNA
- microenvironment
- proliferation
- tissue engineering
Collapse
Affiliation(s)
- Kevin Lynch
- a Stem Cell and Tissue Engineering Laboratory; Department of Orthopaedics ; West Virginia University ; Morgantown , WV USA
| | | |
Collapse
|
27
|
Hedegaard A, Lehnhoff J, Moldovan M, Grøndahl L, Petersen NC, Meehan CF. Postactivation depression of the Ia EPSP in motoneurons is reduced in both the G127X SOD1 model of amyotrophic lateral sclerosis and in aged mice. J Neurophysiol 2015; 114:1196-210. [PMID: 26084911 DOI: 10.1152/jn.00745.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Postactivation depression (PActD) of Ia afferent excitatory postsynaptic potentials (EPSPs) in spinal motoneurons results in a long-lasting depression of the stretch reflex. This phenomenon (PActD) is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult mice, we demonstrate that PActD in adult (100-220 days old) C57BL/6J mice is both qualitatively and quantitatively similar to that which has been observed in larger animals with respect to both the magnitude (with ∼20% depression of EPSPs at 0.5 ms after a train of stimuli) and the time course (returning to almost normal amplitudes by 5 ms after the train). This validates the use of mouse models to study PActD. Changes in such excitatory inputs to spinal motoneurons may have important implications for hyperreflexia and/or glutamate-induced excitotoxicity in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). With the use of the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both presymptomatic (16% depression) and symptomatic (17.3% depression) time points compared with aged-matched controls (22.4% depression). The PActD reduction was not markedly altered by symptom onset. Comparing these PActD changes at the EPSP with the known effect of the depression on the monosynaptic reflex, we conclude that this is likely to have a much larger effect on the reflex itself (a 20-40% difference). Nevertheless, it should also be accounted that in aged (580 day old) C57BL/6J mice there was also a reduction in PActD although, aging is not usually associated with spasticity.
Collapse
Affiliation(s)
- A Hedegaard
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - J Lehnhoff
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - M Moldovan
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - L Grøndahl
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - N C Petersen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and Department of Nutrition, Exercise and Sports, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| |
Collapse
|
28
|
McCullagh KJA, Perlingeiro RCR. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev 2015; 84:198-207. [PMID: 25049085 PMCID: PMC4295015 DOI: 10.1016/j.addr.2014.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders.
Collapse
Affiliation(s)
- Karl J A McCullagh
- Department of Physiology, School of Medicine and Regenerative Medicine Institute, National University of Ireland Galway, Ireland
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
30
|
Boisgontier MP, Olivier I, Chenu O, Nougier V. Presbypropria: the effects of physiological ageing on proprioceptive control. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1179-1194. [PMID: 21850402 PMCID: PMC3448996 DOI: 10.1007/s11357-011-9300-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Several changes in the human sensory systems, like presbycusis or presbyopia, are well-known to occur with physiological ageing. A similar change is likely to occur in proprioception, too, but there are strong and unexplained discrepancies in the literature. It was proposed that assessment of the attentional cost of proprioceptive control could provide information able to unify these previous studies. To this aim, 15 young adults and 15 older adults performed a position matching task in single and dual-task paradigms with different difficulty levels of the secondary task (congruent and incongruent Stroop-type tasks) to assess presumed age-related deficits in proprioceptive control. Results showed that proprioceptive control was as accurate and as consistent in older as in young adults for a single proprioceptive task. However, performing a secondary cognitive task and increasing the difficulty of this secondary task evidenced both a decreased matching performance and/or an increased attentional cost of proprioceptive control in older adults as compared to young ones. These results advocated for an impaired proprioception in physiological ageing.
Collapse
|
31
|
Wilkinson KA, Kloefkorn HE, Hochman S. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation. PLoS One 2012; 7:e39140. [PMID: 22745708 PMCID: PMC3380032 DOI: 10.1371/journal.pone.0039140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 µm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.
Collapse
Affiliation(s)
- Katherine A Wilkinson
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, United States of America.
| | | | | |
Collapse
|
32
|
Boisgontier M, Mignardot JB, Nougier V, Olivier I, Palluel E. Le coût attentionnel associé aux fonctions exécutives impliquées dans le contrôle postural. ACTA ACUST UNITED AC 2011. [DOI: 10.1051/sm/2011106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Cosgrove BD, Sacco A, Gilbert PM, Blau HM. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 2009; 78:185-94. [PMID: 19751902 PMCID: PMC2801624 DOI: 10.1016/j.diff.2009.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 12/24/2022]
Abstract
Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions, and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells.
Collapse
Affiliation(s)
- Benjamin D. Cosgrove
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alessandra Sacco
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Penney M. Gilbert
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M. Blau
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Desaki J, Nishida N. A further observation of muscle spindles in the extensor digitorum longus muscle of the aged rat. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:79-86. [PMID: 19648233 DOI: 10.1093/jmicro/dfp038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We observed three novel muscle spindles in the extensor digitorum longus muscle of the aged (20 months) rat. Two muscle spindles of the three contained thin muscle fibers lacking sensory innervation between the layers of the spindle capsule and within the periaxial space, respectively. The other one contained sensory-innervated thin muscle fibers with an indistinct equatorial nucleation between the layers of the spindle capsule. These findings suggest that the occurrence of thin muscle fibers may be intimately related to the degeneration and regeneration of extrafusal muscle fibers during aging and that these newly formed thin muscle fibers may often fail to receive sensory innervation.
Collapse
|
35
|
Vuillerme N, Pinsault N, Bouvier B. Cervical joint position sense is impaired in older adults. Aging Clin Exp Res 2008; 20:355-8. [PMID: 18852550 DOI: 10.1007/bf03324868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Although the role of afferent input from cervical muscles on the control of posture and locomotion is recognised, it is surprising that there is an absence of data reporting whether joint position sense at the cervical level is impaired in older healthy adults. The present experiment was designed to address this issue. METHODS Eighteen young (mean age=23 yrs) and 18 older healthy adults (mean age=68 yrs) were asked to perform the cervicocephalic relocation test (CRT) to the neutral head position (NHP), that is, to relocate the head on the trunk, as accurately as possible, after active cervical rotation to the left and right sides. Ten trials were performed for each rotation. Absolute and variable errors were used to assess cervical joint repositioning accuracy and consistency, respectively. RESULTS Less accurate and less consistent repositioning performances were observed in older adults than in young adults, as indicated by increased absolute and variable errors, respectively. CONCLUSIONS The present findings show that cervical joint position sense, assessed through the CRT to the NHP, is impaired in older adults.
Collapse
Affiliation(s)
- Nicolas Vuillerme
- Laboratoire TIMC-IMAG, UMR UJF CNRS 5525, 38706 La Tronche cédex, France.
| | | | | |
Collapse
|
36
|
Melnyk M, Luebken FV, Hartmann J, Claes L, Gollhofer A, Friemert B. Effects of age on neuromuscular knee joint control. Eur J Appl Physiol 2008; 103:523-7. [DOI: 10.1007/s00421-008-0747-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2008] [Indexed: 11/29/2022]
|
37
|
Jourdan M, Cynober L, Moinard C, Blanc MC, Neveux N, De Bandt JP, Aussel C. Splanchnic sequestration of amino acids in aged rats: in vivo and ex vivo experiments using a model of isolated perfused liver. Am J Physiol Regul Integr Comp Physiol 2007; 294:R748-55. [PMID: 18056986 DOI: 10.1152/ajpregu.00291.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Splanchnic sequestration of amino acids (SSAA) is a process observed during aging that leads to decreased peripheral amino acid (AA) availability. The mechanisms underlying SSAA remain unknown. The aim of the present study was to determine whether a high-protein diet could increase nitrogen retention in aged rats by saturating SSAA and whether SSAA could be explained by dysregulation of hepatic nitrogen metabolism. Adult and aged male Sprague-Dawley rats were housed in individual metabolic cages and fed a normal-protein (17% protein) or high-protein diet (27%) for 2 wk. Nitrogen balance (NB) was calculated daily. On day 14, livers were isolated and perfused for 90 min to study AA and urea fluxes. NB was lower in aged rats fed a normal-protein diet than in adults, but a high-protein diet restored NB to adult levels. Isolated perfused livers from aged rats showed decreased urea production and arginine uptake, together with a release of alanine (vs. uptake in adult rats) and a hepatic accumulation of alanine. The in vivo data suggest that SSAA is a saturable process that responds to an increase in dietary protein content. The hepatic metabolism of AA in aged rats is greatly modified, and urea production decreases. This result refutes the hypothesis that SSAA is associated with an increase in AA disposal via urea production.
Collapse
Affiliation(s)
- M Jourdan
- Laboratory of Biological Nutrition, René Descartes Paris 5 University, Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Pérot C, Rosant C, Canon F, Gamet D. Adaptability of passive stiffness and spindle solicitation along the life of sedentary rats. Comput Methods Biomech Biomed Engin 2007. [DOI: 10.1080/10255840701479024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|