1
|
Urdang ZD, Jain A, Li M, Haupt TL, Wilcox TO, Chiffer RC, Gurgel RK. Conductive Hearing Loss Associates With Dementia, and Middle Ear Reconstruction Mitigates This Association: A Multinational Database Study. Otol Neurotol 2024; 45:1078-1086. [PMID: 39167564 PMCID: PMC11392634 DOI: 10.1097/mao.0000000000004308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To test the hypothesis that conductive hearing loss (CHL) is associated with dementia, and that middle ear reconstruction (MER) associates with improved outcomes for these measures in a multinational electronic health records database. STUDY DESIGN Retrospective cohort study with propensity-score matching (PSM). SETTING TriNetX is a research database representing about 110 million patients from the United States, Taiwan, Brazil, and India. PATIENTS Subjects older than 50 years with no HL and any CHL (ICD-10: H90.0-2). Subjects of any age with and without any MER (CPT: 1010174). MAIN OUTCOME MEASURES Odds ratios (ORs) and hazard ratios with 95% confidence intervals (95% CIs) for incident dementia (ICD-10: F01, F03, G30). RESULTS Of 103,609 patients older than 50 years experiencing any CHL, 2.74% developed dementia compared with 1.22% of 38,216,019 patients with no HL (OR, 95% CI: 2.29, 2.20-2.37). Of patients experiencing CHL, there were 39,850 who received MER. The average age was 31.3 years, with 51% female patients. A total of 343,876 control patients with CHL were identified; 39,900 patients remained in each cohort after 1:1 PSM for HL- and dementia-related risk factors. Matched risk for developing dementia among MER recipients was 0.33% compared with 0.58% in controls (OR: 0.58, 0.46-0.72). CONCLUSIONS CHL increases the odds for dementia, and MER improves the odds for incident dementia. This study represents the first population study on the topic of CHL, MER, and dementia.
Collapse
Affiliation(s)
| | - Amiti Jain
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marwin Li
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | - Richard K Gurgel
- Department of Otolaryngology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Li W, Sun W, Zhang G, Lu Y, Dai C. Thermosensitive hydrogel containing ethosuximide-loaded multivesicular liposomes attenuates age-related hearing loss in C57BL/6J mice. Neurosci Lett 2024; 826:137693. [PMID: 38428726 DOI: 10.1016/j.neulet.2024.137693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Ethosuximide is the first drug reported to protect against age-related hearing loss, but its benefits are hampered by the pronounced side effects generated through systemic administration. We prepared a thermosensitive hydrogel containing ethosuximide-encapsulated multivesicular liposomes (ethosuximide-loaded MVLs-Gel) and evaluated its functional and histological effects on age-related hearing loss in C57BL/6J mice. The MVLs-Gel showed slow sustained-release characteristics up to over 120 h. After 8 weeks of treatment, compared to the oral systemic administration of ethosuximide, intratympanic ethosuximide-loaded MVLs-Gel injection dramatically reduced the loss of age-related spiral ganglion neurons in the apical turns of the mice (low-frequency regions, p < 0.05). Correspondingly, compared to the oral systemic administration group, the intratympanic ethosuximide-loaded MVLs-Gel injection group showed significantly lower auditory brainstem response threshold shifts at stimulus frequencies of 4, 8, and 16 kHz (low-and middle-frequency regions, p < 0.05). In conclusion, intratympanic ethosuximide-loaded MVLs-Gel injection can reach the apical turn of the cochlea, which is extremely difficult with oral systemic administration of the drug. The ethosuximide-loaded MVLs-Gel, as a novel intratympanic sustained-release drug delivery system, attenuated age-related hearing loss in C57BL/6J mice.
Collapse
Affiliation(s)
- Wei Li
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Wenfang Sun
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Guoming Zhang
- Department of Otolaryngology, Yuecheng District People's Hospital, Shaoxing, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Shanghai, China.
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China.
| |
Collapse
|
3
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-related differences in affective behaviors in mice: possible role of prefrontal cortical-hippocampal functional connectivity and metabolomic profiles. Front Aging Neurosci 2024; 16:1356086. [PMID: 38524115 PMCID: PMC10957556 DOI: 10.3389/fnagi.2024.1356086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. Methods We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Results Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and during re-testing in a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. Discussion The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Nicholas A. Rodriguez
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Joy Buraima
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marjory Pompilus
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Aeja M. Pinto
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matteo M. Grudny
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Adriaan W. Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
4
|
Loughrey DG, Jordan C, Ibanez A, Parra MA, Lawlor BA, Reilly RB. Age-related hearing loss associated with differences in the neural correlates of feature binding in visual working memory. Neurobiol Aging 2023; 132:233-245. [PMID: 37866083 DOI: 10.1016/j.neurobiolaging.2023.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/09/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
The underlying neural mechanisms underpinning the association between age-related hearing loss (ARHL) and dementia remain unclear. A limitation has been the lack of functional neuroimaging studies in ARHL cohorts to help clarify this relationship. In the present study, we investigated the neural correlates of feature binding in visual working memory with ARHL (controls = 14, mild HL = 21, and moderate or greater HL = 23). Participants completed a visual change detection task assessing feature binding while their neural activity was synchronously recorded via high-density electroencephalography. There was no difference in accuracy scores for ARHL groups compared to controls. There was increased electrophysiological activity in those with ARHL, particularly in components indexing the earlier stages of visual cognitive processing. This activity was more pronounced with more severe ARHL and was associated with maintained feature binding. Source space (sLORETA) analyses indicated greater activity in networks modulated by frontoparietal and temporal regions. Our results demonstrate there may be increased involvement of neurocognitive control networks to maintain lower-order neurocognitive processing disrupted by ARHL.
Collapse
Affiliation(s)
- David G Loughrey
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Trinity College Institute of Neuroscience, Trinity College, The University of Dublin, Ireland.
| | - Catherine Jordan
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
| | - Agustin Ibanez
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, University of San Andrés, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Brian A Lawlor
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
| | - Richard B Reilly
- Trinity College Institute of Neuroscience, Trinity College, The University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, Ireland; School of Engineering, Trinity College, The University of Dublin, Ireland; School of Medicine, Trinity College, The University of Dublin, Ireland
| |
Collapse
|
5
|
Fitzhugh MC, Pa J. Women with hearing loss show increased dementia risk and brain atrophy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12499. [PMID: 38026760 PMCID: PMC10680060 DOI: 10.1002/dad2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Hearing loss is a modifiable risk factor for dementia. However, it is unknown whether risk differs by sex. Study 1 used Cox proportional hazard models to examine sex differences in the association between hearing loss (measured by speech-reception thresholds) and dementia risk. Study 2 examined how 2-year changes in hearing is associated with changes in brain volume in auditory-limbic regions. Both studies used UK Biobank data. Women with poor hearing had the greatest risk of dementia, whereas women and men with insufficient hearing were at similar risk. Men with poor hearing did not have increased risk. Presence of social isolation/depressed mood minimally contributed to dementia risk in men and women. Women, but not men, with hearing loss had greater atrophy in auditory and limbic regions compared to normal hearing women and men. Women with hearing loss show greater risk of dementia and brain atrophy, highlighting the need to examine sex-specific mechanisms.
Collapse
Affiliation(s)
- Megan C. Fitzhugh
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Judy Pa
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Vicencio-Jimenez S, Delano PH, Madrid N, Terreros G, Maass JC, Delgado C, Jorratt P. Maintained Spatial Learning and Memory Functions in Middle-Aged α9 Nicotinic Receptor Subunit Knock-Out Mice. Brain Sci 2023; 13:brainsci13050794. [PMID: 37239266 DOI: 10.3390/brainsci13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related hearing loss is linked to cognitive impairment, but the mechanisms that relate to these conditions remain unclear. Evidence shows that the activation of medial olivocochlear (MOC) neurons delays cochlear aging and hearing loss. Consequently, the loss of MOC function may be related to cognitive impairment. The α9/α10 nicotinic receptor is the main target of cholinergic synapses between the MOC neurons and cochlear outer hair cells. Here, we explored spatial learning and memory performance in middle-aged wild-type (WT) and α9-nAChR subunit knock-out (KO) mice using the Barnes maze and measured auditory brainstem response (ABR) thresholds and the number of cochlear hair cells as a proxy of cochlear aging. Our results show non-significant spatial learning differences between WT and KO mice, but KO mice had a trend of increased latency to enter the escape box and freezing time. To test a possible reactivity to the escape box, we evaluated the novelty-induced behavior using an open field and found a tendency towards more freezing time in KO mice. There were no differences in memory, ABR threshold, or the number of cochlear hair cells. We suggest that the lack of α9-nAChR subunit alters novelty-induced behavior, but not spatial learning in middle-aged mice, by a non-cochlear mechanism.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Otolaryngology Department, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Department of Otolaryngology, Hospital Clínico Universidad de Chile, Santiago 8320328, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile
| | - Natalia Madrid
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua 2841935, Chile
| | - Juan C Maass
- Department of Otolaryngology, Hospital Clínico Universidad de Chile, Santiago 8320328, Chile
- Interdisciplinary Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8320328, Chile
| | - Carolina Delgado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
| | - Pascal Jorratt
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| |
Collapse
|
7
|
Paciello F, Pisani A, Rinaudo M, Cocco S, Paludetti G, Fetoni AR, Grassi C. Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiol Dis 2023; 178:106024. [PMID: 36724860 DOI: 10.1016/j.nbd.2023.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Several studies identified noise-induced hearing loss (NIHL) as a risk factor for sensory aging and cognitive decline processes, including neurodegenerative diseases, such as dementia and age-related hearing loss (ARHL). Although the association between noise- and age-induced hearing impairment has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood as it is not known how these risk factors (aging and noise) can interact, affecting memory processes. We recently found that early noise exposure in an established animal model of ARHL (C57BL/6 mice) accelerates the onset of age-related cochlear dysfunctions. Here, we extended our previous data by investigating what happens in central brain structures (auditory cortex and hippocampus), to assess the relationship between hearing and memory impairment and the possible combined effect of noise and sensory aging on the cognitive domain. To this aim, we exposed juvenile C57BL/6 mice of 2 months of age to repeated noise sessions (60 min/day, pure tone of 100 dB SPL, 10 kHz, 10 consecutive days) and we monitored auditory threshold by measuring auditory brainstem responses (ABR), spatial working memory, by using the Y-maze test, and basal synaptic transmission by using ex vivo electrophysiological recordings, at different time points (1, 4 and 7 months after the onset of noise exposure, corresponding to 3, 6 and 9 months of age). We found that hearing loss, along with accelerated presbycusis onset, can induce persistent synaptic alterations in the auditory cortex. This was associated with decreased memory performance and oxidative-inflammatory injury in the hippocampus, the extra-auditory structure involved in memory processes. Collectively, our data confirm the critical relationship between auditory and memory circuits, suggesting that the combined detrimental effect of noise and sensory aging on hearing function can be considered a high-risk factor for both sensory and cognitive degenerative processes, given that early noise exposure accelerates presbycusis phenotype and induces hippocampal-dependent memory dysfunctions.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
8
|
Rahimian B, Jambarsang S, Mehrparvar AH. The relationship between noise-induced hearing loss and cognitive function. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2023:1-6. [PMID: 36744757 DOI: 10.1080/19338244.2023.2174927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
INTRODUCTION NIHL may affect some domains of cognitive function. This study was conducted to assess the relationship between NIHL and working memory, attention and response time. MATERIALS AND METHODS This was a cross-sectional study on 154 textile workers with exposure to noise higher than 85dBA in a textile factory. The participants were divided into two groups: with and without NIHL and some domains of cognitive function were compared between two groups. Wechsler working memory test and Stroop color-word test were used to measure working memory, selective attention and response time. Data were analyzed by SPSS (ver. 24) using student's T test, and multiple linear regression model. RESULTS Totally, 154 workers entered the study (77 with NIHL and 77 without NIHL). All participants were males. Working memory score and response time were higher and interference score was lower in NIHL group, although only the difference in working memory was significant. Due to the significant difference of age and work history between case and control groups, cognitive parameters were compared between two groups after adjusting for these two variables, but the significance was not changed. CONCLUSION This study showed that noised-exposed middle-aged males with NIHL had probably a lower working memory span than their counterparts without NIHL.
Collapse
Affiliation(s)
- Behnaz Rahimian
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Research Center of Prevention and Epidemiology of Non-Communicable Diseases, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
9
|
Dundee JM, Puigdellívol M, Butler R, Cockram TOJ, Brown GC. P2Y 6 receptor-dependent microglial phagocytosis of synapses mediates synaptic and memory loss in aging. Aging Cell 2022; 22:e13761. [PMID: 36565471 PMCID: PMC9924939 DOI: 10.1111/acel.13761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Aging causes loss of brain synapses and memory, and microglial phagocytosis of synapses may contribute to this loss. Stressed neurons can release the nucleotide UTP, which is rapidly converted into UDP, that in turn activates the P2Y6 receptor (P2Y6 R) on the surface of microglia, inducing microglial phagocytosis of neurons. However, whether the activation of P2Y6 R affects microglial phagocytosis of synapses is unknown. We show here that inactivation of P2Y6 R decreases microglial phagocytosis of isolated synapses (synaptosomes) and synaptic loss in neuronal-glial co-cultures. In vivo, wild-type mice aged from 4 to 17 months exhibited reduced synaptic density in cortical and hippocampal regions, which correlated with increased internalization of synaptic material within microglia. However, this aging-induced synaptic loss and internalization were absent in P2Y6 R knockout mice, and these mice also lacked any aging-induced memory loss. Thus, P2Y6 R appears to mediate aging-induced loss of synapses and memory by increasing microglial phagocytosis of synapses. Consequently, blocking P2Y6 R has the potential to prevent age-associated memory impairment.
Collapse
Affiliation(s)
- Jacob M. Dundee
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Mar Puigdellívol
- Department of BiochemistryUniversity of CambridgeCambridgeUK,Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Richard Butler
- The Wellcome Trust Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
| | | | - Guy C. Brown
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Yanai S, Tago T, Toyohara J, Arasaki T, Endo S. Reversal of spatial memory impairment by phosphodiesterase 3 inhibitor cilostazol is associated with reduced neuroinflammation and increased cerebral glucose uptake in aged male mice. Front Pharmacol 2022; 13:1031637. [PMID: 36618932 PMCID: PMC9810637 DOI: 10.3389/fphar.2022.1031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The nucleotide second messenger 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) mediate fundamental functions of the brain, including learning and memory. Phosphodiesterase 3 (PDE3) can hydrolyze both cAMP and cGMP and appears to be involved in the regulation of their contents in cells. We previously demonstrated that long-term administration of cilostazol, a PDE3 inhibitor, maintained good memory performance in aging mice. Here, we report on studies aimed at determining whether cilostazol also reverses already-impaired memory in aged male mice. One month of oral 1.5% cilostazol administration in 22-month-old mice reversed age-related declines in hippocampus-dependent memory tasks, including the object recognition and the Morris water maze. Furthermore, cilostazol reduced neuroinflammation, as evidenced by immunohistochemical staining, and increased glucose uptake in the brain, as evidence by positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). These results suggest that already-expressed memory impairment in aged male mice that depend on cyclic nucleotide signaling can be reversed by inhibition of PDE3. The reversal of age-related memory impairments may occur in the central nervous system, either through cilostazol-enhanced recall or strengthening of weak memories that otherwise may be resistant to recall.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan,*Correspondence: Shogo Endo,
| |
Collapse
|
11
|
Ruan J, Hu X, Liu Y, Han Z, Ruan Q. Vulnerability to chronic stress and the phenotypic heterogeneity of presbycusis with subjective tinnitus. Front Neurosci 2022; 16:1046095. [PMID: 36620444 PMCID: PMC9812577 DOI: 10.3389/fnins.2022.1046095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related functional reserve decline and vulnerability of multiple physiological systems and organs, as well as at the cellular and molecular levels, result in different frailty phenotypes, such as physical, cognitive, and psychosocial frailty, and multiple comorbidities, including age-related hearing loss (ARHL) and/or tinnitus due to the decline in auditory reserve. However, the contributions of chronic non-audiogenic cumulative exposure, and chronic audiogenic stress to phenotypic heterogeneity of presbycusis and/or tinnitus remain elusive. Because of the cumulative environmental stressors throughout life, allostasis systems, the hypothalamus-pituitary-adrenal (HPA) and the sympathetic adrenal-medullary (SAM) axes become dysregulated and less able to maintain homeostasis, which leads to allostatic load and maladaptation. Brain-body communication via the neuroendocrine system promotes systemic chronic inflammation, overmobilization of energetic substances (glucose and lipids), and neuroplastic changes via the non-genomic and genomic actions of glucocorticoids, catecholamines, and their receptors. These systemic maladaptive alterations might lead to different frailty phenotypes and physical, cognitive, and psychological comorbidities, which, in turn, cause and exacerbate ARHL and/or tinnitus with phenotypic heterogeneity. Chronic audiogenic stressors, including aging accompanying ontological diseases, cumulative noise exposure, and ototoxic drugs as well as tinnitus, activate the HPA axis and SAM directly and indirectly by the amygdala, promoting allostatic load and maladaptive neuroplasticity in the auditory system and other vulnerable brain regions, such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). In the auditory system, peripheral deafferentation, central disinhibition, and tonotopic map reorganization may trigger tinnitus. Cross-modal maladaptive neuroplasticity between the auditory and other sensory systems is involved in tinnitus modulation. Persistent dendritic growth and formation, reduction in GABAergic inhibitory synaptic inputs induced by chronic audiogenic stresses in the amygdala, and increased dendritic atrophy in the hippocampus and mPFC, might involve the enhancement of attentional processing and long-term memory storage of chronic subjective tinnitus, accompanied by cognitive impairments and emotional comorbidities. Therefore, presbycusis and tinnitus are multisystem disorders with phenotypic heterogeneity. Stressors play a critical role in the phenotypic heterogeneity of presbycusis. Differential diagnosis based on biomarkers of metabonomics study, and interventions tailored to different ARHL phenotypes and/or tinnitus will contribute to healthy aging and improvement in the quality of life.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuhua Hu
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuehong Liu
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingwei Ruan,
| |
Collapse
|
12
|
Johne M, Helgers SOA, Alam M, Jelinek J, Hubka P, Krauss JK, Scheper V, Kral A, Schwabe K. Processing of auditory information in forebrain regions after hearing loss in adulthood: Behavioral and electrophysiological studies in a rat model. Front Neurosci 2022; 16:966568. [DOI: 10.3389/fnins.2022.966568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
BackgroundHearing loss was proposed as a factor affecting development of cognitive impairment in elderly. Deficits cannot be explained primarily by dysfunctional neuronal networks within the central auditory system. We here tested the impact of hearing loss in adult rats on motor, social, and cognitive function. Furthermore, potential changes in the neuronal activity in the medial prefrontal cortex (mPFC) and the inferior colliculus (IC) were evaluated.Materials and methodsIn adult male Sprague Dawley rats hearing loss was induced under general anesthesia with intracochlear injection of neomycin. Sham-operated and naive rats served as controls. Postsurgical acoustically evoked auditory brainstem response (ABR)-measurements verified hearing loss after intracochlear neomycin-injection, respectively, intact hearing in sham-operated and naive controls. In intervals of 8 weeks and up to 12 months after surgery rats were tested for locomotor activity (open field) and coordination (Rotarod), for social interaction and preference, and for learning and memory (4-arms baited 8-arms radial maze test). In a final setting, electrophysiological recordings were performed in the mPFC and the IC.ResultsLocomotor activity did not differ between deaf and control rats, whereas motor coordination on the Rotarod was disturbed in deaf rats (P < 0.05). Learning the concept of the radial maze test was initially disturbed in deaf rats (P < 0.05), whereas retesting every 8 weeks did not show long-term memory deficits. Social interaction and preference was also not affected by hearing loss. Final electrophysiological recordings in anesthetized rats revealed reduced firing rates, enhanced irregular firing, and reduced oscillatory theta band activity (4–8 Hz) in the mPFC of deaf rats as compared to controls (P < 0.05). In the IC, reduced oscillatory theta (4–8 Hz) and gamma (30–100 Hz) band activity was found in deaf rats (P < 0.05).ConclusionMinor and transient behavioral deficits do not confirm direct impact of long-term hearing loss on cognitive function in rats. However, the altered neuronal activities in the mPFC and IC after hearing loss indicate effects on neuronal networks in and outside the central auditory system with potential consequences on cognitive function.
Collapse
|
13
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
14
|
Zhang L, Wang J, Sun H, Feng G, Gao Z. Interactions between the hippocampus and the auditory pathway. Neurobiol Learn Mem 2022; 189:107589. [DOI: 10.1016/j.nlm.2022.107589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
|
15
|
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, Garry MI, Summers JJ, Hinder MR, Rodger J, Canty AJ. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021; 14:1498-1507. [PMID: 34653682 DOI: 10.1016/j.brs.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying subthreshold rTMS induced plasticity and whether these are altered with normal ageing are unclear. OBJECTIVE To assess the effect of subthreshold rTMS, using the intermittent theta burst stimulation (iTBS) protocol on structural synaptic plasticity in the mouse motor cortex of young and aged mice. METHODS Longitudinal in vivo 2-photon microscopy was used to measure changes to the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of subthreshold rTMS (in young adult and aged animals) or the same rTMS train administered on 4 consecutive days (in young adult animals only). Data were analysed with Bayesian hierarchical generalized linear regression models and interpreted with the aid of Bayes Factors (BF). RESULTS We found strong evidence (BF > 10) that subthreshold rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of subthreshold rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. CONCLUSION These findings provide further evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of subthreshold rTMS induced plasticity.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia.
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Samuel Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Ross C Langley
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Michael I Garry
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jeffery J Summers
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, L3 3AF, Liverpool, United Kingdom
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| |
Collapse
|
16
|
Arabatzis TJ, Wakley AA, McLane VD, Canonico D, Cao L. Effects of HIV gp120 on Neuroinflammation in Immunodeficient vs. Immunocompetent States. J Neuroimmune Pharmacol 2021; 16:437-453. [PMID: 32627098 PMCID: PMC7785647 DOI: 10.1007/s11481-020-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
HIV affects 37 million people worldwide, 25-69% of which develop HIV-associated neurocognitive disorders (HAND) regardless of antiviral treatment. HIV infection of the brain decreases cognitive function, disrupts/impairs learning and memory, and reduces quality of life for those affected. HIV-induced neuroinflammation has been associated with viral proteins such as gp120 and Tat, which remain elevated in the CNS even in patients with low peripheral viremia counts. In this study, we examined the effects of gp120 on neuroinflammation in immunodeficient vs. immunocompetent states by examining neuroinflammatory markers in gp120tg mice with or without systemic immunodeficiency caused by murine retroviral administration (LP-BM5 murine AIDS). Changes in inflammatory cytokine/chemokine mRNA expression was complex and dependent upon expression of gp120 protein, immunodeficiency status, brain region (hippocampus, frontal lobe, or striatum), and age. Gp120 expression reduced hippocampal synaptophysin expression but did not affect animals' learning/memory on the spontaneous T-maze test in our experimental conditions. Our results emphasize the critical role of the neuroinflammatory micro-environment and the peripheral immune system context in which gp120 acts. Multiple factors, particularly system-level differences in the immune response of different brain regions, need to be considered when developing treatment for HAND. Graphical Abstract.
Collapse
Affiliation(s)
- Taxiarhia J Arabatzis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Alexa A Wakley
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Virginia D McLane
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
17
|
Chen YC, Yong W, Xing C, Feng Y, Haidari NA, Xu JJ, Gu JP, Yin X, Wu Y. Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging Behav 2021; 14:917-926. [PMID: 31270776 DOI: 10.1007/s11682-019-00162-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Presbycusis, associated with a diminished quality of life characterized by bilateral sensorineural hearing loss at high frequencies, has become an increasingly critical public health problem. This study aimed to identify directed functional connectivity (FC) of the hippocampus in patients with presbycusis and to explore the causes if the directed functional connections of the hippocampus were disrupted. Presbycusis patients (n = 32) and age-, sex-, and education-matched healthy controls (n = 40) were included in this study. The seed regions of bilateral hippocampus were selected to identify directed FC in patients with presbycusis using Granger causality analysis (GCA) approach. Correlation analyses were conducted to detect the associations of disrupted directed FC of hippocampus with clinical measures of presbycusis. Compared to healthy controls, decreased directed FC between inferior parietal lobule, insula, right supplementary motor area, middle temporal gyrus and hippocampus were detected in presbycusis patients. Furthermore, a negative correlation between TMB score and the decline of directed FC from left inferior parietal lobule to left hippocampus (r = -0.423, p = 0.025) and from right inferior parietal lobule to right hippocampus (r = -0.516, p = 0.005) were also observed. The decreased directed functional connections of the hippocampus were detected in patients with presbycusis, which was associated with specific cognitive performance. This study mainly emphasizes the crucial role of hippocampus in presbycusis and will enhance our understanding of the neuropathological mechanisms of presbycusis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Nasir Ahmad Haidari
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jian-Ping Gu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
18
|
Qian ZJ, Ricci AJ. Effects of cochlear hair cell ablation on spatial learning/memory. Sci Rep 2020; 10:20687. [PMID: 33244175 PMCID: PMC7692547 DOI: 10.1038/s41598-020-77803-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Current clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30-60 and underwent the RAM assay during P90-120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.
Collapse
MESH Headings
- Animals
- Cognition/physiology
- Deafness/metabolism
- Deafness/physiopathology
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Heparin-binding EGF-like Growth Factor/metabolism
- Memory/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Noise
- Spatial Learning/physiology
- Transcription Factor Brn-3C/metabolism
Collapse
Affiliation(s)
- Z Jason Qian
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 240 Pasteur Drive, Biomedical Innovations Building, R0551, Palo Alto, CA, 94304, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 240 Pasteur Drive, Biomedical Innovations Building, R0551, Palo Alto, CA, 94304, USA.
| |
Collapse
|
19
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
20
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and tinnitus, dementia risk, and auditory amplification outcomes. Ageing Res Rev 2019; 56:100963. [PMID: 31557539 DOI: 10.1016/j.arr.2019.100963] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis, as the third leading cause of chronic disability in older adults, has been shown to be associated with predisposing cognitive impairment and dementia. Tinnitus is also a chronic auditory disorder demonstrating a growth rate with increasing age. Recent evidence stands for the link between bothersome tinnitus and impairments in various aspects of cognitive function. Both ARHL and age-related tinnitus affect mental health and contribute to developing anxiety, stress, and depression. The present review is a comprehensive multidisciplinary study on diverse interactions among ARHL, tinnitus, and cognitive decline in older adults. This review incorporates the latest evidence in prevalence and risk factors of ARHL and tinnitus, the neural substrates of tinnitus-related cognitive impairments, hypothesized mechanisms concerning the association between ARHL and increased risk of dementia, hearing amplification outcomes in cases with ARHL and cognitive decline, and preliminary findings on the link between ARHL and cognitive impairment in animal studies. Given extensive evidence that demonstrates advantages of using auditory amplification in the alleviation of hearing handicap, depression, and tinnitus, and the improvement of cognition, social communication, and quality of life, regular hearing screening programs for identification and management of midlife hearing loss and tinnitus is strongly recommended.
Collapse
|
21
|
Loughrey DG, Parra MA, Lawlor BA. Visual short-term memory binding deficit with age-related hearing loss in cognitively normal older adults. Sci Rep 2019; 9:12600. [PMID: 31467387 PMCID: PMC6715732 DOI: 10.1038/s41598-019-49023-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023] Open
Abstract
Age-related hearing loss (ARHL) has been posited as a possible modifiable risk factor for neurocognitive impairment and dementia. Measures sensitive to early neurocognitive changes associated with ARHL would help to elucidate the mechanisms underpinning this relationship. We hypothesized that ARHL might be associated with decline in visual short-term memory binding (VSTMB), a potential biomarker for preclinical dementia due to Alzheimer’s disease (AD). We examined differences in accuracy between older adults with hearing loss and a control group on the VSTMB task from a single feature (shapes) condition to a feature binding (shapes-colors) condition. Hearing loss was associated with a weaker capacity to process bound features which appeared to be accounted for by a weaker sensitivity for change detection (A’). Our findings give insight into the neural mechanisms underpinning neurocognitive decline with ARHL and its temporal sequence.
Collapse
Affiliation(s)
- David G Loughrey
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland/University of California, San Francisco, USA. .,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK.,Programa de Psicología, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Brian A Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland/University of California, San Francisco, USA.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland.,Mercer's Institute for Successful Ageing, St James Hospital, Dublin, Ireland
| |
Collapse
|
22
|
Attenuation of adverse effects of noise induced hearing loss on adult neurogenesis and memory in rats by intervention with Adenosine A2A receptor agonist. Brain Res Bull 2019; 147:47-57. [DOI: 10.1016/j.brainresbull.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 01/11/2023]
|
23
|
Uchida Y, Nishita Y, Kato T, Iwata K, Sugiura S, Suzuki H, Sone M, Tange C, Otsuka R, Ando F, Shimokata H, Nakamura A. Smaller Hippocampal Volume and Degraded Peripheral Hearing Among Japanese Community Dwellers. Front Aging Neurosci 2018; 10:319. [PMID: 30386230 PMCID: PMC6198789 DOI: 10.3389/fnagi.2018.00319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
A growing body of literature has demonstrated that dementia and hearing loss are interrelated. Recent interest in dementia research has expanded to brain imaging analyses with auditory function. The aim of this study was to investigate the link between hearing ability, which was assessed using pure-tone audiometry, and the volume of brain regions, specifically the hippocampus, entorhinal cortex, Heschl's gyrus, and total gray matter, using Freesurfer software and T1-weighted brain magnetic resonance imaging. The data for 2082 samples (age range = 40-89 years) were extracted from a population-based cohort of community dwellers. Hearing-impaired individuals showed significantly smaller hippocampal volumes compared with their non-hearing-impaired counterparts for all auditory frequency ranges. In addition, a correlational analysis showed a significant dose-response relationship for hearing ability and hippocampal volume after adjusting for potential confounding factors so that the more degraded the peripheral hearing was, the smaller the hippocampal volume was. This association was consistent through the auditory frequency range. The volume of the entorhinal cortex, right Heschl's gyrus and total gray matter did not correlate with hearing level at any frequency. The volume of the left Heschl's gyrus showed a significant relationship with the hearing levels for some auditory frequencies. The current results suggested that the presence of hearing loss after middle age could be a modifier of hippocampal atrophy.
Collapse
Affiliation(s)
- Yasue Uchida
- Department of Otolaryngology, Aichi Medical University, Nagakute, Japan.,Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yukiko Nishita
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Saiko Sugiura
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hirokazu Suzuki
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chikako Tange
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Rei Otsuka
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Fujiko Ando
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Japan
| | - Hiroshi Shimokata
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan.,Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
24
|
Shen X, Xiao Y, Li W, Chen K, Yu H. Sevoflurane anesthesia during pregnancy in mice induces hearing impairment in the offspring. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1827-1836. [PMID: 29970957 PMCID: PMC6020999 DOI: 10.2147/dddt.s156040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Exposure to gamma-aminobutyric acid-mimetics and N-methyl-D-aspartate-receptor antagonists during pregnancy may lead to hearing loss and long-term behavioral abnormalities in the offspring. The purpose of this study was to explore the association between prenatal exposure to sevoflurane (SEV) anesthesia and hearing impairment in mice. Materials and methods On gestational day 15, pregnant Kunming mice were exposed for 2 hours to 2.5% SEV plus 100% oxygen (anesthesia group) or 100% oxygen alone (control group). Results During auditory brainstem response testing on P30, offspring of the anesthesia group mice exhibited higher hearing thresholds at 8, 16, 24, and 32 kHz; longer peak latency of wave II at all four frequencies; and longer interpeak latencies from waves II to V at 16, 24, and 32 kHz, compared to the control offspring. Caspase-3, iNOS, and COX-2 activation occurred in the fetal cochlea of the anesthesia group. Mitochondrial swelling was observed in the anesthesia group offspring at P1 and P15. Conclusion Our results suggest that SEV exposure during pregnancy may cause detrimental effects on the developing auditory system.
Collapse
Affiliation(s)
- Xia Shen
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Yanan Xiao
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Wen Li
- Research Center, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Kaizheng Chen
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Huiqian Yu
- Department of Otorhinolaryngology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
25
|
Shen Y, Ye B, Chen P, Wang Q, Fan C, Shu Y, Xiang M. Cognitive Decline, Dementia, Alzheimer's Disease and Presbycusis: Examination of the Possible Molecular Mechanism. Front Neurosci 2018; 12:394. [PMID: 29937713 PMCID: PMC6002513 DOI: 10.3389/fnins.2018.00394] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
The incidences of presbycusis and dementia are high among geriatric diseases. Presbycusis is the general term applied to age-related hearing loss and can be caused by many risk factors, such as noise exposure, smoking, medication, hypertension, family history, and other factors. Mutation of mitochondrial DNA in hair cells, spiral ganglion cells, and stria vascularis cells of the cochlea is the basic mechanism of presbycusis. Dementia is a clinical syndrome that includes the decline of cognitive and conscious states and is caused by many neurodegenerative diseases, of which Alzheimer’s disease (AD) is the most common. The amyloid cascade hypothesis and tau hypothesis are the two major hypotheses that describe the AD pathogenic mechanism. Recent studies have shown that deposition of Aβ and hyperphosphorylation of the tau protein may cause mitochondrial dysfunction. An increasing number of papers have reported that, on one hand, the auditory system function in AD patients is damaged as their cognitive ability declines and that, on the other hand, hearing loss may be a risk factor for dementia and AD. However, the relationship between presbycusis and AD is still unknown. By reviewing the relevant literature, we found that the SIRT1-PGC1α pathway and LKB1 (or CaMKKβ)-AMPK pathway may play a role in the preservation of cerebral neuron function by taking part in the regulation of mitochondrial function. Then vascular endothelial growth factor signal pathway is activated to promote vascular angiogenesis and maintenance of the blood–brain barrier integrity. Recently, experiments have also shown that their expression levels are altered in both presbycusis and AD mouse models. Therefore, we propose that exploring the specific molecular link between presbycusis and AD may provide new ideas for their prevention and treatment.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otolaryngology & Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yilai Shu
- Department of Otolaryngology & Head and Neck Surgery, EENT Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
26
|
Dong Y, Guo CR, Chen D, Chen SM, Peng Y, Song H, Shi JR. Association between age‑related hearing loss and cognitive decline in C57BL/6J mice. Mol Med Rep 2018; 18:1726-1732. [PMID: 29901198 DOI: 10.3892/mmr.2018.9118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has revealed the link between age‑related hearing loss (presbycusis) and cognitive decline; however, their exact association remains unclear. The present study aimed to investigate the association between age‑related hearing loss and cognitive decline, and to explore the underlying mechanisms. Briefly, three groups of C57BL/6J mice were evaluated, based on their age, as follows: Young group, 3 months; adult group, 6 months; and middle‑aged group, 15 months. The results of an auditory brainstem response (ABR) test demonstrated that the hearing threshold levels of the mice were increased in those aged 6 and 15 months compared with those aged 3 months, thus suggesting that significant hearing loss occurred at 6 months, and worsened at 15 months. The results of a Morris water maze test demonstrated that spatial learning and memory function was significantly decreased in 15‑month‑old mice, but not in 6‑month‑old mice. Pearson analysis indicated that the escape latency was positively correlated with hearing threshold at 16 kHz and percentage of time in the target quadrant was negatively correlated with hearing threshold at 16 kHz, thus suggesting a correlation between age‑related hearing loss and cognitive decline. The auditory cortex and hippocampal CA1 region in 15‑month‑old mice exhibited significantly decreased cell numbers, abnormal arrangement and morphological alterations. Transmission electron microscopy revealed reduced synapse numbers and synaptic vesicle density in mice aged 15 months. Furthermore, the protein expression levels of matrix metalloproteinase (MMP)‑9 in the auditory cortex and hippocampus in the 15‑month‑old mice were significantly higher than in the 3‑month‑old mice. In conclusion, these findings support the correlation between age‑related hearing loss and cognitive decline in C57BL/6J mice, and indicated that MMP‑9 expression in the auditory cortex and hippocampus may be associated with the underlying mechanisms.
Collapse
Affiliation(s)
- Yang Dong
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chun-Rong Guo
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Chen
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Sheng-Min Chen
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yinting Peng
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Haiyan Song
- Central Lab, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jian-Rong Shi
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
27
|
Park SY, Kim MJ, Kim HL, Kim DK, Yeo SW, Park SN. Cognitive decline and increased hippocampal p-tau expression in mice with hearing loss. Behav Brain Res 2018; 342:19-26. [DOI: 10.1016/j.bbr.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
|
28
|
Perkins AE, Piazza MK, Deak T. Stereological Analysis of Microglia in Aged Male and Female Fischer 344 Rats in Socially Relevant Brain Regions. Neuroscience 2018; 377:40-52. [PMID: 29496632 DOI: 10.1016/j.neuroscience.2018.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Aging is associated with a substantial decline in the expression of social behavior as well as increased neuroinflammation. Since immune activation and subsequent increased expression of cytokines can suppress social behavior in young rodents, we examined age and sex differences in microglia within brain regions critical to social behavior regulation (PVN, BNST, and MEA) as well as in the hippocampus. Adult (3-month) and aged (18-month) male and female F344 (N = 26, n = 5-8/group) rats were perfused and Iba-1 immunopositive microglia were assessed using unbiased stereology and optical density. For stereology, microglia were classified based on the following criteria: (1) thin ramified processes, (2) thick long processes, (3) stout processes, or (4) round/ameboid shape. Among the structures examined, the highest density of microglia was evident in the BNST and MEA. Aged rats of both sexes displayed increased total number of microglia number exclusively in the MEA. Sex differences also emerged, whereby aged females (but not males) displayed greater total number of microglia in the BNST relative to their young adult counterparts. When morphological features of microglia were assessed, aged rats exhibited increased soma size in the BNST, MEA, and CA3. Together, these findings provide a comprehensive characterization of microglia number and morphology under ambient conditions in CNS sites critical for the normal expression of social processes. To the extent that microglia morphology is predictive of reactivity and subsequent cytokine release, these data suggest that the expression of social behavior in late aging may be adversely influenced by heightened inflammation.
Collapse
Affiliation(s)
- Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Michelle K Piazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
29
|
Liu L, Shen P, He T, Chang Y, Shi L, Tao S, Li X, Xun Q, Guo X, Yu Z, Wang J. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci Rep 2016; 6:20374. [PMID: 26842803 PMCID: PMC4740884 DOI: 10.1038/srep20374] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
Hearing loss has been associated with cognitive decline in the elderly and is considered to be an independent risk factor for dementia. One of the most common causes for acquired sensorineural hearing loss is exposure to excessive noise, which has been found to impair learning ability and cognitive performance in human subjects and animal models. Noise exposure has also been found to depress neurogenesis in the hippocampus. However, the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. In the present study, young adult CBA/CAJ mice (between 1.5 and 2 months of age) were briefly exposed a high sound level to produce moderate-to-severe hearing loss. In both the blood and hippocampus, only transient oxidative stress was observed after noise exposure. However, a deficit in spatial learning/memory was revealed 3 months after noise exposure. Moreover, the deficit was correlated with the degree of hearing loss and was associated with a decrease in neurogenesis in the hippocampus. We believe that the observed effects were likely due to hearing loss rather than the initial oxidant stress, which only lasted for a short period of time.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Pei Shen
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Tingting He
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Ying Chang
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Shan Tao
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Qingying Xun
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Xiaojing Guo
- Department of Physiology, Medical College of Southeast University, Nanjing China.,Children's medical center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Jian Wang
- Department of Physiology, Medical College of Southeast University, Nanjing China.,School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| |
Collapse
|
30
|
Yu YF, Wu WY, Xiao GS, Ling HY, Pan C. Protection of the cochlear hair cells in adult C57BL/6J mice by T-type calcium channel blockers. Exp Ther Med 2016; 11:1039-1044. [PMID: 26998034 DOI: 10.3892/etm.2016.2970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 10/29/2015] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of T-type calcium channel blockers against presbycusis, using a C57BL/6J mice model. The expression of three T-type calcium channel receptor subunits in the cochlea of 6-8-week-old C57BL/6J mice was evaluated using reverse transcription-quantitative polymerase chain reaction. The results confirmed that the three subunits were expressed in the cochlea. In addition, the capacity of T-type calcium channel blockers to protect the cochlear hair cells of 24-26-week-old C57BL/6J mice was investigated in mice treated with mibefradil, benidipine or saline for 4 weeks. Differences in hearing threshold were detected using auditory brainstem recording (ABR), while differences in amplitudes were measured using a distortion product otoacoustic emission (DPOAE) test. The ABR test results showed that the hearing threshold significantly decreased at 24 kHz in the mibefradil-treated and benidipine-treated groups compared with the saline-treated group. The DPOAE amplitudes in the mibefradil-treated group were increased compared with those in the saline-treated group at the F2 frequencies of 11.3 and 13.4 kHz. Furthermore, the DPOAE amplitudes in the benidipine-treated group were increased compared with those in the saline-treated group at an F2 frequency of 13.4 kHz. The loss of outer hair cells (OHCs) was not evident in the mibefradil-treated group; however, the stereocilia of the inner hair cells (IHCs) were disorganised and sparse. In summary, these results indicate that the administration of a T-type calcium channel blocker for four consecutive weeks may improve the hearing at 24 kHz of 24-26-week-old C57BL/6J mice. The function and morphology of the OHCs of the C57BL/6J mice were significantly altered by the administration of a T-type calcium channel blocker; however, the IHCs were unaffected.
Collapse
Affiliation(s)
- Ya-Feng Yu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wen-Ying Wu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gen-Sheng Xiao
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hong-Yang Ling
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chen Pan
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
31
|
Abstract
The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on learning and memory tests than aged WT mice. Our results suggest that complement C3, or its downstream signaling, is detrimental to synapses during aging.
Collapse
|
32
|
Gunbey HP, Gunbey E, Aslan K, Bulut T, Unal A, Incesu L. Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging. Clin Neuroradiol 2015; 27:221-230. [DOI: 10.1007/s00062-015-0473-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
|
33
|
Janssen CI, Zerbi V, Mutsaers MP, Jochems M, Vos CA, Vos JO, Berg BM, van Tol EA, Gross G, Jouni ZE, Heerschap A, Kiliaan AJ. Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice. Neurochem Int 2015; 89:157-69. [DOI: 10.1016/j.neuint.2015.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 01/15/2023]
|
34
|
Tao S, Liu L, Shi L, Li X, Shen P, Xun Q, Guo X, Yu Z, Wang J. Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age. J Otol 2015; 10:21-28. [PMID: 29937778 PMCID: PMC6002560 DOI: 10.1016/j.joto.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Noise pollution is a major hazardous factor to human health and is likely harmful for vulnerable groups such as pre-term infants under life-support system in an intensive care unit. Previous studies have suggested that noise exposure impairs children's learning ability and cognitive performance and cognitive functions in animal models in which the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. The potential role of noise induced hearing loss (NIHL), rather than the oxidant stress, has also been indicated by a depression of neurogenesis in the hippocampus long after a brief noise exposure, which produces only a tentative oxidant stress. It is not clear if noise exposure and NIHL during early development exerts a long term impact on cognitive function and neurogenesis towards adulthood. In the present study, a brief noise exposure at high sound level was performed in neonatal C57BL/6J mice (15 days after birth) to produce a significant amount of permanent hearing loss as proved 2 months after the noise. At this age, the noise-exposed animals showed deteriorated spatial learning and memory abilities and a reduction of hippocampal neurogenesis as compared with the control. The averaged hearing threshold was found to be strongly correlated with the scores for spatial learning and memory. We consider the effects observed are largely due to the loss of hearing sensitivity, rather than the oxidant stress, due to the long interval between noise exposure and the observations.
Collapse
Affiliation(s)
- Shan Tao
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Pei Shen
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Qingying Xun
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Xiaojing Guo
- Department of Physiology, Medical College of Southeast University, Nanjing, China.,Children's Medical Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Jian Wang
- Department of Physiology, Medical College of Southeast University, Nanjing, China.,School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| |
Collapse
|
35
|
Liu CQ, Cheng XT, Zhu YH, Shen WD, Bian BW, Cao JY, Zhai SQ, Chen CX, Yang SM, Yuan HJ, Yu N. Clinical observation on hearing conditions of centenarians in northern district of China. Acta Otolaryngol 2015; 135:451-8. [PMID: 25739867 DOI: 10.3109/00016489.2014.984876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The hearing conditions of the centenarians were quite poor as regards hearing thresholds and speech detection ability. OBJECTIVE To investigate hearing conditions of centenarians. METHODS A total of 54 centenarians in Rizhao and Linyi Districts in Shandong Province were investigated to assess hearing conditions of centenerians comprehensively by questionnaire investigation, pure-tone audiometry, acoustic immitance, intelligence evaluation, and speech detection scores. Also, 135 individuals were recruited as controls and divided into four groups according to their age: 45-59 years, 60-69 years, 70-79 years, and 80-89 years. RESULTS The hearing thresholds of the centenarians were dramatically higher than those of the control group (p < 0.05) and all centenarians suffered moderate to profound hearing loss according to the World Health Organization (WHO) criteria. Few centenarians had normal level of speech detection scores. All centenarians showed descending hearing curve, and the hearing threshold of the male centenarians at 8000 Hz was higher than that of the females (p = 0.047). There was a significant air-bone conduction gap in the centenarians (p < 0.05).
Collapse
Affiliation(s)
- Chen-Qing Liu
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital , Beijing
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gröschel M, Hubert N, Müller S, Ernst A, Basta D. Age-dependent changes of calcium related activity in the central auditory pathway. Exp Gerontol 2014; 58:235-43. [DOI: 10.1016/j.exger.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
37
|
Leung MCP, Yip KK, Lam CT, Lam KS, Lau W, Yu WL, Leung AKM, So KF. Acupuncture improves cognitive function: A systematic review. Neural Regen Res 2014; 8:1673-84. [PMID: 25206464 PMCID: PMC4145916 DOI: 10.3969/j.issn.1673-5374.2013.18.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/21/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Acupuncture has been used as a treatment for cognitive impairment. OBJECTIVE This review assesses clinical evidence for or against acupuncture as a treatment for cognitive impairment. This review also discusses the proposed mechanism(s) that could link acupuncture to improved cognitive function. METHODS We searched the literature using PolyUone search from its inception to January 2013, with full text available and language limited to English. Levels of evidence were examined using Oxford Centre for Evidence-based Medicine-Levels of Evidence (March, 2009). RESULTS TWELVE STUDIES MET THE INCLUSION CRITERIA: 3 human studies and 9 animal studies. Levels of evidence ranged from level 1b to level 5. CONCLUSION Most animal studies demonstrated a positive effect of acupuncture on cognitive impairment. However, the results of human studies were inconsistent. Further high-quality human studies with greater statistical power are needed to determine the effectiveness of acupuncture and an optimal protocol.
Collapse
Affiliation(s)
- Mason Chin Pang Leung
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Ka Keung Yip
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Chung Tsung Lam
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Ka Shun Lam
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Wai Lau
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Wing Lam Yu
- Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | | | - Kwok-Fai So
- Department of Anatomy, and the State Key Laboratory of Brain and Cognitive Science, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Ren HM, Ren J, Liu W. Recognition and control of the progression of age-related hearing loss. Rejuvenation Res 2014; 16:475-86. [PMID: 23915327 DOI: 10.1089/rej.2013.1435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent breakthroughs have provided notable insights into both the pathogenesis and therapeutic strategies for age-related hearing loss (ARHL). Simultaneously, these breakthroughs enhance our knowledge about this neurodegenerative disease and raise the question of whether the disorder is preventable or even treatable. Discoveries relating to ARHL have revealed a unique link between ARHL and the underlying pathologies. Therefore, we need to better understand the pathogenesis or the mechanism of ARHL and learn how to take full advantage of various therapeutic strategies to prevent the progression of ARHL.
Collapse
Affiliation(s)
- Hong Miao Ren
- Department of Otolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University , Changsha, Hunan, P.R. China
| | | | | |
Collapse
|
39
|
Yang L, Zhang J, Zheng K, Shen H, Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2013; 69:282-94. [DOI: 10.1093/gerona/glt091] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
40
|
Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 2012; 288:34-46. [DOI: 10.1016/j.heares.2012.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/09/2011] [Accepted: 02/22/2012] [Indexed: 01/01/2023]
|