1
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
2
|
Sakhautdinov IM, Malikova RN, Sakhautdinova GF, Abdullin MF, Nugumanov TR, Mustafin AG. Synthesis of New Isoquinoline Derivatives from the Condensation Products of Acid Anhydrides and 2-(3,4-Dimethoxyphenyl)ethanamine. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Mandrekar KS, Tilve SG. P 4O 10/TfOH mediated domino condensation-cyclization of amines with diacids: a route to indolizidine alkaloids under catalyst- and solvent-free conditions. RSC Adv 2022; 12:17701-17705. [PMID: 35765320 PMCID: PMC9200442 DOI: 10.1039/d2ra02534e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
A domino condensation–cyclization method is developed to synthesize indolizidine alkaloids using a P4O10/TfOH reagent system without the employment of either a catalyst or solvent. The use of a few aliphatic and aromatic dicarboxylic acids is shown along with various primary amines. This method is suitable for synthesizing pyrrolo[2,1-a]isoquinolines, pyrido[2,1-a]isoquinolines, and isoindolo[1,2-a]isoquinolinones in excellent yields. When phthalic acid is used, a workup with either NaBH4 or a saturated NaHCO3 solution provided 12b-H or 12b-OH isoindolo[1,2-a]isoquinolinones, respectively. A highly efficient and direct methodology for the construction of pyrrolo[2,1-a]isoquinoline, pyrido[2,1-a]isoquinoline, and 12b-H and 12b-OH isoindolo[2,1-a]isoquinolinone alkaloids from commercially available synthons is devised.![]()
Collapse
Affiliation(s)
- Ketan S Mandrekar
- School of Chemical Sciences, Goa University Taleigao Goa 403206 India
| | - Santosh G Tilve
- School of Chemical Sciences, Goa University Taleigao Goa 403206 India
| |
Collapse
|
4
|
Hou X, Cai C, He Y, An S, Zhao S, Sun H, Yang Y. Protective Effect of Minocycline Hydrochloride on the Mouse Embryonic Development Against Suboptimal Environment. Front Cell Dev Biol 2022; 10:799042. [PMID: 35178387 PMCID: PMC8844553 DOI: 10.3389/fcell.2022.799042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have reported how inner cell mass (ICM) and trophectoderm (TE) was determined during the process of early mouse embryonic development from zygotes into organized blastocysts, however, multiple mysteries still remain. It is noteworthy that pluripotent stem cells (PSCs), which are derived from embryos at different developmental stages, have identical developmental potential and molecular characteristics to their counterpart embryos. Advances of PSCs research may provide us a distinctive perspective of deciphering embryonic development mechanism. Minocycline hydrochloride (MiH), a critical component for maintaining medium of novel type of extended pluripotent stem cells, which possesses developmental potential similar to both ICM and TE, can be substituted with genetic disruption of Parp1 in our previous study. Though Parp1-deficient mouse ESCs are more susceptible to differentiate into trophoblast derivatives, what role of MiH plays in mouse preimplantation embryonic development is still a subject of concern. Here, by incubating mouse zygotes in a medium containing MiH till 100 h after fertilization, we found that MiH could slow down embryonic developmental kinetics during cleavage stage without impairing blastocyst formation potential. Olaparib and Talazoparib, two FDA approved PARP1 inhibitors, exhibited similar effects on mouse embryos, indicating the aforementioned effects of MiH were through inhibiting of PARP1. Besides, we showed an embryonic protective role of MiH against suboptimal environment including long term exposure to external environment and H2O2 treatment, which could mimic inevitable manipulation during embryo culture procedures in clinical IVF laboratory. To our knowledge, it is not only for the first time to study MiH in the field of embryo development, but also for the first time to propose MiH as a protective supplement for embryo culture, giving the way to more studies on exploring the multiple molecular mechanisms on embryonic development that might be useful in assisted reproductive technology.
Collapse
Affiliation(s)
- Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Changming Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shiyu An
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Molnár AÁ, Nádasy GL, Dörnyei G, Patai BB, Delfavero J, Fülöp GÁ, Kirkpatrick AC, Ungvári Z, Merkely B. The aging venous system: from varicosities to vascular cognitive impairment. GeroScience 2021; 43:2761-2784. [PMID: 34762274 PMCID: PMC8602591 DOI: 10.1007/s11357-021-00475-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022] Open
Abstract
Aging-induced pathological alterations of the circulatory system play a critical role in morbidity and mortality of older adults. While the importance of cellular and molecular mechanisms of arterial aging for increased cardiovascular risk in older adults is increasingly appreciated, aging processes of veins are much less studied and understood than those of arteries. In this review, age-related cellular and morphological alterations in the venous system are presented. Similarities and dissimilarities between arterial and venous aging are highlighted, and shared molecular mechanisms of arterial and venous aging are considered. The pathogenesis of venous diseases affecting older adults, including varicose veins, chronic venous insufficiency, and deep vein thrombosis, is discussed, and the potential contribution of venous pathologies to the onset of vascular cognitive impairment and neurodegenerative diseases is emphasized. It is our hope that a greater appreciation of the cellular and molecular processes of vascular aging will stimulate further investigation into strategies aimed at preventing or retarding age-related venous pathologies.
Collapse
Affiliation(s)
- Andrea Ágnes Molnár
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary.
| | | | - Gabriella Dörnyei
- Department of Morphology and Physiology, Health Sciences Faculty, Semmelweis University, Budapest, Hungary
| | | | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor Áron Fülöp
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| | - Angelia C Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| |
Collapse
|
6
|
Hypotherme Perfusion von Spenderherzen mit einer mesenchymale Stammzellen enthaltenden Konservierungslösung. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2021. [DOI: 10.1007/s00398-021-00429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Korkmaz-Icöz S, Sun X, Li S, Brlecic P, Loganathan S, Ruppert M, Sayour AA, Radovits T, Karck M, Szabó G. Conditioned Medium from Mesenchymal Stem Cells Alleviates Endothelial Dysfunction of Vascular Grafts Submitted to Ischemia/Reperfusion Injury in 15-Month-Old Rats. Cells 2021; 10:1231. [PMID: 34067928 PMCID: PMC8155879 DOI: 10.3390/cells10051231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023] Open
Abstract
In patients undergoing coronary artery bypass grafting (CABG), ischemia/reperfusion injury (IRI) is the main contributor to organ dysfunction. Aging-induced vascular damage may be further aggravated during CABG. Favorable effects of conditioned medium (CM) from mesenchymal stem cells (MSCs) have been suggested against IRI. We hypothesized that adding CM to saline protects vascular grafts from IRI in rats. We found that CM contains 28 factors involved in apoptosis, inflammation, and oxidative stress. Thoracic aortic rings from 15-month-old rats were explanted and immediately mounted in organ bath chambers (aged group) or underwent 24 h of cold ischemic preservation in saline-supplemented either with vehicle (aged-IR group) or CM (aged-IR+CM group), prior to mounting. Three-month-old rats were used as referent young animals. Aging was associated with an increase in intima-to-media thickness, an increase in collagen content, higher caspase-12 mRNA levels, and immunoreactivity compared to young rats. Impaired endothelium-dependent vasorelaxation to acetylcholine in the aged-IR group compared to the aged-aorta was improved by CM (aged 61 ± 2% vs. aged-IR 38 ± 2% vs. aged-IR+CM 50 ± 3%, p < 0.05). In the aged-IR group, the already high mRNA levels of caspase-12 were decreased by CM. CM alleviates endothelial dysfunction following IRI in 15-month-old rats. The protective effect may be related to the inhibition of caspase-12 expression.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Xiaoxin Sun
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Shiliang Li
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Paige Brlecic
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Alex Ali Sayour
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| |
Collapse
|
8
|
Koehler RC, Dawson VL, Dawson TM. Targeting Parthanatos in Ischemic Stroke. Front Neurol 2021; 12:662034. [PMID: 34025565 PMCID: PMC8131834 DOI: 10.3389/fneur.2021.662034] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parthanatos is a cell death signaling pathway in which excessive oxidative damage to DNA leads to over-activation of poly(ADP-ribose) polymerase (PARP). PARP then generates the formation of large poly(ADP-ribose) polymers that induce the release of apoptosis-inducing factor from the outer mitochondrial membrane. In the cytosol, apoptosis-inducing factor forms a complex with macrophage migration inhibitory factor that translocates into the nucleus where it degrades DNA and produces cell death. In a review of the literature, we identified 24 publications from 13 laboratories that support a role for parthanatos in young male mice and rats subjected to transient and permanent middle cerebral artery occlusion (MCAO). Investigators base their conclusions on the use of nine different PARP inhibitors (19 studies) or PARP1-null mice (7 studies). Several studies indicate a therapeutic window of 4-6 h after MCAO. In young female rats, two studies using two different PARP inhibitors from two labs support a role for parthanatos, whereas two studies from one lab do not support a role in young female PARP1-null mice. In addition to parthanatos, a body of literature indicates that PARP inhibitors can reduce neuroinflammation by interfering with NF-κB transcription, suppressing matrix metaloproteinase-9 release, and limiting blood-brain barrier damage and hemorrhagic transformation. Overall, most of the literature strongly supports the scientific premise that a PARP inhibitor is neuroprotective, even when most did not report behavior outcomes or address the issue of randomization and treatment concealment. Several third-generation PARP inhibitors entered clinical oncology trials without major adverse effects and could be repurposed for stroke. Evaluation in aged animals or animals with comorbidities will be important before moving into clinical stroke trials.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, The Johns Hopkins University, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
10
|
Ham SY, Nam SB, Kwak YL, Kim TL, Park JK, Shim YH. Age-Related Difference in the Effect of Acute Hyperglycemia on Myocardial Ischemia-Reperfusion Injury. J Gerontol A Biol Sci Med Sci 2020; 75:425-431. [PMID: 30596897 DOI: 10.1093/gerona/gly292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 11/14/2022] Open
Abstract
Age and acute hyperglycemia are known risk factors of myocardial ischemia-reperfusion injury. We investigated age-related difference in the effect of acute hyperglycemia on myocardial ischemia-reperfusion injury in Sprague-Dawley rats (young, 3 months; middle-aged, 10-12 months; and old, 22-24 months). The rats received 1.2 g/kg dextrose or normal saline and were subjected to coronary artery occlusion for 45 minutes followed by reperfusion for 240 minutes. Infarct size and ejection fraction were measured. The levels of apoptosis-related proteins (C-PARP, Bcl-2, Bax, and cytochrome c) and autophagy-related proteins (Bnip3, Beclin-1, Atg5, and LC3B-II) were evaluated. Infarct size increased with acute hyperglycemia in young and middle-aged rats but not in old rats, whereas the reduction of ejection fraction after ischemia-reperfusion was aggravated by acute hyperglycemia in all age groups. Acute hyperglycemia increased Bnip3 and Beclin-1 expressions after ischemia-reperfusion in young and middle-aged rats but not in old rats, whereas it increased the expression of Bax, cytochrome c, Atg5, and LC3B-II only in young or middle-aged rats. Conclusively, acute hyperglycemia does not aggravate myocardial ischemia-reperfusion injury in old rats, unlike in young and middle-aged rats. This heterogeneity may be due to attenuated changes in protein signaling after ischemia-reperfusion injury under acute hyperglycemia in old rats.
Collapse
Affiliation(s)
- Sung Yeon Ham
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Beom Nam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Lim Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Kwang Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yon Hee Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Korkmaz-Icöz S, Li S, Hüttner R, Ruppert M, Radovits T, Loganathan S, Sayour AA, Brlecic P, Lasitschka F, Karck M, Szabó G. Hypothermic perfusion of donor heart with a preservation solution supplemented by mesenchymal stem cells. J Heart Lung Transplant 2018; 38:315-326. [PMID: 30638838 DOI: 10.1016/j.healun.2018.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Heart transplantation is the definitive treatment for end-stage heart failure. A shortage of donor hearts forced transplant programs to accept older donors and longer ischemic times. Previous studies have suggested that administration of mesenchymal stem cells (MSCs) or their conditioned medium (CM) protects the heart against ischemia/reperfusion injury (IRI). We hypothesized that the preservation of donor hearts with a CM would protect the graft from IRI after prolonged storage in 15-month-old rats and investigated mRNA changes attributable to CM. METHODS Rat MSCs were isolated and cultured. The CM was used and characterized by a 90-antibody array, revealing the presence of 28 factors involved in apoptosis, inflammation, and oxidative stress. Hearts from 15-month-old donor rats were explanted and continuously perfused for 5 hours with oxygenated, 4°C cardioplegic solution, and supplemented with either regular cell culture medium (control group) or CM. The hearts were then heterotopically transplanted. We evaluated in-vivo left ventricular graft function 1.5 hours after transplantation and the myocardial expression of 120 genes using polymerase chain reaction arrays. RESULTS Systolic contractility and relaxation parameters were significantly reduced in 15-month-old rats compared with the young rats. After transplantation, systolic function (dP/dtmax: 1,197 ± 94 vs 1,825 ± 279 mm Hg/s at 140 µl; p < 0.05) and diastolic function (dP/dtmin: 737 ± 168 vs 1,200 ± 166 mm Hg/s at 140 µl, p < 0.05) were significantly improved in the CM group compared with controls. Among the genes surveyed, the expressions of 66 were altered. Genes of pro-inflammatory cytokines and interleukins were down-regulated, whereas expression of the anti-oxidant gene superoxide dismutase-2 was up-regulated in the CM-treated grafts compared with the control group grafts. CONCLUSIONS Perfusion of donor hearts with CM protects against myocardial IRI in 15-month-old rats.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Shiliang Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Regina Hüttner
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Anesthesiology, Ruhr University Bochum, St. Josef- and St. Elisabeth Hospital, Bochum, Germany
| | - Alex Ali Sayour
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Paige Brlecic
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Waldman M, Nudelman V, Shainberg A, Abraham NG, Kornwoski R, Aravot D, Arad M, Hochhauser E. PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1α axis. Exp Cell Res 2018; 373:112-118. [PMID: 30359575 DOI: 10.1016/j.yexcr.2018.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (DM2) follows impaired glucose tolerance in obesity and is frequently associated with hypertension, causing adverse myocardial remodelling and leading to heart failure. The DNA bound protein PARP (poly ADP ribose) polymerase catalyses a post translational modification (polymerization of negatively charged ADP-ribose chains) of nuclear proteins. PARP-1 activation is NAD+ dependent and takes part in DNA repair and in chromatin remodelling and has a function in transcriptional regulation, intracellular trafficking and energy metabolism. PARP-1 is activated in diabetic cardiomyopathy. We hypothesized that PARP-1 inhibition in diabetic mice may protect cardiomyocytes from inflammation and ROS production. METHODS Obese Leptin resistant (db/db) mice suffering from DM2, were treated with angiotensin II (AT) for 4 weeks to enhance the development of cardiomyopathy. Mice were concomitantly treated with the PARP-1 inhibitor INO1001. Neonatal cardiomyocytes exposed to high levels of glucose (33 mM) with or without AT were treated with INO1001. or with SIRT inhibitor (EX-527) in the presence of INO1001 were tested in-vitro. RESULTS The in-vivo tests show that hearts from AT treated DM2 mice exhibited cardiac hypertrophy, fibrosis and an increase in the inflammatory marker TNFα. DM2 mice had an increased oxidative stress, concomitant with elevated PARP-1 activity and reduced Sirtuin-1 (SIRT1) expression. PARP-1 inhibition led to increased SIRT1 and Peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) levels, attenuating oxidative stress, inflammation and fibrosis. In-vitro experiments demonstrated that inhibition of PARP-1 in cardiomyocytes exposed to high levels of glucose and AT led to a significant reduction in ROS (P < 0.01), which was abolished in the presence of the SIRT1 inhibitor together with increased protein expression of SIRT1 and PGC-1α. CONCLUSION PARP1 inhibitor INO1001 attenuated cardiomyopathic features in diabetic mice through the activation of SIRT1 and its downstream antioxidant defence mechanisms. The results of this study suggest a pivotal role of PARP-1 inhibition in treating diabetic and AT-induced cardiomyopathy.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - Vadim Nudelman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ran Kornwoski
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
13
|
Santos AL, Sinha S, Lindner AB. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1941285. [PMID: 29743972 PMCID: PMC5878877 DOI: 10.1155/2018/1941285] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with the accumulation of cellular damage over the course of a lifetime. This process is promoted in large part by reactive oxygen species (ROS) generated via cellular metabolic and respiratory pathways. Pharmacological, nonpharmacological, and genetic interventions have been used to target cellular and mitochondrial networks in an effort to decipher aging and age-related disorders. While ROS historically have been viewed as a detrimental byproduct of normal metabolism and associated with several pathologies, recent research has revealed a more complex and beneficial role of ROS in regulating metabolism, development, and lifespan. In this review, we summarize the recent advances in ROS research, focusing on both the beneficial and harmful roles of ROS, many of which are conserved across species from bacteria to humans, in various aspects of cellular physiology. These studies provide a new context for our understanding of the parts ROS play in health and disease. Moreover, we highlight the utility of bacterial models to elucidate the molecular pathways by which ROS mediate aging and aging-related diseases.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sanchari Sinha
- Defence Institute of Physiology and Allied Sciences, DRDO, New Delhi, India
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Korkmaz-Icöz S, Radovits T, Loganathan S, Li S, Ruppert M, Benke K, Brlecic P, Szabó C, Karck M, Szabó G. Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. Eur J Cardiothorac Surg 2018; 51:829-835. [PMID: 28204209 DOI: 10.1093/ejcts/ezw426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Heart transplantation is the standard treatment in end-stage heart failure and at shortage of cardiac allografts is its major limiting factor. Striving to optimize the use of this limited resource, the aspect that long distance procurement may increase the available donor pool must be taken into consideration. As poly(ADP-ribose)polymerase (PARP)-activation has been identified as a key pathway of reperfusion injury, we assessed the hypothesis that its inhibition would allow an extension of cold preservation time and protect the graft against ischaemia/reperfusion injury. METHODS Hearts from donor rats were explanted, stored in a preservation solution (Custodiol) at 4 °C for 4 h or 8 h, and heterotopically transplanted. A vehicle or the PARP-inhibitor, INO-1001 (5 mg/kg), was administered during the reperfusion period. We evaluated post-transplant graft function with a Millar micromanometer at different left-ventricular volumes. Additionally, in organ bath experiments the effect of PARP-inhibition on endothelium-dependent and -independent vasorelaxation was evaluated after long-term cold ischaemic storage/warm reperfusion. RESULTS PARP-inhibition resulted in a better systolic functional recovery of grafts submitted to 4 h and 8 h ischaemia. Furthermore, INO-1001 decreased the left-ventricular end-diastolic pressure after 8 h of ischaemia. Coronary blood flow was significantly higher after PARP-inhibition in comparison to controls. Endothelium-dependent vasorelaxation was significantly better in the INO-1001-groups than in the vehicle-treated transplant groups. After 24-h hypothermic storage, treatment of aortic ring with INO-1001 during reoxygenation significantly improved endothelial dysfunction. CONCLUSIONS By inhibiting the PARP activation, INO-1001 can protect the graft and endothelium from the injury that is caused by prolonged cold myocardial ischaemia/reperfusion, thereby improving post-transplant graft function.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Anesthesiology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Shiliang Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Paige Brlecic
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Wei SJ, Cheng L, Liang ES, Wang Q, Zhou SN, Xu H, Hui LH, Ge ZM, Zhang MX. Poly(ADP-ribose) polymerase 1 deficiency increases nitric oxide production and attenuates aortic atherogenesis through downregulation of arginase II. Clin Exp Pharmacol Physiol 2017; 44:114-122. [PMID: 27757983 DOI: 10.1111/1440-1681.12685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/22/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) plays an important role in endothelial dysfunction, leading to atherogenesis and vascular-related diseases. However, whether PARP regulates nitric oxide (NO), a key regulator of endothelial function, is unclear so far. We investigated whether inhibition of PARP-1, the most abundant PARP isoform, prevents atherogenesis by regulating NO production and tried to elucidate the possible mechanisms involved in this phenomenon. In apolipoprotein E-deficient (apoE-/- ) mice fed a high-cholesterol diet for 12 weeks, PARP-1 inhibition via treatment with 3,4-dihydro-54-(1-piperindinyl) butoxy-1(2H)-isoquinoline (DPQ) or PARP-1 gene knockout reduced aortic atherosclerotic plaque areas (49% and 46%, respectively). Both the groups showed restored NO production in mouse aortas with reduced arginase II (Arg II) expression compared to that in the controls. In mouse peritoneal macrophages and aortic endothelial cells (MAECs), PARP-1 knockout resulted in lowered Arg II expression. Moreover, phosphorylation of endothelial NO synthase (eNOS) was preserved in the aortas and MAECs when PARP-1 was inhibited. Reduced NO production in vitro due to PARP-1 deficiency could be restored by treating the MAECs with oxidized low-density lipoprotein treatment, but this effect could not be achieved with peritoneal macrophages, which was likely due to a reduction in the expression of induced NOS expression. Our findings indicate that PARP-1 inhibition may attenuate atherogenesis by restoring NO production in endothelial cells and thus by reducing Arg II expression and consequently arginase the activity.
Collapse
Affiliation(s)
- Shu-Jian Wei
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Cheng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Sheng-Nan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hao Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Long-Hua Hui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.,The First Sanatorium of Jinan Military Region, Qingdao, Shandong, China
| | - Zhi-Ming Ge
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174:1591-1619. [PMID: 27187006 PMCID: PMC5446575 DOI: 10.1111/bph.13517] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are major contributors to global deaths and disability-adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti-inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| | - Sebastian Steven
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Alina Weber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Huige Li
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
- Department of PharmacologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Santiago Lamas
- Department of Cell Biology and ImmunologyCentro de Biología Molecular "Severo Ochoa" (CSIC‐UAM)MadridSpain
| | - Thomas Münzel
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| |
Collapse
|
17
|
Alfaras I, Di Germanio C, Bernier M, Csiszar A, Ungvari Z, Lakatta EG, de Cabo R. Pharmacological Strategies to Retard Cardiovascular Aging. Circ Res 2017; 118:1626-42. [PMID: 27174954 DOI: 10.1161/circresaha.116.307475] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 01/10/2023]
Abstract
Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health.
Collapse
Affiliation(s)
- Irene Alfaras
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Clara Di Germanio
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Michel Bernier
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Anna Csiszar
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Zoltan Ungvari
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Edward G Lakatta
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Rafael de Cabo
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.).
| |
Collapse
|
18
|
Eros K, Magyar K, Deres L, Skazel A, Riba A, Vamos Z, Kalai T, Gallyas F, Sumegi B, Toth K, Halmosi R. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats. PLoS One 2017; 12:e0174401. [PMID: 28339485 PMCID: PMC5365133 DOI: 10.1371/journal.pone.0174401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative/nitrosative stress and inflammatory status, without lowering blood pressure.
Collapse
Affiliation(s)
- Krisztian Eros
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Klara Magyar
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Arpad Skazel
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Adam Riba
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Zoltan Vamos
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Pathophysiology and Gerontology, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Tamas Kalai
- Department of Organic and Pharmacological Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Ferenc Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Balazs Sumegi
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary.,MTA-PTE Nuclear and Mitochondrial Interactions Research Group, University of Pecs, Pecs, Baranya, Hungary
| | - Kalman Toth
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,MTA-PTE Nuclear and Mitochondrial Interactions Research Group, University of Pecs, Pecs, Baranya, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| |
Collapse
|
19
|
Zhang GH, Chao M, Hui LH, Xu DL, Cai WL, Zheng J, Gao M, Zhang MX, Wang J, Lu QH. Poly(ADP-ribose)polymerase 1 inhibition protects against age-dependent endothelial dysfunction. Clin Exp Pharmacol Physiol 2016; 42:1266-74. [PMID: 26331430 DOI: 10.1111/1440-1681.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
Abstract
Age-related endothelial dysfunction is closely associated with the local production of reactive oxygen species (ROS) within and in the vicinity of the vascular endothelium. Oxidant-induced DNA damage can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), leading to endothelial dysfunction in various pathophysiological conditions. The present study aimed to investigate the role of PARP-1 in age-dependent changes in endothelial cell function and its underlying mechanism. Wild-type (WT) and PARP-1(-/-) mice were divided into young (2 months) and old (12 months) groups. Isolated aortic rings were suspended to record isometric tension to assess endothelial function. Nitric oxide (NO) production and content in plasma were detected by spectrophotometry. Superoxide (O2(-) production was detected by dihydroethidium. Expression of PARP-1, endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and arginase-2 (Arg2) was assessed by western blot analysis. Endothelium-dependent relaxation in response to acetylcholine was lost in old WT, but not PARP-1(-/-), mice. Endothelium-independent vasodilation was not impaired in aging mice. Production of O2(-) was greater in aging WT mice than young or aging PARP-1(-/-) mice. eNOS expression was not affected by aging in WT or PARP-1(-/-) mice, but p-eNOS expression decreased and iNOS and Arg2 levels were upregulated only in aging WT mice. In conclusion, PARP-1 inhibition may protect against age-dependent endothelial dysfunction, potentially by regulating NO bioavailability via iNOS. Inhibition of PARP-1 may help in vascular aging prevention.
Collapse
Affiliation(s)
- Guang-hao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China.,Department of Cardiology, Taian City Central Hospital, Shandong, China
| | - Min Chao
- Department of Anorectal surgery, Afliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Long-hua Hui
- The First Sanatorium of Jinan Military Region in Qingdao, Shandong, China.,Department of Cardiology, QiLu Hospital of Shandong University, Jinan, China
| | - Dong Ling Xu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - We-li Cai
- Department of Cardiology, The Third Hospital, Jinan, China
| | - Jie Zheng
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Min Gao
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Ming-xiang Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Qing-hua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Shrotriya S, Deep G, Lopert P, Patel M, Agarwal R, Agarwal C. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells. Mol Carcinog 2014; 54:1734-47. [PMID: 25557495 DOI: 10.1002/mc.22246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells.
Collapse
Affiliation(s)
- Sangeeta Shrotriya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, Aurora, Colorado
| | - Pamela Lopert
- Neuroscience Training Program, University of Colorado Denver, Aurora, Colorado
| | - Manisha Patel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, Aurora, Colorado
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
21
|
Suyavaran A, Ramamurthy C, Mareeswaran R, Shanthi YV, Selvakumar J, Mangalaraj S, Kumar MS, Ramanathan CR, Thirunavukkarasu C. Synthesis and biological evaluation of isoindoloisoquinolinone, pyroloisoquinolinone and benzoquinazolinone derivatives as poly(ADP-ribose) polymerase-1 inhibitors. Bioorg Med Chem 2014; 23:488-98. [PMID: 25555733 DOI: 10.1016/j.bmc.2014.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
Abstract
A series of novel fused isoquinolinones with isoindoloisoquinolinone, pyroloisoquinolinone, and benzoquinalizinone skeletons were synthesized from corresponding phenethylimides. The isoquinolinone derivatives were evaluated for their protective effect on chicken erythrocytes subjected to oxidative damage. The effect of isoquinolinone derivatives were analysed by estimation of cell viability, antioxidant enzyme activities, DNA damage (comet assay), PARP-1 inhibition assay and molecular docking of the compounds with PARP-1 active site. The compounds CRR-271, CRR-288 and CRR-224+225 showed significant protective effect at 100 μM concentration. The PARP-1 inhibition assay revealed the IC50 values of CRR-271, CRR-288 and CRR-224+225 as <200 nM, further molecular docking studies shows higher binding energies with PARP-1 active site. Interesting findings in this study suggest that the novel isoquinolinone derivatives inhibit PARP-1 activity and protect cells against oxidative DNA damage, which could be implemented in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Arumugam Suyavaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Chitteti Ramamurthy
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Ramachandran Mareeswaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Yagna Viswa Shanthi
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | | | | | - Muthuvel Suresh Kumar
- Centre for Advance Studies in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | | | | |
Collapse
|
22
|
Coletta C, Módis K, Oláh G, Brunyánszki A, Herzig DS, Sherwood ER, Ungvári Z, Szabo C. Endothelial dysfunction is a potential contributor to multiple organ failure and mortality in aged mice subjected to septic shock: preclinical studies in a murine model of cecal ligation and puncture. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:511. [PMID: 25223540 PMCID: PMC4177582 DOI: 10.1186/s13054-014-0511-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The goal of the current study was to investigate the effect of aging on the development of endothelial dysfunction in a murine model of sepsis, and to compare it with the effect of genetic deficiency of the endothelial isoform of nitric oxide synthase (eNOS). METHODS Cecal ligation and puncture (CLP) was used to induce sepsis in mice. Survival rates were monitored and plasma indices of organ function were measured. Ex vivo studies included the measurement of vascular function in thoracic aortic rings, assessment of oxidative stress/cellular injury in various organs and the measurement of mitochondrial function in isolated liver mitochondria. RESULTS eNOS deficiency and aging both exacerbated the mortality of sepsis. Both eNOS-deficient and aged mice exhibited a higher degree of sepsis-associated multiple organ dysfunction syndrome (MODS), infiltration of tissues with mononuclear cells and oxidative stress. A high degree of sepsis-induced vascular oxidative damage and endothelial dysfunction (evidenced by functional assays and multiple plasma markers of endothelial dysfunction) was detected in aortae isolated from both eNOS(-/-) and aged mice. There was a significant worsening of sepsis-induced mitochondrial dysfunction, both in eNOS-deficient mice and in aged mice. Comparison of the surviving and non-surviving groups of animals indicated that the severity of endothelial dysfunction may be a predictor of mortality of mice subjected to CLP-induced sepsis. CONCLUSIONS Based on the studies in eNOS mice, we conclude that the lack of endothelial nitric oxide production, on its own, may be sufficient to markedly exacerbate the severity of septic shock. Aging markedly worsens the degree of endothelial dysfunction in sepsis, yielding a significant worsening of the overall outcome. Thus, endothelial dysfunction may constitute an early predictor and independent contributor to sepsis-associated MODS and mortality in aged mice.
Collapse
|
23
|
Gerö D, Szoleczky P, Chatzianastasiou A, Papapetropoulos A, Szabo C. Modulation of poly(ADP-ribose) polymerase-1 (PARP-1)-mediated oxidative cell injury by ring finger protein 146 (RNF146) in cardiac myocytes. Mol Med 2014; 20:313-28. [PMID: 24842055 DOI: 10.2119/molmed.2014.00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/05/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) activation is a hallmark of oxidative stress-induced cellular injury that can lead to energetic failure and necrotic cell death via depleting the cellular nicotinamide adenine dinucleotide (NAD(+)) and ATP pools. Pharmacological PARP-1 inhibition or genetic PARP-1 deficiency exert protective effects in multiple models of cardiomyocyte injury. However, the connection between nuclear PARP-1 activation and depletion of the cytoplasmic and mitochondrial energy pools is poorly understood. By using cultured rat cardiomyocytes, here we report that ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, acts as a direct interactor of PARP-1. Overexpression of RNF146 exerts protection against oxidant-induced cell death, whereas PARP-1-mediated cellular injury is augmented after RNF146 silencing. RNF146 translocates to the nucleus upon PARP-1 activation, triggering the exit of PARP-1 from the nucleus, followed by rapid degradation of both proteins. PARP-1 and RNF146 degradation occurs in the early phase of myocardial ischemia-reperfusion injury; it precedes the induction of heat shock protein expression. Taken together, PARP-1 release from the nucleus and its rapid degradation represent newly identified steps of the necrotic cell death program induced by oxidative stress. These steps are controlled by the ubiquitin-proteasome pathway protein RNF146. The current results shed new light on the mechanism of necrotic cell death. RNF146 may represent a distinct target for experimental therapeutic intervention of oxidant-mediated cardiac injury.
Collapse
Affiliation(s)
- Domokos Gerö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Petra Szoleczky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
24
|
A quinazoline-derivative compound with PARP inhibitory effect suppresses hypertension-induced vascular alterations in spontaneously hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2014; 1842:935-44. [PMID: 24657811 DOI: 10.1016/j.bbadis.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
AIMS Oxidative stress and neurohumoral factors play important role in the development of hypertension-induced vascular remodeling, likely by disregulating kinase cascades and transcription factors. Oxidative stress activates poly(ADP-ribose)-polymerase (PARP-1), which promotes inflammation and cell death. We assumed that inhibition of PARP-1 reduces the hypertension-induced adverse vascular changes. This hypothesis was tested in spontaneously hypertensive rats (SHR). METHODS AND RESULTS Ten-week-old male SHRs and wild-type rats received or not 5mg/kg/day L-2286 (a water-soluble PARP-inhibitor) for 32 weeks, then morphological and functional parameters were determined in their aortas. L-2286 did not affect the blood pressure in any of the animal groups measured with tail-cuff method. Arterial stiffness index increased in untreated SHRs compared to untreated Wistar rats, which was attenuated by L-2286 treatment. Electron and light microscopy of aortas showed prominent collagen deposition, elevation of oxidative stress markers and increased PARP activity in SHR, which were attenuated by PARP-inhibition. L-2286 treatment decreased also the hypertension-activated mitochondrial cell death pathway, characterized by the nuclear translocation of AIF. Hypertension activated all three branches of MAP-kinases. L-2286 attenuated these changes by inducing the expression of MAPK phosphatase-1 and by activating the cytoprotective PI-3-kinase/Akt pathway. Hypertension activated nuclear factor-kappaB, which was prevented by PARP-inhibition via activating its nuclear export. CONCLUSION PARP-inhibition has significant vasoprotective effects against hypertension-induced vascular remodeling. Therefore, PARP-1 can be a novel therapeutic drug target for preventing hypertension-induced vascular remodeling in a group of patients, in whom lowering the blood pressure to optimal range is harmful or causes intolerable side effects.
Collapse
|
25
|
Marginal donors: can older donor hearts tolerate prolonged cold ischemic storage? Aging Clin Exp Res 2013; 25:597-600. [PMID: 23949977 DOI: 10.1007/s40520-013-0131-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS Both advanced donor age and prolonged ischemic time are significant risk factors for the 1-year mortality. However, its functional consequences have not been fully evaluated in the early-phase after transplantation; even early graft dysfunction is the main determinant of long-term outcome following transplantation. We evaluated in vivo left-ventricular (LV) cardiac and coronary vascular function of old-donor grafts after short and prolonged cold ischemic times in rats 1 h after heart transplantation. METHODS The hearts were excised from young donor (3-month-old) or old donor (18-month-old) rats, stored in cold preservation solution for either 1 or 8 h, and heterotopically transplanted. RESULTS After 1 h of ischemic period, in the old-donor group, LV pressure, maximum pressure development (dP/dt max), time constant of LV pressure decay (τ), LV end-diastolic pressure and coronary blood flow did not differ compared with young donors. However, endothelium-dependent vasodilatation to acetylcholine resulted in a significantly lower response of coronary blood flow in the old-donor group (33 ± 4 vs. 51 ± 15 %, p < 0.05). After 8 h preservation, two of the old-donor hearts showed no mechanical activity upon reperfusion. LV pressure (55 ± 6 vs. 72 ± 5 mmHg, p < 0.05), dP/dt max (899 ± 221 vs. 1530 ± 217 mmHg/s, p < 0.05), coronary blood flow and response to acetylcholine were significantly reduced and τ was increased in the old-donor group in comparison to young controls. CONCLUSIONS During the early-phase after transplantation, the ischemic tolerance of older-donor hearts is reduced after prolonged preservation time and the endothelium is more vulnerable to ischemia/reperfusion.
Collapse
|
26
|
Walsh SK, English FA, Crocker IP, Johns EJ, Kenny LC. Contribution of PARP to endothelial dysfunction and hypertension in a rat model of pre-eclampsia. Br J Pharmacol 2012; 166:2109-16. [PMID: 22339234 DOI: 10.1111/j.1476-5381.2012.01906.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Under conditions of increased oxidative stress, such as pre-eclampsia and diabetes, overstimulation of PARP leads to endothelial dysfunction. Inhibition of PARP has been demonstrated to reverse the vascular dysfunction associated with diabetes in vivo. The present study was carried out to investigate the role of PARP in mediating the endothelial dysfunction associated with pre-eclampsia. EXPERIMENTAL APPROACH Uteroplacental perfusion was surgically reduced in pregnant rats to produce the reduced uterine perfusion pressure (RUPP) rat model of pre-eclampsia and the PARP inhibitor, PJ34, was administered either before or after surgery. Mean arterial BP and vascular function were measured in normal pregnant (NP) and both control and PJ34-treated RUPP rats. Mesenteric vessels from NP rats were incubated with either 3% RUPP or NP plasma alone or in combination with PJ34. Finally, immunohistochemical staining was carried out to measure nitrotyrosine (byproduct of peroxynitrite) immunoreactivity. KEY RESULTS RUPP rats were characterized by hypertension, fetal growth restriction and endothelial dysfunction when compared with NP rats. PJ34 administered in vivo before, but not after, surgery prevented the development of both endothelial dysfunction and hypertension. RUPP plasma-induced impaired vasorelaxation was prevented following co-incubation with PJ34 in vitro. Furthermore, the protective effect of PARP inhibition in vivo was accompanied by a reduction in nitrotyrosine immunoreactivity. CONCLUSIONS AND IMPLICATIONS PJ34 prevented the development of both endothelial dysfunction and hypertension and reduced vascular nitrotyrosine immunoreactivity, thus suggesting a role for oxidative-nitrosative stress/PARP activation in the aberration in both vascular and haemodynamic function in this rat model of pre-eclampsia.
Collapse
Affiliation(s)
- S K Walsh
- Anu Research Centre, Department of Obstetrics & Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland.
| | | | | | | | | |
Collapse
|
27
|
Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:321653. [PMID: 23050038 PMCID: PMC3459245 DOI: 10.1155/2012/321653] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome maintenance and inflammation. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes the synthesis of the biopolymer poly(ADP-ribose), exhibits an essential role in both processes. On the one hand, PARP1 serves as a genomic caretaker as it participates in chromatin remodelling, DNA repair, telomere maintenance, resolution of replicative stress, and cell cycle control. On the other hand, PARP1 acts as a mediator of inflammation due to its function as a regulator of NF-κB and other transcription factors and its potential to induce cell death. Consequently, PARP1 represents an interesting player in several aging mechanisms and is discussed as a longevity assurance factor on the one hand and an aging-promoting factor on the other hand. Here, we review the molecular mechanisms underlying the various roles of PARP1 in longevity and aging with special emphasis on cellular studies and we briefly discuss the results in the context of in vivo studies in mice and humans.
Collapse
|
28
|
Szabó G, Loganathan S, Merkely B, Groves JT, Karck M, Szabó C, Radovits T. Catalytic peroxynitrite decomposition improves reperfusion injury after heart transplantation. J Thorac Cardiovasc Surg 2012; 143:1443-9. [PMID: 22401641 DOI: 10.1016/j.jtcvs.2012.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/27/2011] [Accepted: 02/03/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Peroxynitrite, a reactive nitrogen species, has been implicated in the development of ischemia-reperfusion injury. The present study investigated the effects of the potent peroxynitrite decomposition catalyst FP15 on myocardial and endothelial function after hypothermic ischemia-reperfusion in a heterotopic rat heart transplantation model. METHODS After a 1-hour ischemic preservation and implantation of donor hearts, reperfusion was started after application of vehicle (5% glucose solution) or FP15 (0.3 mg/kg). The assessment of left ventricular pressure-volume relations, total coronary blood flow, endothelial function, immunohistochemical markers of nitro-oxidative stress, and myocardial high-energy phosphates was performed at 1 and 24 hours of reperfusion. RESULTS After 1 hour of reperfusion, myocardial contractility (maximal slope of systolic pressure increment at 140 μL left ventricular volume: 5435 ± 508 mm Hg/s vs 2346 ± 263 mm Hg/s), coronary blood flow (3.98 ± 0.33 mL/min/g vs 2.74 ± 0.29 mL/min/g), and endothelial function were significantly improved, nitro-oxidative stress was reduced, and myocardial high-energy phosphate content was preserved in the FP15-treated animals compared with controls. CONCLUSIONS Pharmacologic peroxynitrite decomposition reduces reperfusion injury after heart transplantation as the result of reduction of nitro-oxidative stress and prevention of energy depletion and exerts a beneficial effect against reperfusion-induced graft cardiac and coronary endothelial dysfunction.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ming Z, Legare DJ, Lautt WW. Absence of meal-induced insulin sensitization (AMIS) in aging rats is associated with cardiac dysfunction that is protected by antioxidants. J Appl Physiol (1985) 2011; 111:704-14. [PMID: 21617079 DOI: 10.1152/japplphysiol.00057.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that progressive development of absence of meal-induced insulin sensitization (AMIS) leads to postprandial hyperglycemia, compensatory hyperinsulinemia, resultant hyperlipidemia, increased oxidative stress, and obesity, progressing to syndrome X in aging rats. The present study tested the hypothesis that progressive development of AMIS in aging rats further resulted in deterioration in cardiac performance. Anesthetized male Sprague-Dawley rats were tested at 9, 26, and 52 wk to determine their dynamic response to insulin and cardiac function. Dynamic insulin sensitivity was determined before and after atropine to quantitate hepatic insulin sensitizing substance (HISS)-dependent and -independent insulin action. Cardiac performance was evaluated using a Millar pressure-volume conductance catheter system. AMIS developed with age, as demonstrated by significant decrease in HISS-dependent insulin action, and this syndrome was increased by sucrose supplementation and inhibited by the antioxidant treatment. Associated with progressive development of AMIS, aging rats showed impaired cardiac performance, including the reduction in cardiac index, heart rate, dP/dt(max), dP/dt(min), ejection fraction and decreased slope of left ventricular end-systolic pressure-volume relationship, and increased relaxation time constant of left ventricular pressure as well as increased left ventricular end-diastolic pressure. Total peripheral vascular resistance also increased with age. Sucrose supplementation and antioxidant treatment, respectively, potentiated and attenuated cardiac dysfunction associated with age. In addition, poor cardiac performance correlated closely with the development of AMIS. These results indicate that AMIS is the first metabolic defect that leads to homeostatic disturbances and dysfunctions, including cardiovascular diseases.
Collapse
Affiliation(s)
- Zhi Ming
- Dept. of Pharmacology and Therapeutics, Faculty of Medicine, Univ. of Manitoba, Winnipeg, MB R3E0T6, Canada
| | | | | |
Collapse
|
30
|
Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 2011; 6:e19194. [PMID: 21541336 PMCID: PMC3082551 DOI: 10.1371/journal.pone.0019194] [Citation(s) in RCA: 459] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/29/2011] [Indexed: 01/12/2023] Open
Abstract
The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose) polymerase (PARP), an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months) compared to young (i.e. 3 month old) rats. These changes in [NAD(H)] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine) formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX) was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.
Collapse
Affiliation(s)
- Nady Braidy
- Department of Pharmacology, School of Medical Sciences, Faculty of
Medicine, University of New South Wales, Sydney, Australia
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of
Medicine, University of New South Wales, Sydney, Australia
- St Vincent's Centre for Applied Medical Research, Sydney,
Australia
| | - Hussein Mansour
- Retinal and Developmental Neurobiology Lab, Discipline of Anatomy and
Histology, School of Medical Sciences, University of Sydney,
Australia
| | - Tailoi Chan-Ling
- Retinal and Developmental Neurobiology Lab, Discipline of Anatomy and
Histology, School of Medical Sciences, University of Sydney,
Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, University of New South Wales,
Sydney, Australia
| | - Ross Grant
- Department of Pharmacology, School of Medical Sciences, Faculty of
Medicine, University of New South Wales, Sydney, Australia
- Australasian Research Institute, Sydney Adventist Hospital, Sydney,
Australia
| |
Collapse
|
31
|
Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol 2011; 4:16. [PMID: 21504625 PMCID: PMC3103487 DOI: 10.1186/1756-8722-4-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023] Open
Abstract
We reviewed preclinical data and clinical development of MDM2 (murine double minute 2), ALK (anaplastic lymphoma kinase) and PARP (poly [ADP-ribose] polymerase) inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC). Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.
Collapse
Affiliation(s)
- Yuan Yuan
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Yu-Min Liao
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, China
| | - Chung-Tsen Hsueh
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Hamid R Mirshahidi
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
32
|
Radovits T, Szabó G, Merkely B. Ageing-associated changes in cardiovascular structure and function in apparent health. Interv Med Appl Sci 2011. [DOI: 10.1556/imas.3.2011.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The continuous ageing of the population is a common phenomenon in the industrialized countries. According to epidemiological studies, advanced age acts as the major risk factor of the most important cardiovascular diseases. Ageing is characterized by typical physiological alterations in vascular and cardiac structure and function at both the cellular and molecular levels, which result in a progressive dysfunction of the cardiovascular system. These ageing-associated changes are themselves increasingly recognized as a “vulnerable physiological basis” on which pathophysiological disease mechanisms can become superimposed. This review focuses on the main issues of the rapidly increasing knowledge on the ageing-associated physiological changes in the cardiovascular system in apparent health. Intensive investigations in this field provide key findings that will hopefully establish effective therapies to prevent, delay or attenuate the cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Tamás Radovits
- 1 Heart Center, Semmelweis University, Budapest, Hungary
- 3 Experimental Research Laboratory, Heart Center, Semmelweis University, Városmajor u. 68, H-1122, Budapest, Hungary
| | - Gábor Szabó
- 2 Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Béla Merkely
- 1 Heart Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 2010; 65:1028-41. [PMID: 20576649 DOI: 10.1093/gerona/glq113] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses on molecular, cellular, and functional changes that occur in the vasculature during aging; explores the links between mitochondrial oxidative stress, inflammation, and development of vascular disease in the elderly patients; and provides a landscape of molecular mechanisms involved in cellular oxidative stress resistance, which could be targeted for the prevention or amelioration of unsuccessful vascular aging. Practical interventions for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the effects of anti-inflammatory treatments, regular exercise, dietary interventions, and caloric restriction mimetics.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
34
|
Herrera MD, Mingorance C, Rodríguez-Rodríguez R, Alvarez de Sotomayor M. Endothelial dysfunction and aging: an update. Ageing Res Rev 2010; 9:142-52. [PMID: 19619671 DOI: 10.1016/j.arr.2009.07.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/19/2022]
Abstract
Aging is an important risk factor for the development of many cardiovascular diseases as atherosclerosis and hypertension with a common underlying circumstance: the progressive decline of endothelial function. Vascular endothelial dysfunction occurs during the human aging process and is accompanied by deterioration in the balance between vasodilator and vasoconstriction substances produced by the endothelium. This imbalance is mainly characterized by a progressive reduction of the bioavailability of nitric oxide (NO) and an increase in the production of cyclooxygenase (COX)-derived vasoconstrictor factors. Both circumstances are in turn related to an increased production of reactive oxygen and nitrogen species. The aim of this review is to describe the pathophysiological mechanisms involved in the endothelial function declination that accompanies the multifactorial aging process, including alterations related to oxidative stress and pro-inflammatory cytokines, senescence of endothelial cells and genetic factors.
Collapse
Affiliation(s)
- María Dolores Herrera
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/Profesor García González 2, 41012 Seville, Spain.
| | | | | | | |
Collapse
|
35
|
Protective effects of caspase-9 and poly(ADP-ribose) polymerase inhibitors on ischemia-reperfusion-induced myocardial injury. Arch Pharm Res 2009; 32:1037-43. [DOI: 10.1007/s12272-009-1709-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/20/2009] [Accepted: 06/30/2009] [Indexed: 11/26/2022]
|
36
|
Altmeyer M, Hottiger MO. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging (Albany NY) 2009; 1:458-69. [PMID: 20157531 PMCID: PMC2806023 DOI: 10.18632/aging.100052] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/19/2009] [Indexed: 04/17/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein, which functions as molecular stress sensor. Reactive oxygen species, responsible for the most plausible and currently acceptable global mechanism to explain the aging process, strongly activate the enzymatic activity of PARP1 and the formation of poly(ADP-ribose) (PAR) from NAD(+). Consumption of NAD(+) links PARP1 to energy metabolism and to a large number of NAD(+)-dependent enzymes, such as the sirtuins. As transcriptional cofactor for NF-kappaB-dependent gene expression, PARP1 is also connected to the immune response, which is implicated in almost all age-related or associated diseases. Accordingly, numerous experimental studies have demonstrated the beneficial effects of PARP inhibition for several age-related diseases. This review summarizes recent findings on PARP1 and puts them in the context of metabolic stress and inflammation in aging.
Collapse
Affiliation(s)
- Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
37
|
Radovits T, Gerö D, Lin LN, Loganathan S, Hoppe-Tichy T, Szabó C, Karck M, Sakurai H, Szabó G. Improvement of aging-associated cardiovascular dysfunction by the orally administered copper(II)-aspirinate complex. Rejuvenation Res 2009; 11:945-56. [PMID: 18922047 DOI: 10.1089/rej.2008.0762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Aging-associated nitro-oxidative stress causes tissue injury and activates proinflammatory pathways that play an important role in the pathogenesis of aging-associated cardiovascular dysfunction. It has been recently reported, that the copper(II)-aspirinate complex (CuAsp) exerts not only the well-known anti-inflammatory and platelet antiaggregating effects of aspirin, but, due to its superoxide dismutase mimetic activity, it acts as a potent antioxidant as well. In this study we investigated the effects of CuAsp on aging-associated myocardial and endothelial dysfunction. METHODS AND RESULTS Aging and young rats were treated for 3 weeks with vehicle, or with CuAsp (200 mg/kg per day per os). Left ventricular pressure-volume relations were measured by using a microtip pressure-volume conductance catheter, and indexes of contractility (e.g., slope of end-systolic pressure-volume relationships [ESPVR] [E(es)], and dP/dt(max) - end-diastolic volume [EDV]) were calculated. In organ bath experiments for isometric tension with isolated aortic rings, endothelium-dependent and -independent vasorelaxation were investigated by using acetylcholine and sodium nitroprusside. When compared to the young controls, aging rats showed impaired left ventricular contractility (E(es), 0.51 +/- 0.04 vs. 2.16 +/- 0.28 mmHg/microL; dP/dt(max) - EDV, 10.71 +/- 2.02 vs. 37.23 +/- 4.18 mmHg/sec per microL; p < 0.05) and a marked endothelial dysfunction (maximal relaxation to acetylcholine: 66.66 +/- 1.30 vs. 87.09 +/- 1.35%; p < 0.05). Treatment with CuAsp resulted in reduced nitro-oxidative stress, improved cardiac function (E(es), 1.21 +/- 0.17 vs. 0.51 +/- 0.04 mmHg/microL; dP/dt(max) - EDV, 23.40 +/- 3.34 vs. 10.71 +/- 2.02 mmHg/sec per microL; p < 0.05) and higher vasorelaxation to acetylcholine in aging animals (94.83 +/- 0.73 vs. 66.66 +/- 1.30%; p < 0.05). The treatment did not influence the cardiovascular functions of young rats. CONCLUSIONS Our results demonstrate that oxidative stress and inflammatory pathways contribute to the pathogenesis of cardiovascular dysfunction in the aging organism, which can be reversed by CuAsp.
Collapse
Affiliation(s)
- Tamás Radovits
- Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mecanismos implicados en la disfunción endotelial asociada al envejecimiento. Med Clin (Barc) 2009; 132:62-9. [DOI: 10.1016/j.medcli.2008.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/17/2008] [Indexed: 11/21/2022]
|
39
|
Radovits T. Novel antioxidant therapeutic strategies for cardiovascular dysfunction associated with ageing. Orv Hetil 2008; 149:2377-85. [DOI: 10.1556/oh.2008.28502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Az öregedő szövetekben reaktív szabad gyökök túltermelődése figyelhető meg, ami nitrooxidatív stresszt indukál. Újabb kutatások szerint e folyamat fontos szerepet tölt be a szív- és érrendszeri funkciók időskori hanyatlásában. A toxikus oxidánsok, mint a hidrogén-peroxid vagy a peroxinitrit, a fehérjék károsításán túl megtámadják a DNS-t, és több reakcióutat, köztük a poli(ADP-ribóz)-polimeráz (PARP) utat aktiválva szövetkárosodáshoz vezetnek.
Célkitűzés:
Megvizsgáltuk, hogy a vascularis oxidatív stressz
in vitro
modelljében a PARP gátlása képes-e javítani a hidrogén-peroxid által károsított endothelfunkción. Fő célunk viszont az volt, hogy megvizsgáljuk a PARP akut gátlásának, illetve a peroxinitrit katalitikus lebontásának hatásait az időskori szív- és érrendszeri diszfunkcióra.
Módszer:In vitro
funkcionális mérésekkel izolált patkány-aortagyűrűkön vizsgáltuk az endothelfüggő és nem endothelfüggő vazorelaxációt acetil-kolin, illetve nátrium-nitroprusszid adására. Az endothelkárosodást hidrogén-peroxiddal váltottuk ki. A kezelt csoportban érgyűrűinket előinkubáltuk a PARP gátlószerével. Az időskori cardiovascularis diszfunkció
in vivo
patkánymodelljében fiatal és öreg patkányokat kezeltünk a PARP-gátló egyszeri dózisával, illetve a peroxinitrit lebontásának katalizátorával, FP15-tel. Nyomás-konduktancia mikrokatéter segítségével bal kamrai nyomás-térfogat analízist végeztünk patkányainkban a cardialis funkció megítélésére, valamint izolált aortagyűrűk vascularis funkcióit vizsgáltuk. A szöveti és sejtszintű változásokat immunhisztokémiai módszerekkel tanulmányoztuk.
Eredmények:In vitro
modellünkben hidrogén-peroxid hatására az endothelfunkció dózisfüggő károsodását tapasztaltuk, amely jelentős javulást mutatott PARP-gátlás után. Öreg patkányokban a szívműködés gyengülését figyeltük meg, valamint aortagyűrűikben csökkent endothelfüggő relaxációs választ mértünk. Az akut PARP-gátlás és az FP15-kezelés is szignifikáns javulást eredményezett a szív- és endothelfunkcióban. Öreg állatokban immunhisztokémiai méréseink fokozott nitrooxidatív stressz és PARP-aktiváció jeleit mutatták, amelyek jelentősen csökkentek a kezelések hatására.
Következtetések:
Eredményeink az endogén peroxinitrit-túltermelődés és a PARP reakcióút jelentőségét mutatják a cardiovascularis funkciók időskori hanyatlásában. A peroxinitrit gyors katalitikus lebontása, valamint a PARP gátlása új antioxidáns terápiás lehetőséget jelenthet az időskori szív- és érrendszeri diszfunkció kezelésében.
Collapse
|
40
|
Rodon J, Iniesta MD, Papadopoulos K. Development of PARP inhibitors in oncology. Expert Opin Investig Drugs 2008; 18:31-43. [DOI: 10.1517/13543780802525324] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Yu X, Cheng X, Xie JJ, Liao MY, Yao R, Chen Y, Ding YJ, Tang TT, Liao YH. Poly (ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by hyperhomocysteinemia in rats. Cardiovasc Drugs Ther 2008; 23:121-7. [PMID: 18949543 DOI: 10.1007/s10557-008-6146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 10/02/2008] [Indexed: 01/06/2023]
Abstract
INTRODUCTION We investigated the possible protective effect of poly (ADP-ribose) polymerase (PARP) inhibition in preventing endothelial dysfunction induced by hyperhomocysteinemia (Hhcy). METHODS Sprague-Dawley rats were divided into Hhcy group, Hhcy + 3-aminobenzamide(3-AB) group, control group and control + 3-AB group. A high-methionine diet was given to induce hyperhomocysteinemia. In Hhcy + 3-AB and control + 3-AB groups, rats were injected intraperitoneally with 3-AB (inhibitor of PARP). After 45 days, ultrastructural changes of aortas were observed by transmission electron microscope. Vascular reactivity of thoracic aortic rings was measured in organ chambers. PARP activity was detected. The levels of plasma total homocysteine, nitrite/nitrate, endothelin (ET)-1 and malondialdehyde were assayed. RESULTS Rats in Hhcy group developed severe hyperhomocysteinemia and significant loss of endothelial function as measured by both vascular rings and levels of nitrite/nitrate and ET-1. Malondialdehyde levels increased significantly in Hhcy rats compared with control rats. 3-AB improved Ach-induced, NO-mediated vascular relaxation and stabilized the level of nitrite/nitrate and ET-1. Obvious improvement of ultrastructure can be observed in Hhcy + 3-AB group. CONCLUSIONS These results suggest that pharmacological inhibition of PARP prevents the development of endothelial dysfunction in rats with hyperhomocysteinemia which may represent a novel approach to improve vascular dysfunction associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Xian Yu
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Balakumar P, Koladiya RU, Ramasamy S, Rathinavel A, Singh M. Pharmacological Interventions to Prevent Vascular Endothelial Dysfunction: Future Directions. JOURNAL OF HEALTH SCIENCE 2008; 54:1-16. [DOI: 10.1248/jhs.54.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Pitchai Balakumar
- Cardiovascular Pharmacology Division, I.S.F. Institute of Pharmaceutical Sciences and Drug Research
| | | | - Subbiah Ramasamy
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University
| | - Andiappan Rathinavel
- Department of Cardio-Thoracic Surgery, Madurai Medical College and Government Rajaji Hospital
| | - Manjeet Singh
- Cardiovascular Pharmacology Division, I.S.F. Institute of Pharmaceutical Sciences and Drug Research
| |
Collapse
|
43
|
Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. CARDIOVASCULAR DRUG REVIEWS 2007; 25:235-60. [PMID: 17919258 PMCID: PMC2225457 DOI: 10.1111/j.1527-3466.2007.00018.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests that the reactive oxygen and nitrogen species are generated in cardiomyocytes and endothelial cells during myocardial ischemia/reperfusion injury, various forms of heart failure or cardiomyopathies, circulatory shock, cardiovascular aging, diabetic complications, myocardial hypertrophy, atherosclerosis, and vascular remodeling following injury. These reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation, on the one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to the functional impairment or death of the endothelial cells and cardiomyocytes. On the other hand, PARP activation modulates important inflammatory pathways, and PARP-1 activity can also be modulated by several endogenous factors such as various kinases, purines, vitamin D, thyroid hormones, polyamines, and estrogens, just to mention a few. Recent studies have demonstrated that pharmacological inhibition of PARP provides significant benefits in animal models of cardiovascular disorders, and novel PARP inhibitors have entered clinical development for various cardiovascular indications. Because PARP inhibitors can enhance the effect of anticancer drugs and decrease angiogenesis, their therapeutic potential is also being explored for cancer treatment. This review discusses the therapeutic effects of PARP inhibitors in myocardial ischemia/reperfusion injury, various forms of heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, diabetic cardiovascular complications, myocardial hypertrophy, atherosclerosis, vascular remodeling following injury, angiogenesis, and also summarizes our knowledge obtained from the use of PARP-1 knockout mice in the various preclinical models of cardiovascular diseases.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health, NIAAA, Bethesda MD 20892-9413, USA.
| | | |
Collapse
|