1
|
Huang Y, Wang YA, van Sluijs L, Vogels DHJ, Chen Y, Tegelbeckers VIP, Schoonderwoerd S, Riksen JAG, Kammenga JE, Harvey SC, Sterken MG. eQTL mapping in transgenic alpha-synuclein carrying Caenorhabditis elegans recombinant inbred lines. Hum Mol Genet 2024; 33:2123-2132. [PMID: 39439404 PMCID: PMC11630767 DOI: 10.1093/hmg/ddae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Protein aggregation of α-synuclein (αS) is a genetic and neuropathological hallmark of Parkinson's disease (PD). Studies in the model nematode Caenorhabditis elegans suggested that variation of αS aggregation depends on the genetic background. However, which genes and genetic modifiers underlie individual differences in αS pathology remains unknown. To study the genotypic-phenotypic relationship of αS aggregation, we constructed a Recombinant Inbred Line (RIL) panel derived from a cross between genetically divergent strains C. elegans NL5901 and SCH4856, both harboring the human αS gene. As a first step to discover genetic modifiers 70 αS-RILs were measured for whole-genome gene expression and expression quantitative locus analysis (eQTL) were mapped. We detected multiple eQTL hot-spots, many of which were located on Chromosome V. To confirm a causal locus, we developed Introgression Lines (ILs) that contain SCH4856 introgressions on Chromosome V in an NL5901 background. We detected 74 genes with an interactive effect between αS and the genetic background, including the human p38 MAPK homologue pmk-1 that has previously been associated with PD. Together, we present a unique αS-RIL panel for defining effects of natural genetic variation on αS pathology, which contributes to finding genetic modifiers of PD.
Collapse
Affiliation(s)
- Yuqing Huang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Yiru A Wang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
- Faculty of Engineering and Science, University of Greenwich, Medway ME4 4TB, United Kingdom
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Demi H J Vogels
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Yuzhi Chen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Vivian I P Tegelbeckers
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Steven Schoonderwoerd
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Simon C Harvey
- Faculty of Engineering and Science, University of Greenwich, Medway ME4 4TB, United Kingdom
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
2
|
Magno LAV, Pinto SHDB, Pacheco A, Rosa DVF, Gubert P, Romano-Silva MA. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Toxicol Res (Camb) 2024; 13:tfae187. [PMID: 39555232 PMCID: PMC11567717 DOI: 10.1093/toxres/tfae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Although dysfunctional Ca2+ signaling can trigger biochemical reactions that lead to cell death, the role of calcium-binding proteins (CBPs) in this process is still a topic of debate. Neuronal calcium sensor 1 (NCS-1) is a CBP that is highly conserved and has been shown to increase cell survival against various types of injuries. As such, we hypothesized that NCS-1 could also be a stress-responsive protein with potential effects on survival and longevity. To explore this possibility, we conducted experiments to examine how Caenorhabditis elegans ncs-1 mutant nematodes fared under three different stress conditions: hyperosmotic, thermal, and chemical oxidant challenges. Our results showed that while the lack of NCS-1 had no effect on survival responses to hyperosmotic and thermal stresses, ncs-1 worms demonstrated remarkable resistance to the oxidant paraquat in a dose-dependent manner. Based on these findings, we conclude that C. elegans may employ adaptive mechanisms in the absence of NCS-1 to survive specific oxidative stress stimuli.
Collapse
Affiliation(s)
- Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Alameda Ezequiel Dias, N° 275, Centro, 30130-110 Belo Horizonte, Minas Gerais, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Sofia Helena Dias Borges Pinto
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Ailla Pacheco
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Alameda Ezequiel Dias, N° 275, Centro, 30130-110 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Valadão Freitas Rosa
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Priscila Gubert
- Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Marco Aurélio Romano-Silva
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
5
|
Sun X, Anoopkumar AN, Aneesh EM, Madhavan A, Binod P, Kuddus M, Pandey A, Sindhu R, Awasthi MK. Hormesis-tempting stressors driven by evolutionary factors for mitigating negative impacts instigated over extended exposure to chemical elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121246. [PMID: 36764380 DOI: 10.1016/j.envpol.2023.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The adaptive responses to moderate environmental challenges by the biological systems have usually been credited to hormesis. Since the hormetic biphasic dose-response illustrates a prominent pattern towards biological responsiveness, the studies concerning such aspects will get much more significance in risk assessment practices and toxicological evaluation research. From this point of view, the past few epochs have witnessed the extending recognition of the notion concerning hormesis. The extraction of its basic foundations of evolutionary perspectives-along with the probable underlying molecular and cellular mechanisms followed by the practical implications to enhance the quality of life. To get better and more effective output in this regard, the present article has evaluated the various observations of previous investigations. The intent of integrating the novel inferences concerning the hormesis-tempting stressors driven by predominant evolutionary factors for mitigating the adverse impacts that were prompted over frequent and continuous exposure to the various chemical elements. Such inferences can offer extensive insight into the implications concerning the risk assessment of hormesis.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691 505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
6
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
7
|
Maulana MI, Riksen JAG, Snoek BL, Kammenga JE, Sterken MG. The genetic architecture underlying body-size traits plasticity over different temperatures and developmental stages in Caenorhabditis elegans. Heredity (Edinb) 2022; 128:313-324. [PMID: 35383317 PMCID: PMC9076863 DOI: 10.1038/s41437-022-00528-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Most ectotherms obey the temperature-size rule, meaning they grow larger in a colder environment. This raises the question of how the interplay between genes and temperature affects the body size of ectotherms. Despite the growing body of literature on the physiological life-history and molecular genetic mechanism underlying the temperature-size rule, the overall genetic architecture orchestrating this complex phenotype is not yet fully understood. One approach to identify genetic regulators of complex phenotypes is quantitative trait locus (QTL) mapping. Here, we explore the genetic architecture of body-size phenotypes, and plasticity of body-size phenotypes at different temperatures using Caenorhabditis elegans as a model ectotherm. We used 40 recombinant inbred lines (RILs) derived from N2 and CB4856, which were reared at four different temperatures (16, 20, 24, and 26 °C) and measured at two developmental stages (L4 and adult). The animals were measured for body length, width at vulva, body volume, length/width ratio, and seven other body-size traits. The genetically diverse RILs varied in their body-size phenotypes with heritabilities ranging from 0.0 to 0.99. We detected 18 QTL underlying the body-size traits across all treatment combinations, with the majority clustering on Chromosome X. We hypothesize that the Chromosome X QTL could result from a known pleiotropic regulator-npr-1-known to affect the body size of C. elegans through behavioral changes. We also found five plasticity QTL of body-size traits where three colocalized with body-size QTL. In conclusion, our findings shed more light on multiple loci affecting body-size plasticity and the possibility of co-regulation of traits and traits plasticity by the same loci under different environments.
Collapse
Affiliation(s)
- Muhammad I Maulana
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Switching of Redox Signaling by Prdx6 Expression Decides Cellular Fate by Hormetic Phenomena Involving Nrf2 and Reactive Oxygen Species. Cells 2022; 11:cells11081266. [PMID: 35455944 PMCID: PMC9028283 DOI: 10.3390/cells11081266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in intracellular reactive oxygen species (ROS) levels due to remodeling of antioxidant defense can affect the status of biological homeostasis in aging/oxidative stress. Peroxiredoxin 6 (Prdx6), an antioxidant gene downstream target for the Nrf2 pathway, plays a role in regulating ROS homeostasis. Using aging human (h) lens epithelial cells (LECs) or Prdx6-deficient (Prdx6-/-) mouse (m) LECs, here we showed that dichlorofluorescein (DCF) oxidation or H2O2 were strictly controlled by Prdx6. We observed that a moderate degree of oxidative stress augmented Nrf2-mediated Prdx6 expression, while higher doses of H2O2 (≥100 µM) caused a dramatic loss of Prdx6 expression, resulting in increased DCF oxidation and H2O2 amplification and cell death. Mechanistically, at increased oxidative stress, Nrf2 upregulated transcriptional factor Klf9, and that Klf9 bound to the promoter and repressed the Prdx6 gene. Similarly, cells overexpressing Klf9 displayed Klf9-dependent Prdx6 suppression and DCF oxidation with H2O2 amplification, while ShKlf9 reversed the process. Our data revealed that H2O2 and DCF oxidation levels play a hormetical role, and the Nrf2-Klf9-Prdx6 pathway is pivotal for the phenomena under the conditions of oxidative load/aging. On the whole, the results demonstrate that oxidative hormetical response is essentially based on levels of oxidative triggering and the status of Klf9-Prdx6 pathway activation; thus, Klf9 can be considered as a therapeutic target for hormetic shifting of cellular defense to improve protective resilience to oxidative stress.
Collapse
|
9
|
Snoek BL, Sterken MG, Nijveen H, Volkers RJM, Riksen J, Rosenstiel PC, Schulenburg H, Kammenga JE. The genetics of gene expression in a Caenorhabditis elegans multiparental recombinant inbred line population. G3 (BETHESDA, MD.) 2021; 11:jkab258. [PMID: 34568931 PMCID: PMC8496280 DOI: 10.1093/g3journal/jkab258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
Studying genetic variation of gene expression provides a powerful way to unravel the molecular components underlying complex traits. Expression quantitative trait locus (eQTL) studies have been performed in several different model species, yet most of these linkage studies have been based on the genetic segregation of two parental alleles. Recently, we developed a multiparental segregating population of 200 recombinant inbred lines (mpRILs) derived from four wild isolates (JU1511, JU1926, JU1931, and JU1941) in the nematode Caenorhabditis elegans. We used RNA-seq to investigate how multiple alleles affect gene expression in these mpRILs. We found 1789 genes differentially expressed between the parental lines. Transgression, expression beyond any of the parental lines in the mpRILs, was found for 7896 genes. For expression QTL mapping almost 9000 SNPs were available. By combining these SNPs and the RNA-seq profiles of the mpRILs, we detected almost 6800 eQTLs. Most trans-eQTLs (63%) co-locate in six newly identified trans-bands. The trans-eQTLs found in previous two-parental allele eQTL experiments and this study showed some overlap (17.5-46.8%), highlighting on the one hand that a large group of genes is affected by polymorphic regulators across populations and conditions, on the other hand, it shows that the mpRIL population allows identification of novel gene expression regulatory loci. Taken together, the analysis of our mpRIL population provides a more refined insight into C. elegans complex trait genetics and eQTLs in general, as well as a starting point to further test and develop advanced statistical models for detection of multiallelic eQTLs and systems genetics studying the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Joost Riksen
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Philip C Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098 Kiel, Germany
- Competence Centre for Genomic Analysis (CCGA) Kiel, University of Kiel, 24098 Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, University of Kiel, 24098 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306 Ploen, Germany
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| |
Collapse
|
10
|
Evans KS, van Wijk MH, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 2021; 37:933-947. [PMID: 34229867 DOI: 10.1016/j.tig.2021.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
Although many studies have examined quantitative trait variation across many species, only a small number of genes and thereby molecular mechanisms have been discovered. Without these data, we can only speculate about evolutionary processes that underlie trait variation. Here, we review how quantitative and molecular genetics in the nematode Caenorhabditis elegans led to the discovery and validation of 37 quantitative trait genes over the past 15 years. Using these data, we can start to make inferences about evolution from these quantitative trait genes, including the roles that coding versus noncoding variation, gene family expansion, common versus rare variants, pleiotropy, and epistasis play in trait variation across this species.
Collapse
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Sterken MG, van Sluijs L, Wang YA, Ritmahan W, Gultom ML, Riksen JAG, Volkers RJM, Snoek LB, Pijlman GP, Kammenga JE. Punctuated Loci on Chromosome IV Determine Natural Variation in Orsay Virus Susceptibility of Caenorhabditis elegans Strains Bristol N2 and Hawaiian CB4856. J Virol 2021; 95:e02430-20. [PMID: 33827942 PMCID: PMC8315983 DOI: 10.1128/jvi.02430-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
Host-pathogen interactions play a major role in evolutionary selection and shape natural genetic variation. The genetically distinct Caenorhabditis elegans strains, Bristol N2 and Hawaiian CB4856, are differentially susceptible to the Orsay virus (OrV). Here, we report the dissection of the genetic architecture of susceptibility to OrV infection. We compare OrV infection in the relatively resistant wild-type CB4856 strain to the more susceptible canonical N2 strain. To gain insight into the genetic architecture of viral susceptibility, 52 fully sequenced recombinant inbred lines (CB4856 × N2 RILs) were exposed to OrV. This led to the identification of two loci on chromosome IV associated with OrV resistance. To verify the two loci and gain additional insight into the genetic architecture controlling virus infection, introgression lines (ILs) that together cover chromosome IV, were exposed to OrV. Of the 27 ILs used, 17 had an CB4856 introgression in an N2 background, and 10 had an N2 introgression in a CB4856 background. Infection of the ILs confirmed and fine-mapped the locus underlying variation in OrV susceptibility, and we found that a single nucleotide polymorphism in cul-6 may contribute to the difference in OrV susceptibility between N2 and CB4856. An allele swap experiment showed the strain CB4856 became as susceptible as the N2 strain by having an N2 cul-6 allele, although having the CB4856 cul-6 allele did not increase resistance in N2. In addition, we found that multiple strains with nonoverlapping introgressions showed a distinct infection phenotype from the parental strain, indicating that there are punctuated locations on chromosome IV determining OrV susceptibility. Thus, our findings reveal the genetic complexity of OrV susceptibility in C. elegans and suggest that viral susceptibility is governed by multiple genes.IMPORTANCE Genetic variation determines the viral susceptibility of hosts. Yet, pinpointing which genetic variants determine viral susceptibility remains challenging. Here, we have exploited the genetic tractability of the model organism Caenorhabditis elegans to dissect the genetic architecture of Orsay virus infection. Our results provide novel insight into natural determinants of Orsay virus infection.
Collapse
Affiliation(s)
- Mark G Sterken
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Yiru A Wang
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Wannisa Ritmahan
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Mitra L Gultom
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - L Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Evans KS, Zdraljevic S, Stevens L, Collins K, Tanny RE, Andersen EC. Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008986. [PMID: 33175833 PMCID: PMC7682890 DOI: 10.1371/journal.pgen.1008986] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kimberly Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL. Dissecting the eQTL Micro-Architecture in Caenorhabditis elegans. Front Genet 2020; 11:501376. [PMID: 33240309 PMCID: PMC7670075 DOI: 10.3389/fgene.2020.501376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
The study of expression quantitative trait loci (eQTL) using natural variation in inbred populations has yielded detailed information about the transcriptional regulation of complex traits. Studies on eQTL using recombinant inbred lines (RILs) led to insights on cis and trans regulatory loci of transcript abundance. However, determining the underlying causal polymorphic genes or variants is difficult, but ultimately essential for the understanding of regulatory networks of complex traits. This requires insight into whether associated loci are single eQTL or a combination of closely linked eQTL, and how this QTL micro-architecture depends on the environment. We addressed these questions by testing for independent replication of previously mapped eQTL in Caenorhabditis elegans using new data from introgression lines (ILs). Both populations indicate that the overall heritability of gene expression, number, and position of eQTL differed among environments. Across environments we were able to replicate 70% of the cis- and 40% of the trans-eQTL using the ILs. Testing eight different simulation models, we suggest that additive effects explain up to 60-93% of RIL/IL heritability for all three environments. Closely linked eQTL explained up to 40% of RIL/IL heritability in the control environment whereas only 7% in the heat-stress and recovery environments. In conclusion, we show that reproducibility of eQTL was higher for cis vs. trans eQTL and that the environment affects the eQTL micro-architecture.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Roel P. J. Bevers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Rita J. M. Volkers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
The Gene scb-1 Underlies Variation in Caenorhabditis elegans Chemotherapeutic Responses. G3-GENES GENOMES GENETICS 2020; 10:2353-2364. [PMID: 32385045 PMCID: PMC7341127 DOI: 10.1534/g3.120.401310] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most organisms and has broad implications for medicine and agriculture. The identification of the molecular mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our understanding of both genetic and phenotypic complexity by characterizing novel gene functions. Quantitative trait locus (QTL) mapping has been used to identify several pleiotropic regions in many organisms. However, gene knockout studies are needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we use a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to identify a single large-effect QTL on the center of chromosome V associated with variation in responses to eight chemotherapeutics. We validate this QTL with near-isogenic lines and pair genome-wide gene expression data with drug response traits to perform mediation analysis, leading to the identification of a pleiotropic candidate gene, scb-1, for some of the eight chemotherapeutics. Using deletion strains created by genome editing, we show that scb-1, which was previously implicated in response to bleomycin, also underlies responses to other double-strand DNA break-inducing chemotherapeutics. This finding provides new evidence for the role of scb-1 in the nematode drug response and highlights the power of mediation analysis to identify causal genes.
Collapse
|
15
|
Snoek BL, Sterken MG, Hartanto M, van Zuilichem AJ, Kammenga JE, de Ridder D, Nijveen H. WormQTL2: an interactive platform for systems genetics in Caenorhabditis elegans. Database (Oxford) 2020; 2020:baz149. [PMID: 31960906 PMCID: PMC6971878 DOI: 10.1093/database/baz149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
Quantitative genetics provides the tools for linking polymorphic loci to trait variation. Linkage analysis of gene expression is an established and widely applied method, leading to the identification of expression quantitative trait loci (eQTLs). (e)QTL detection facilitates the identification and understanding of the underlying molecular components and pathways, yet (e)QTL data access and mining often is a bottleneck. Here, we present WormQTL2, a database and platform for comparative investigations and meta-analyses of published (e)QTL data sets in the model nematode worm C. elegans. WormQTL2 integrates six eQTL studies spanning 11 conditions as well as over 1000 traits from 32 studies and allows experimental results to be compared, reused and extended upon to guide further experiments and conduct systems-genetic analyses. For example, one can easily screen a locus for specific cis-eQTLs that could be linked to variation in other traits, detect gene-by-environment interactions by comparing eQTLs under different conditions, or find correlations between QTL profiles of classical traits and gene expression. WormQTL2 makes data on natural variation in C. elegans and the identified QTLs interactively accessible, allowing studies beyond the original publications. Database URL: www.bioinformatics.nl/WormQTL2/.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Margi Hartanto
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Albert-Jan van Zuilichem
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| |
Collapse
|
16
|
Fine Particulate Matter Leads to Unfolded Protein Response and Shortened Lifespan by Inducing Oxidative Stress in C. elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2492368. [PMID: 31885780 PMCID: PMC6925806 DOI: 10.1155/2019/2492368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oxidative stress has been proven as one of the most critical regulatory mechanisms involved in fine Particulate Matter- (PM2.5-) mediated toxicity. For a better understanding of the underlying mechanisms that enable oxidative stress to participate in PM2.5-induced toxic effects, the current study explored the effects of oxidative stress induced by PM2.5 on UPR and lifespan in C. elegans. The results implicated that PM2.5 exposure induced oxidative stress response, enhanced metabolic enzyme activity, activated UPR, and shortened the lifespan of C. elegans. Antioxidant N-acetylcysteine (NAC) could suppress the UPR through reducing the oxidative stress; both the antioxidant NAC and UPR inhibitor 4-phenylbutyric acid (4-PBA) could rescue the lifespan attenuation caused by PM2.5, indicating that the antioxidant and moderate proteostasis contribute to the homeostasis and adaptation to oxidative stress induced by PM2.5.
Collapse
|
17
|
Jovic K, Grilli J, Sterken MG, Snoek BL, Riksen JAG, Allesina S, Kammenga JE. Transcriptome resilience predicts thermotolerance in Caenorhabditis elegans. BMC Biol 2019; 17:102. [PMID: 31822273 PMCID: PMC6905072 DOI: 10.1186/s12915-019-0725-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. RESULTS Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. CONCLUSION Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.
Collapse
Affiliation(s)
- Katharina Jovic
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Jacopo Grilli
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, I-34014, Trieste, Italy
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
18
|
Kikis EA. The intrinsic and extrinsic factors that contribute to proteostasis decline and pathological protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:145-161. [PMID: 31928724 DOI: 10.1016/bs.apcsb.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteostasis refers to the ability of cells to maintain the health of the proteome. Highly conserved quality control mechanisms exist to maintain proteostasis. These include the heat shock response, the unfolded protein response, and protein clearance/degradation pathways. Together, these mechanisms and others comprise the proteostasis network. This network is under constant assault and is strikingly sensitive to changes in the protein folding environment, resulting in proteostasis collapse under certain conditions. Here, the intrinsic and extrinsic stresses experienced by the proteostasis network are explored. The intrinsic stresses include genetic background as well as transcriptional and translational fidelity. These cause changes in the abundance or amino acid sequence of cellular proteins. Extrinsic stresses refer to environmental perturbation of the proteome, such as those caused by temperature stress, oxidative stress, air pollution and cigarette smoke. As the stress to the proteome exceeds the capacity of the proteostasis network, progressive neurodegenerative diseases of aging, such as Alzheimer's disease and Huntington's disease are more likely to ensue.
Collapse
Affiliation(s)
- Elise A Kikis
- Biology Department, The University of the South, Sewanee, TN, United States
| |
Collapse
|
19
|
Hormetic and Mitochondria-Related Mechanisms of Antioxidant Action of Phytochemicals. Antioxidants (Basel) 2019; 8:antiox8090373. [PMID: 31487950 PMCID: PMC6769633 DOI: 10.3390/antiox8090373] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Antioxidant action to afford a health benefit or increased well-being may not be directly exerted by quick reduction-oxidation (REDOX) reactions between the antioxidant and the pro-oxidant molecules in a living being. Furthermore, not all flavonoids or polyphenols derived from plants are beneficial. This paper aims at discussing the variety of mechanisms underlying the so-called "antioxidant" action. Apart from antioxidant direct mechanisms, indirect ones consisting of fueling and boosting innate detox routes should be considered. One of them, hormesis, involves upregulating enzymes that are needed in innate detox pathways and/or regulating the transcription of the so-called vitagenes. Moreover, there is evidence that some plant-derived compounds may have a direct role in events taking place in mitochondria, which is an organelle prone to oxidative stress if electron transport is faulty. Insights into the potential of molecules able to enter into the electron transport chain would require the determination of their reduction potential. Additionally, it is advisable to know both the oxidized and the reduced structures for each antioxidant candidate. These mechanisms and their related technical developments should help nutraceutical industry to select candidates that are efficacious in physiological conditions to prevent diseases or increase human health.
Collapse
|
20
|
Patama M, Belz RG, Sinkkonen A. Realistic low-doses of two emerging contaminants change size distribution of an annual flowering plant population. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:732-743. [PMID: 31250287 DOI: 10.1007/s10646-019-02069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
HHCB [1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran] and 4-tert-octylphenol [4-(1,1,3,3-tetramethylbutyl)phenol] are widely used emerging contaminants that have the potential to cause adverse effects in the environment. The purpose of this study was to observe if and how environmentally realistic concentrations of these contaminants alter growth in plant populations. It was hypothesized that within an exposed Gypsophila elegans Bieb (annual baby's breath) population especially fast-growing seedlings are impaired even when the population mean is unaffected, and small doses can cause hormesis and, thus, an increase in shoot or root length. In a dose-response experiment, an experimental population of G. elegans was established (total 15.600 seeds, 50 seeds per replicate, 24 replicates per concentration, 5.2 seedlings/cm2) and exposed to 12 doses of HHCB or 4-tert-octylphenol. After five days, shoot and root length values were measured and population averages, as well as slow- and fast-growing subpopulations, were compared with unexposed controls. Growth responses were predominantly monophasic. HHCB seemed to selectively inhibit both root and shoot elongation among slow- and fast-growing individuals, while 4-tert-octylphenol selectively inhibited both root and shoot elongation of mainly fast-growing seedlings. The ED50 values (dose causing 50% inhibition) revealed that the slow-growing seedlings were more sensitive and fast-growing seedlings less sensitive than the average of all individuals. Although there was toxicant specific variation between the effects, selective toxicity was consistently found among both slow- and fast-growing plants starting already at concentrations of 0.0067 µM, that are usually considered to be harmless. This study indicates that these contaminants can change size distribution of a plant population at low concentrations in the nM/µM range.
Collapse
Affiliation(s)
- Marjo Patama
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Garbenstraße 13, 70599, Stuttgart, Germany
- University of Helsinki, Department of Environmental Sciences, Environmental Ecology Unit, Niemenkatu 73, 15140, Lahti, Finland
| | - Regina G Belz
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Garbenstraße 13, 70599, Stuttgart, Germany.
| | - Aki Sinkkonen
- University of Helsinki, Department of Environmental Sciences, Environmental Ecology Unit, Niemenkatu 73, 15140, Lahti, Finland
| |
Collapse
|
21
|
Costantini D. Hormesis Promotes Evolutionary Change. Dose Response 2019; 17:1559325819843376. [PMID: 31040761 PMCID: PMC6484245 DOI: 10.1177/1559325819843376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to moderate environmental stress is one important source of evolutionary change. This evidence would support the hypothesis that hormesis is an evolutionary expectation. In this short review, I discuss relevant examples of genetic and phenotypic responses to moderate stress exposure that are compatible with hormesis and with paradigms of evolutionary theory such as evolutionary rescue or phenotypic plasticity. Genetic recombination, nonlethal mutations, activity of transposable elements, or gene expression are some of the molecular mechanisms through which hormesis might enable organisms to maintain or even increase evolutionary fitness in stressful environments. These mechanisms span the tree of life from plants to vertebrates.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| |
Collapse
|
22
|
Wang YA, Snoek BL, Sterken MG, Riksen JAG, Stastna JJ, Kammenga JE, Harvey SC. Genetic background modifies phenotypic and transcriptional responses in a C. elegans model of α-synuclein toxicity. BMC Genomics 2019; 20:232. [PMID: 30894116 PMCID: PMC6427842 DOI: 10.1186/s12864-019-5597-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background Accumulation of protein aggregates are a major hallmark of progressive neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. Transgenic Caenorhabditis elegans nematodes expressing the human synaptic protein α-synuclein in body wall muscle show inclusions of aggregated protein, which affects similar genetic pathways as in humans. It is not however known how the effects of α-synuclein expression in C. elegans differs among genetic backgrounds. Here, we compared gene expression patterns and investigated the phenotypic consequences of transgenic α-synuclein expression in five different C. elegans genetic backgrounds. Results Transcriptome analysis indicates that α-synuclein expression effects pathways associated with nutrient storage, lipid transportation and ion exchange and that effects vary depending on the genetic background. These gene expression changes predict that a range of phenotypes will be affected by α-synuclein expression. We confirm this, showing that α-synuclein expression delayed development, reduced lifespan, increased rate of matricidal hatching, and slows pharyngeal pumping. Critically, these phenotypic effects depend on the genetic background and coincide with the core changes in gene expression. Conclusions Together, our results show genotype-specific effects and core alterations in both gene expression and in phenotype in response to α-synuclein expression. We conclude that the effects of α-synuclein expression are substantially modified by the genetic background, illustrating that genetic background needs to be considered in C. elegans models of neurodegenerative disease. Electronic supplementary material The online version of this article (10.1186/s12864-019-5597-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiru A Wang
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK.,Laboratory of Nematology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Basten L Snoek
- Laboratory of Nematology, Wageningen University, 6708, PB, Wageningen, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK.
| |
Collapse
|
23
|
Snoek BL, Volkers RJM, Nijveen H, Petersen C, Dirksen P, Sterken MG, Nakad R, Riksen JAG, Rosenstiel P, Stastna JJ, Braeckman BP, Harvey SC, Schulenburg H, Kammenga JE. A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol 2019; 17:24. [PMID: 30866929 PMCID: PMC6417139 DOI: 10.1186/s12915-019-0642-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. RESULTS To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. CONCLUSION Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands. .,Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Carola Petersen
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Philipp Dirksen
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Rania Nakad
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098, Kiel, Germany
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Bart P Braeckman
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Hinrich Schulenburg
- Zoological Institute, University of Kiel, 24098, Kiel, Germany. .,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Franco R, Navarro G, Martínez-Pinilla E. Antioxidant Defense Mechanisms in Erythrocytes and in the Central Nervous System. Antioxidants (Basel) 2019; 8:antiox8020046. [PMID: 30781629 PMCID: PMC6406447 DOI: 10.3390/antiox8020046] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Differential antioxidant action is found upon comparison of organ/tissue systems in the human body. In erythrocytes (red blood cells), which transport oxygen and carbon dioxide through the circulatory system, the most important issue is to keep hemoglobin in a functional state that requires maintaining the haem group in ferrous (Fe2+) state. Conversion of oxidized Fe3+ back into Fe2+ in hemoglobin needs a special mechanism involving a tripeptide glutathione, glucose-6-phosphate dehydrogenase, and glucose and NADPH as suppliers of reducing power. Fava beans are probably a good resource to make the detox innate system more robust as the pro-oxidant molecules in this food likely induce the upregulation of members of such mechanisms. The central nervous system consumes more oxygen than the majority of human tissues, i.e., 20% of the body's total oxygen consumption and, therefore, it is exposed to a high level of oxidative stress. This fact, together with the progressive age-related decline in the efficiency of the antioxidant defense system, leads to neuronal death and disease. The innate mechanism operating in the central nervous system is not well known and seems different to that of the erythrocytes. The strategies of antioxidant intervention in brain will be reviewed here.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Biology School, University of Barcelona, Barcelona 08028, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.
- Department of Biochemistry and Physiology, Pharmacy and Food Science School, University of Barcelona, Barcelona 08028, Spain.
| | - Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias 33006, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias 33006, Spain.
- Instituto de Salud del Principado de Asturias (ISPA), Asturias 33006, Spain.
| |
Collapse
|
25
|
Shared Genomic Regions Underlie Natural Variation in Diverse Toxin Responses. Genetics 2018; 210:1509-1525. [PMID: 30341085 PMCID: PMC6283156 DOI: 10.1534/genetics.118.301311] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023] Open
Abstract
Phenotypic complexity is caused by the contributions of environmental factors and multiple genetic loci, interacting or acting independently. Studies of yeast and Arabidopsis often find that the majority of natural variation across phenotypes is attributable to independent additive quantitative trait loci (QTL). Detected loci in these organisms explain most of the estimated heritable variation. By contrast, many heritable components underlying phenotypic variation in metazoan models remain undetected. Before the relative impacts of additive and interactive variance components on metazoan phenotypic variation can be dissected, high replication and precise phenotypic measurements are required to obtain sufficient statistical power to detect loci contributing to this missing heritability. Here, we used a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to detect loci underlying responses to 16 different toxins, including heavy metals, chemotherapeutic drugs, pesticides, and neuropharmaceuticals. Using linkage mapping, we identified 82 QTL that underlie variation in responses to these toxins, and predicted the relative contributions of additive loci and genetic interactions across various growth parameters. Additionally, we identified three genomic regions that impact responses to multiple classes of toxins. These QTL hotspots could represent common factors impacting toxin responses. We went further to generate near-isogenic lines and chromosome substitution strains, and then experimentally validated these QTL hotspots, implicating additive and interactive loci that underlie toxin-response variation.
Collapse
|
26
|
Costantini D, Borremans B. The linear no-threshold model is less realistic than threshold or hormesis-based models: An evolutionary perspective. Chem Biol Interact 2018; 301:26-33. [PMID: 30342016 DOI: 10.1016/j.cbi.2018.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
Abstract
The linear no-threshold (LNT) risk model is the current human health risk assessment paradigm. This model states that adverse stochastic biological responses to high levels of a stressor can be used to estimate the response to low or moderate levels of that stressor. In recent years the validity of the LNT risk model has increasingly been questioned because of the recurring observation that an organism's response to high stressor doses differs from that to low doses. This raises important questions about the biological and evolutionary validity of the LNT model. In this review we reiterate that the LNT model as applied to stochastic biological effects of low and moderate stressor levels has less biological validity than threshold or, particularly, hormetic models. In so doing, we rely heavily on literature from disciplines like ecophysiology or evolutionary ecology showing how exposure to moderate amounts of stress can have severe impacts on phenotype and organism reproductive fitness. We present a mathematical model that illustrates and explores the hypothetical conditions that make a particular kind of hormesis (conditioning hormesis) ecologically and evolutionarily plausible.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005, Paris, France; Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Charles E. Young Dr. South, Los Angeles, 90095, United States; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University, Agoralaan gebouw D, 3590, Diepenbeek, Belgium
| |
Collapse
|
27
|
Gao AW, Sterken MG, Uit de Bos J, van Creij J, Kamble R, Snoek BL, Kammenga JE, Houtkooper RH. Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res 2018; 28:1296-1308. [PMID: 30108180 PMCID: PMC6120624 DOI: 10.1101/gr.232322.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
Metabolic homeostasis is sustained by complex biological networks that respond to nutrient availability. Genetic and environmental factors may disrupt this equilibrium, leading to metabolic disorders, including obesity and type 2 diabetes. To identify the genetic factors controlling metabolism, we performed quantitative genetic analysis using a population of 199 recombinant inbred lines (RILs) in the nematode Caenorhabditis elegans We focused on the genomic regions that control metabolite levels by measuring fatty acid (FA) and amino acid (AA) composition in the RILs using targeted metabolomics. The genetically diverse RILs showed a large variation in their FA and AA levels with a heritability ranging from 32% to 82%. We detected strongly co-correlated metabolite clusters and 36 significant metabolite quantitative trait loci (mQTL). We focused on mQTL displaying highly significant linkage and heritability, including an mQTL for the FA C14:1 on Chromosome I, and another mQTL for the FA C18:2 on Chromosome IV. Using introgression lines (ILs), we were able to narrow down both mQTL to a 1.4-Mbp and a 3.6-Mbp region, respectively. RNAi-based screening focusing on the Chromosome I mQTL identified several candidate genes for the C14:1 mQTL, including lagr-1, Y87G2A.2, nhr-265, nhr-276, and nhr-81 Overall, this systems approach provides us with a powerful platform to study the genetic basis of C. elegans metabolism. Furthermore, it allows us to investigate interventions such as nutrients and stresses that maintain or disturb the regulatory network controlling metabolic homeostasis, and identify gene-by-environment interactions.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jelmi Uit de Bos
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Jelle van Creij
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Basten L Snoek
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Belz RG, Farooq MB, Wagner J. Does selective hormesis impact herbicide resistance evolution in weeds? ACCase-resistant populations of Alopecurus myosuroides Huds. as a case study. PEST MANAGEMENT SCIENCE 2018; 74:1880-1891. [PMID: 29446872 DOI: 10.1002/ps.4890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/21/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND A field-evolved herbicide-resistant weed population can represent a heterogeneous composite of subpopulations that differ in their susceptibility and responsiveness to herbicide hormesis. Variable hormesis responsiveness can result in selection for and against certain subpopulations under low herbicide doses, and this has the potential to contribute to the evolution of resistance. The relevance of this hypothesis at practical field rates was studied for two field-collected acetyl-coenzyme A carboxylase (ACCase) target-site resistant (TSR) biotypes of Alopecurus myosuroides Huds. (haplotype Leu1781) exposed to three ACCase inhibitors. Herbicide dose responses were evaluated at the population level and at different subpopulation levels after the dissection of individual plants by herbicide selection and genotyping. RESULTS The practical field rates of fenoxaprop-P were lower than the observed hormetic doses in the resistant subpopulation, whereas the field rates of clodinafop and cycloxydim stimulated the shoot biomass in different resistant subpopulations by 21-38% above that of the control. Because variable dose levels induced hormesis in the different subpopulations, the practical field rates showed a significant potential to selectively enhance parts of a resistant field population, but did not impact or adversely affect other parts of the population. CONCLUSION As a consequence of population heterogeneity, herbicide hormesis may impact resistance evolution in weeds at realistic use rates via the selective promotion of individual genotypes. However, the practical relevance of this phenomenon may be influenced by many factors, such as the herbicidal active ingredient used, as indicated in this study. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Regina G Belz
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Stuttgart, Germany
| | - Muhammad B Farooq
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Stuttgart, Germany
| | | |
Collapse
|
29
|
Organoruthenium(II) Complexes Ameliorates Oxidative Stress and Impedes the Age Associated Deterioration in Caenorhabditis elegans through JNK-1/DAF-16 Signalling. Sci Rep 2018; 8:7688. [PMID: 29769649 PMCID: PMC5955923 DOI: 10.1038/s41598-018-25984-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
New ruthenium(II) complexes were synthesised and characterized by various spectro analytical techniques. The structure of the complexes 3 and 4 has been confirmed by X-ray crystallography. The complexes were subjected to study their anti-oxidant profile and were exhibited significantly greater in vitro DPPH radical scavenging activity than vitamin C. We found that complexes 1–4 confered tolerance to oxidative stress and extend the mean lifespan of mev-1 mutant worms and wild-type Caenorhabditis elegans. Further, mechanistic study and reporter gene expression analysis revealed that Ru(ƞ6-p-cymene) complexes maintained the intracellular redox status and offers stress resistance through activating JNK-1/DAF-16 signaling axis and possibly by other antioxidant response pathway. Notably, complex 3 and 4 ameliorates the polyQ (a Huntington’s disease associated protein) mediated proteotoxicity and related behavioural deficits in Huntington’s disease models of C. elegans. From these observations, we hope that new Ru(ƞ6-p-cymene) complexes could be further considered as a potential drug to retard aging and age-related neurodegenerative diseases.
Collapse
|
30
|
Ross EM, Maxwell PH. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp Gerontol 2018; 108:189-200. [PMID: 29705357 PMCID: PMC5994204 DOI: 10.1016/j.exger.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
A variety of mild stresses have been shown to extend lifespan in diverse species through hormesis, which is a beneficial response to a stress or toxin that would cause a negative response at a higher exposure. Whether particular stresses induce hormesis can vary with genotype for a given species, and the underlying mechanisms of lifespan extension are only partly understood in most cases. We show that low doses of the DNA damaging or replication stress agents hydroxyurea, methyl methanesulfonate, 4-nitroquinoline 1-oxide, or Zeocin (a phleomycin derivative) lengthened chronological lifespan in Saccharomyces cerevisiae if cells were exposed during growth, but not if they were exposed during stationary phase. Treatment with these agents did not change mitochondrial activity, increase resistance to acetic acid, ethanol, or heat stress, and three of four treatments did not increase resistance to hydrogen peroxide. Stationary phase yeast populations consist of both quiescent and nonquiescent cells, and all four treatments increased the proportion of quiescent cells. Several mutant strains with deletions in genes that influence quiescence prevented Zeocin treatment from extending lifespan and from increasing the proportion of quiescent stationary phase cells. These data indicate that mild DNA damage stress can extend lifespan by promoting quiescence in the absence of mitohormesis or improved general stress responses that have been frequently associated with improved longevity in other cases of hormesis. Further study of the underlying mechanism may yield new insights into quiescence regulation that will be relevant to healthy aging.
Collapse
Affiliation(s)
- Emily M Ross
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
31
|
Use of a Sibling Subtraction Method for Identifying Causal Mutations in Caenorhabditis elegans by Whole-Genome Sequencing. G3-GENES GENOMES GENETICS 2018; 8:669-678. [PMID: 29237702 PMCID: PMC5919755 DOI: 10.1534/g3.117.300135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome sequencing (WGS) is an indispensable tool for identifying causal mutations obtained from genetic screens. To reduce the number of causal mutation candidates typically uncovered by WGS, Caenorhabditis elegans researchers have developed several strategies. One involves crossing N2-background mutants to the polymorphic Hawaiian (HA) strain, which can be used to simultaneously identify mutant strain variants and obtain high-density mapping information. This approach, however, is not well suited for uncovering mutations in complex genetic backgrounds, and HA polymorphisms can alter phenotypes. Other approaches make use of DNA variants present in the initial background or introduced by mutagenesis. This information is used to implicate genomic regions with high densities of DNA lesions that persist after backcrossing, but these methods can provide lower resolution than HA mapping. To identify suppressor mutations using WGS, we developed an approach termed the sibling subtraction method (SSM). This method works by eliminating variants present in both mutants and their nonmutant siblings, thus greatly reducing the number of candidates. We used this method with two members of the C. elegans NimA-related kinase family, nekl-2 and nekl-3. Combining weak aphenotypic alleles of nekl-2 and nekl-3 leads to penetrant molting defects and larval arrest. We isolated ∼50 suppressors of nekl-2; nekl-3 synthetic lethality using F1 clonal screening methods and a peel-1–based counterselection strategy. When applied to five of the suppressors, SSM led to only one to four suppressor candidates per strain. Thus SSM is a powerful approach for identifying causal mutations in any genetic background and provides an alternative to current methods.
Collapse
|
32
|
Baldi S, Bolognesi A, Meinema AC, Barral Y. Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell. eLife 2017; 6:28329. [PMID: 29283340 PMCID: PMC5771669 DOI: 10.7554/elife.28329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Although individuals of many species inexorably age, a number of observations established that the rate of aging is modulated in response to a variety of mild stresses. Here, we investigated how heat stress promotes longevity in yeast. We show that upon growth at higher temperature, yeast cells relax the retention of DNA circles, which act as aging factors in the mother cell. The enhanced frequency at which circles redistribute to daughter cells was not due to changes of anaphase duration or nuclear shape but solely to the downregulation of the diffusion barrier in the nuclear envelope. This effect depended on the PKA and Tor1 pathways, downstream of stress-response kinase Pkc1. Inhibition of these responses restored barrier function and circle retention and abrogated the effect of heat stress on longevity. Our data indicate that redistribution of aging factors from aged cells to their progeny can be a mechanism for modulating longevity.
Collapse
Affiliation(s)
- Sandro Baldi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alessio Bolognesi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Jovic K, Sterken MG, Grilli J, Bevers RPJ, Rodriguez M, Riksen JAG, Allesina S, Kammenga JE, Snoek LB. Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS One 2017; 12:e0189445. [PMID: 29228038 PMCID: PMC5724892 DOI: 10.1371/journal.pone.0189445] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022] Open
Abstract
There is considerable insight into pathways and genes associated with heat-stress conditions. Most genes involved in stress response have been identified using mutant screens or gene knockdowns. Yet, there is limited understanding of the temporal dynamics of global gene expression in stressful environments. Here, we studied global gene expression profiles during 12 hours of heat stress in the nematode C. elegans. Using a high-resolution time series of increasing stress exposures, we found a distinct shift in gene expression patterns between 3–4 hours into the stress response, separating an initially highly dynamic phase from a later relatively stagnant phase. This turning point in expression dynamics coincided with a phenotypic turning point, as shown by a strong decrease in movement, survival and, progeny count in the days following the stress. Both detectable at transcriptional and phenotypic level, this study pin-points a relatively small time frame during heat stress at which enough damage is accumulated, making it impossible to recover the next few days.
Collapse
Affiliation(s)
- Katharina Jovic
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jacopo Grilli
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Roel P. J. Bevers
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
34
|
Gao AW, Uit de Bos J, Sterken MG, Kammenga JE, Smith RL, Houtkooper RH. Forward and reverse genetics approaches to uncover metabolic aging pathways in Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2697-2706. [PMID: 28919364 DOI: 10.1016/j.bbadis.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
The biological mechanisms of aging have been studied in depth and prominent findings in this field promote the development of new therapies for age-associated disorders. Various model organisms are used for research on aging; among these, the nematode Caenorhabditis elegans has been widely used and has provided valuable knowledge in determining the regulatory mechanisms driving the aging process. Many genes involved in lifespan regulation are associated with metabolic pathways and are influenced by genetic and environmental factors. In line with this, C. elegans provides a promising platform to study such gene by environment interactions, in either a reverse or forward genetics approach. In this review, we discuss longevity mechanisms related to metabolic networks that have been discovered in C. elegans. We also highlight the use of wild populations to study the complex genetic basis of natural variation for quantitative traits that mediate longevity.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jelmi Uit de Bos
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Reuben L Smith
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, Van't Hof A, Brenchley R, Riksen JAG, Cossins A, Kammenga JE. Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans. BMC Genomics 2017; 18:500. [PMID: 28662696 PMCID: PMC5492678 DOI: 10.1186/s12864-017-3899-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cryptic genetic variation (CGV) is the hidden genetic variation that can be unlocked by perturbing normal conditions. CGV can drive the emergence of novel complex phenotypes through changes in gene expression. Although our theoretical understanding of CGV has thoroughly increased over the past decade, insight into polymorphic gene expression regulation underlying CGV is scarce. Here we investigated the transcriptional architecture of CGV in response to rapid temperature changes in the nematode Caenorhabditis elegans. We analyzed regulatory variation in gene expression (and mapped eQTL) across the course of a heat stress and recovery response in a recombinant inbred population. Results We measured gene expression over three temperature treatments: i) control, ii) heat stress, and iii) recovery from heat stress. Compared to control, exposure to heat stress affected the transcription of 3305 genes, whereas 942 were affected in recovering animals. These affected genes were mainly involved in metabolism and reproduction. The gene expression pattern in recovering animals resembled both the control and the heat-stress treatment. We mapped eQTL using the genetic variation of the recombinant inbred population and detected 2626 genes with an eQTL in the heat-stress treatment, 1797 in the control, and 1880 in the recovery. The cis-eQTL were highly shared across treatments. A considerable fraction of the trans-eQTL (40–57%) mapped to 19 treatment specific trans-bands. In contrast to cis-eQTL, trans-eQTL were highly environment specific and thus cryptic. Approximately 67% of the trans-eQTL were only induced in a single treatment, with heat-stress showing the most unique trans-eQTL. Conclusions These results illustrate the highly dynamic pattern of CGV across three different environmental conditions that can be evoked by a stress response over a relatively short time-span (2 h) and that CGV is mainly determined by response related trans regulatory eQTL. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3899-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Roel P J Bevers
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Arjen Van't Hof
- Centre for Genome research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Rachel Brenchley
- Centre for Genome research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Andrew Cossins
- Centre for Genome research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
36
|
Wang YA, Kammenga JE, Harvey SC. Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Hum Genomics 2017; 11:12. [PMID: 28545550 PMCID: PMC5445269 DOI: 10.1186/s40246-017-0108-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases (NGDs) such as Alzheimer's and Parkinson's are debilitating and largely untreatable conditions strongly linked to age. The clinical, neuropathological, and genetic components of NGDs indicate that neurodegeneration is a complex trait determined by multiple genes and by the environment. MAIN BODY The symptoms of NGDs differ among individuals due to their genetic background, and this variation affects the onset and progression of NGD and NGD-like states. Such genetic variation affects the molecular and cellular processes underlying NGDs, leading to differential clinical phenotypes. So far, we have a limited understanding of the mechanisms of individual background variation. Here, we consider how variation between genetic backgrounds affects the mechanisms of aging and proteostasis in NGD phenotypes. We discuss how the nematode Caenorhabditis elegans can be used to identify the role of variation between genetic backgrounds. Additionally, we review advances in C. elegans methods that can facilitate the identification of NGD regulators and/or networks. CONCLUSION Genetic variation both in disease genes and in regulatory factors that modulate onset and progression of NGDs are incompletely understood. The nematode C. elegans represents a valuable system in which to address such questions.
Collapse
Affiliation(s)
- Yiru Anning Wang
- Biomolecular Research Group, School of Human and Life Science, Canterbury Christ Church University, Canterbury, CT1 1QU UK
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan Edward Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon Crawford Harvey
- Biomolecular Research Group, School of Human and Life Science, Canterbury Christ Church University, Canterbury, CT1 1QU UK
| |
Collapse
|
37
|
Humburg P, Maugeri N, Lee W, Mohr B, Knight JC. Characterisation of the global transcriptional response to heat shock and the impact of individual genetic variation. Genome Med 2016; 8:87. [PMID: 27553423 PMCID: PMC4995779 DOI: 10.1186/s13073-016-0345-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The heat shock transcriptional response is essential to effective cellular function under stress. This is a highly heritable trait but the nature and extent of inter-individual variation in heat shock response remains unresolved. METHODS We determined global transcription profiles of the heat shock response for a panel of lymphoblastoid cell lines established from 60 founder individuals in the Yoruba HapMap population. We explore the observed differentially expressed gene sets following heat shock, establishing functional annotations, underlying networks and nodal genes involving heat shock factor 1 recruitment. We define a multivariate phenotype for the global transcriptional response to heat shock using partial least squares regression and map this quantitative trait to associated genetic variation in search of the major genomic modulators. RESULTS A comprehensive dataset of differentially expressed genes following heat shock in humans is presented. We identify nodal genes downstream of heat shock factor 1 in this gene set, notably involving ubiquitin C and small ubiquitin-like modifiers together with transcription factors. We dissect a multivariate phenotype for the global heat shock response which reveals distinct clustering of individuals in terms of variance of the heat shock response and involves differential expression of genes involved in DNA replication and cell division in some individuals. We find evidence of genetic associations for this multivariate response phenotype that involves trans effects modulating expression of genes following heat shock, including HSF1 and UBQLN1. CONCLUSION This study defines gene expression following heat shock for a cohort of individuals, establishing insights into the biology of the heat shock response and hypotheses for how variation in this may be modulated by underlying genetic diversity.
Collapse
Affiliation(s)
- Peter Humburg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Narelle Maugeri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Queensland Institute of Medical Research, Brisbane, 4029 Queensland Australia
| | - Wanseon Lee
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bert Mohr
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Nakad R, Snoek LB, Yang W, Ellendt S, Schneider F, Mohr TG, Rösingh L, Masche AC, Rosenstiel PC, Dierking K, Kammenga JE, Schulenburg H. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1. BMC Genomics 2016; 17:280. [PMID: 27066825 PMCID: PMC4827197 DOI: 10.1186/s12864-016-2603-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/25/2016] [Indexed: 01/22/2023] Open
Abstract
Background The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. Results We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes combined with activation of Ebox transcription factors appears to enhance susceptibility to B. thuringiensis. Conclusions Our findings highlight the role of a single gene, npr-1, in fine-tuning nematode immune defense, showing the ability of the invertebrate immune system to produce highly specialized and potentially opposing immune responses via single regulatory genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2603-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rania Nakad
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - L Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Sunna Ellendt
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Franziska Schneider
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Timm G Mohr
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Lone Rösingh
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Anna C Masche
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Philip C Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|
39
|
Singh KD, Roschitzki B, Snoek LB, Grossmann J, Zheng X, Elvin M, Kamkina P, Schrimpf SP, Poulin GB, Kammenga JE, Hengartner MO. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways. PLoS One 2016; 11:e0149418. [PMID: 26985669 PMCID: PMC4795773 DOI: 10.1371/journal.pone.0149418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels.
Collapse
Affiliation(s)
- Kapil Dev Singh
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Xue Zheng
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Mark Elvin
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Polina Kamkina
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sabine P. Schrimpf
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gino B. Poulin
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Michael O. Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Kamkina P, Snoek LB, Grossmann J, Volkers RJM, Sterken MG, Daube M, Roschitzki B, Fortes C, Schlapbach R, Roth A, von Mering C, Hengartner MO, Schrimpf SP, Kammenga JE. Natural Genetic Variation Differentially Affects the Proteome and Transcriptome in Caenorhabditis elegans. Mol Cell Proteomics 2016; 15:1670-80. [PMID: 26944343 DOI: 10.1074/mcp.m115.052548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 11/06/2022] Open
Abstract
Natural genetic variation is the raw material of evolution and influences disease development and progression. An important question is how this genetic variation translates into variation in protein abundance. To analyze the effects of the genetic background on gene and protein expression in the nematode Caenorhabditis elegans, we quantitatively compared the two genetically highly divergent wild-type strains N2 and CB4856. Gene expression was analyzed by microarray assays, and proteins were quantified using stable isotope labeling by amino acids in cell culture. Among all transcribed genes, we found 1,532 genes to be differentially transcribed between the two wild types. Of the total 3,238 quantified proteins, 129 proteins were significantly differentially expressed between N2 and CB4856. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress-response pathways, underlining strong divergence of these pathways in nematodes. The protein abundance of the two wild-type strains correlates more strongly than protein abundance versus transcript abundance within each wild type. Our findings indicate that in C. elegans only a fraction of the changes in protein abundance can be explained by the changes in mRNA abundance. These findings corroborate with the observations made across species.
Collapse
Affiliation(s)
- Polina Kamkina
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; §Ph.D. Program in Molecular Life Sciences Zurich, 8057 Zurich, Switzerland
| | - L Basten Snoek
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Jonas Grossmann
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Rita J M Volkers
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Mark G Sterken
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Michael Daube
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Bernd Roschitzki
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Claudia Fortes
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Alexander Roth
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Christian von Mering
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hengartner
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Sabine P Schrimpf
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
| | - Jan E Kammenga
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands;
| |
Collapse
|
41
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
42
|
Valba OV, Nechaev SK, Sterken MG, Snoek LB, Kammenga JE, Vasieva OO. On predicting regulatory genes by analysis of functional networks in C. elegans. BioData Min 2015; 8:33. [PMID: 26535058 PMCID: PMC4631084 DOI: 10.1186/s13040-015-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Background Connectivity networks, which reflect multiple interactions between genes and proteins, possess not only a descriptive but also a predictive value, as new connections can be extrapolated and tested by means of computational analysis. Integration of different types of connectivity data (such as co-expression and genetic interactions) in one network has proven to benefit ‘guilt by association’ analysis. However predictive values of connectives of different types, that had their specific functional meaning and topological characteristics were not obvious, and have been addressed in this analysis. Methods eQTL data for 3 experimental C.elegans age groups were retrieved from WormQTL. WormNet has been used to obtain pair-wise gene interactions. The Shortest Path Function (SPF) has been adopted for statistical validation of the co-expressed gene clusters and for computational prediction of their potential gene expression regulators from a network context. A new SPF-based algorithm has been applied to genetic interactions sub-networks adjacent to the clusters of co-expressed genes for ranking the most likely gene expression regulators causal to eQTLs. Results We have demonstrated that known co-expression and genetic interactions between C. elegans genes can be complementary in predicting gene expression regulators. Several algorithms were compared in respect to their predictive potential in different network connectivity contexts. We found that genes associated with eQTLs are highly clustered in a C. elegans co-expression sub-network, and their adjacent genetic interactions provide the optimal functional connectivity environment for application of the new SPF-based algorithm. It was successfully tested in the reverse-prediction analysis on groups of genes with known regulators and applied to co-expressed genes and experimentally observed expression quantitative trait loci (eQTLs). Conclusions This analysis demonstrates differences in topology and connectivity of co-expression and genetic interactions sub-networks in WormNet. The modularity of less continuous genetic interaction network does not correspond to modularity of the dense network comprised by gene co-expression interactions. However the genetic interaction network can be used much more efficiently with the SPF method in prediction of potential regulators of gene expression. The developed method can be used for validation of functional significance of suggested eQTLs and a discovery of new regulatory modules.
Collapse
Affiliation(s)
- Olga V Valba
- Laboratory of Nematology, Wageningen University, Wageninge, Netherlands
| | - Sergei K Nechaev
- LPTMS, Université Paris Sud, Orsay Cedex, France ; National Research University, Higher School of Economics, Moscow, Russia
| | - Mark G Sterken
- LPTMS, Université Paris Sud, Orsay Cedex, France ; National Research University, Higher School of Economics, Moscow, Russia ; P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - L Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageninge, Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageninge, Netherlands
| | - Olga O Vasieva
- Laboratory of Nematology, Wageningen University, Wageninge, Netherlands
| |
Collapse
|
43
|
Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans. Sci Rep 2015; 5:16259. [PMID: 26539794 PMCID: PMC4634109 DOI: 10.1038/srep16259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction.
Collapse
|
44
|
Green JWM, Stastna JJ, Orbidans HE, Harvey SC. Highly polygenic variation in environmental perception determines dauer larvae formation in growing populations of Caenorhabditis elegans. PLoS One 2014; 9:e112830. [PMID: 25393108 PMCID: PMC4231163 DOI: 10.1371/journal.pone.0112830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Determining how complex traits are genetically controlled is a requirement if we are to predict how they evolve and how they might respond to selection. This requires understanding how distinct, and often more simple, life history traits interact and change in response to environmental conditions. In order to begin addressing such issues, we have been analyzing the formation of the developmentally arrested dauer larvae of Caenorhabditis elegans under different conditions. Results We find that 18 of 22 previously identified quantitative trait loci (QTLs) affecting dauer larvae formation in growing populations, assayed by determining the number of dauer larvae present at food patch exhaustion, can be recovered under various environmental conditions. We also show that food patch size affects both the ability to detect QTLs and estimates of effect size, and demonstrate that an allele of nath-10 affects dauer larvae formation in growing populations. To investigate the component traits that affect dauer larvae formation in growing populations we map, using the same introgression lines, QTLs that affect dauer larvae formation in response to defined amounts of pheromone. This identifies 36 QTLs, again demonstrating the highly polygenic nature of the genetic variation underlying dauer larvae formation. Conclusions These data indicate that QTLs affecting the number of dauer larvae at food exhaustion in growing populations of C. elegans are highly reproducible, and that nearly all can be explained by variation affecting dauer larvae formation in response to defined amounts of pheromone. This suggests that most variation in dauer larvae formation in growing populations is a consequence of variation in the perception of the food and pheromone environment (i.e. chemosensory variation) and in the integration of these cues.
Collapse
Affiliation(s)
- James W. M. Green
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Jana J. Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Helen E. Orbidans
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Simon C. Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG, Kammenga JE, Harvey SC. Widespread genomic incompatibilities in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1813-23. [PMID: 25128438 PMCID: PMC4199689 DOI: 10.1534/g3.114.013151] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/17/2014] [Indexed: 01/18/2023]
Abstract
In the Bateson-Dobzhansky-Muller (BDM) model of speciation, incompatibilities emerge from the deleterious interactions between alleles that are neutral or advantageous in the original genetic backgrounds, i.e., negative epistatic effects. Within species such interactions are responsible for outbreeding depression and F2 (hybrid) breakdown. We sought to identify BDM incompatibilities in the nematode Caenorhabditis elegans by looking for genomic regions that disrupt egg laying; a complex, highly regulated, and coordinated phenotype. Investigation of introgression lines and recombinant inbred lines derived from the isolates CB4856 and N2 uncovered multiple incompatibility quantitative trait loci (QTL). These QTL produce a synthetic egg-laying defective phenotype not seen in CB4856 and N2 nor in other wild isolates. For two of the QTL regions, results are inconsistent with a model of pairwise interaction between two loci, suggesting that the incompatibilities are a consequence of complex interactions between multiple loci. Analysis of additional life history traits indicates that the QTL regions identified in these screens are associated with effects on other traits such as lifespan and reproduction, suggesting that the incompatibilities are likely to be deleterious. Taken together, these results indicate that numerous BDM incompatibilities that could contribute to reproductive isolation can be detected and mapped within C. elegans.
Collapse
Affiliation(s)
- L Basten Snoek
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Helen E Orbidans
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Aafke Aartse
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| |
Collapse
|
46
|
Bell IR. Nonlinear effects of nanoparticles: biological variability from hormetic doses, small particle sizes, and dynamic adaptive interactions. Dose Response 2014; 12:202-32. [PMID: 24910581 PMCID: PMC4036395 DOI: 10.2203/dose-response.13-025.bell] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the "same" material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.
Collapse
|
47
|
Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 (BETHESDA, MD.) 2014; 4:1103-12. [PMID: 24727288 PMCID: PMC4065253 DOI: 10.1534/g3.114.010553] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 11/22/2022]
Abstract
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289 Department of Biology, William Jewell College, Liberty, Missouri 64068
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| |
Collapse
|
48
|
Snoek LB, Joeri van der Velde K, Li Y, Jansen RC, Swertz MA, Kammenga JE. Worm variation made accessible: Take your shopping cart to store, link, and investigate! WORM 2014; 3:e28357. [PMID: 24843834 PMCID: PMC4024057 DOI: 10.4161/worm.28357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
Abstract
In Caenorhabditis elegans, the recent advances in high-throughput quantitative analyses of natural genetic and phenotypic variation have led to a wealth of data on genotype phenotype relations. This data has resulted in the discovery of genes with major allelic effects and insights in the effect of natural genetic variation on a whole range of complex traits as well as how this variation is distributed across the genome. Regardless of the advances presented in specific studies, the majority of the data generated in these studies had yet to be made easily accessible, allowing for meta-analysis. Not only data in figures or tables but meta-data should be accessible for further investigation and comparison between studies. A platform was created where all the data, phenotypic measurements, genotypes, and mappings can be stored, compared, and new linkages within and between published studies can be discovered. WormQTL focuses on quantitative genetics in Caenorhabditis and other nematode species, whereas WormQTLHD quantitatively links gene expression quantitative trait loci (eQTL) in C. elegans to gene–disease associations in humans.
Collapse
Affiliation(s)
- L Basten Snoek
- Laboratory of Nematology; Wageningen University; The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; The Netherlands ; Groningen Bioinformatics Center; University of Groningen; The Netherlands ; Department of Genetics; University of Groningen; University Medical Center Groningen; The Netherlands
| | - Yang Li
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; The Netherlands ; Groningen Bioinformatics Center; University of Groningen; The Netherlands
| | - Ritsert C Jansen
- Groningen Bioinformatics Center; University of Groningen; The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; The Netherlands ; Groningen Bioinformatics Center; University of Groningen; The Netherlands ; Department of Genetics; University of Groningen; University Medical Center Groningen; The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology; Wageningen University; The Netherlands
| |
Collapse
|
49
|
van der Velde KJ, de Haan M, Zych K, Arends D, Snoek LB, Kammenga JE, Jansen RC, Swertz MA, Li Y. WormQTLHD--a web database for linking human disease to natural variation data in C. elegans. Nucleic Acids Res 2013; 42:D794-801. [PMID: 24217915 PMCID: PMC3965109 DOI: 10.1093/nar/gkt1044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism—Caenorhabditis elegans—has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTLHD (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene–disease associations in man. WormQTLHD, available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene–disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench.
Collapse
Affiliation(s)
- K Joeri van der Velde
- Genomics Coordination Center, University of Groningen, University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands, Groningen Bioinformatics Center, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands, Department of Genetics, University of Groningen, University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands, Department of Bioinformatics, Hanze University of Applied Sciences, Groningen, Zernikeplein 11, 9747 AS, The Netherlands and Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Green JWM, Snoek LB, Kammenga JE, Harvey SC. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans. Heredity (Edinb) 2013; 111:306-13. [PMID: 23715016 PMCID: PMC3807260 DOI: 10.1038/hdy.2013.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 11/09/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.
Collapse
Affiliation(s)
- J W M Green
- Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| | - L B Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - J E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - S C Harvey
- Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| |
Collapse
|