1
|
Afanvi HM, Esperance Broalet MY, Niemtiah O, James Y, Doukoure B, Tako NA, Metowogo K, Eklu-Gadegbeku K, Aklikokou K. Age-Related Cognitive and Volumetric Changes in the Brain of African Grasscutter ( Thryonomys swinderianus (Temminck, 1827)). Vet Med Int 2024; 2024:3349981. [PMID: 39712529 PMCID: PMC11661872 DOI: 10.1155/vmi/3349981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
The African grasscutter (AGC) (Thryonomys swinderianus) is the second largest rodent in sub-Saharan Africa. It is bred for its organoleptic and culinary properties but also serves as a research model. The aim of this study was to investigate the relationship between age-related changes in brain weight, brain volume, and spatial and nonspatial memory performance in the AGC. A total of forty-two (42) captive-derived AGCs were divided into seven age groups: 6 neonates (6 days), 6 juveniles (1 month), 6 pubertals (3 months), 6 subadults (8 months), 6 young adults (2 years), 6 middle adults (4 years), and 6 old adults (5 years). The subjects were given a series of tests to assess their spatial memory (location test) and their nonspatial memory (object recognition test). Brain samples were then collected using basic neuroanatomical techniques. The weight and volume of the brain samples were determined and their encephalization quotient (EQ) was also calculated. The results showed that spatial and nonspatial memory in AGC develops into adulthood and then declines with age. Mean brain weight increased from neonates to mid-adulthood (5.20 ± 0.31 g-11.76 ± 0.23 g) and decreased in older AGC (11.75 ± 0.22 g). In contrast, the mean weight of the olfactory bulb (OB) increased from neonates to young adults (0.28 ± 0.02 g-0.80 ± 0.03 g) and the cerebellum increased from neonates to older (0.59 ± 0 0.01 g-1.86 ± 0.06 g). Finally, the EQ decreased with age (0.73 ± 0.05-0.29 ± 0.01). Mean brain volume increased with age from neonates to young adult (5 mL-11.25 mL). Conversely, the mean volume of the OB and cerebellum increases from neonates to older age (0.33 ± 0.03 mL-0.95 ± 0.04 mL). This study shows that spatial and nonspatial memory declines during the aging process in AGC. Neonates and juveniles have higher cognitive abilities than adults and older AGC. The weight of the brain, OB, and cerebellum increases from neonates to adult and decreases slightly from middle to old adults. However, the volume of the OB and cerebellum increases with age.
Collapse
Affiliation(s)
- Hounakey M. Afanvi
- Laboratory of Biology and Health, Neuroscience Unit, Felix Houphouët-Boigny University of Abidjan, BP V34, Abidjan 01, Ivory Coast
| | - Maman You Esperance Broalet
- Anatomy Laboratory, Medical Science Training and Research Unit, Alassane Ouattara University of Bouake, BP V 18 01, Bouake, Ivory Coast
| | - Ouattara Niemtiah
- Laboratory of Biology and Health, Neuroscience Unit, Felix Houphouët-Boigny University of Abidjan, BP V34, Abidjan 01, Ivory Coast
| | - Yaovi James
- Anatomy Laboratory, Faculty of Health Sciences, University of Lome, 01BP: 1515, Lome, Togo
| | - Brahima Doukoure
- Pathological Anatomy and Cytology Laboratory, Training and Research Unit-Medical Sciences, Felix Houphouët-Boigny University of Abidjan, BP V34, Abidjan 01, Ivory Coast
| | - Neme Antoine Tako
- Laboratory of Biology and Health, Neuroscience Unit, Felix Houphouët-Boigny University of Abidjan, BP V34, Abidjan 01, Ivory Coast
| | - Kossi Metowogo
- Physiology-Pharmacology Laboratory, Physiopathology Bioactive Substances and Safety Research Unit, University of Lome, 01BP: 1515, Lome, Togo
| | - Kwashi Eklu-Gadegbeku
- Physiology-Pharmacology Laboratory, Physiopathology Bioactive Substances and Safety Research Unit, University of Lome, 01BP: 1515, Lome, Togo
| | - Kodjo Aklikokou
- Physiology-Pharmacology Laboratory, Physiopathology Bioactive Substances and Safety Research Unit, University of Lome, 01BP: 1515, Lome, Togo
| |
Collapse
|
2
|
Yang L, Lin W, Yan X, Zhang Z. Comparative effects of lifelong moderate-intensity continuous training and high-intensity interval training on blood lipid levels and mental well-being in naturally ageing mice. Exp Gerontol 2024; 194:112519. [PMID: 38992822 DOI: 10.1016/j.exger.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE This study aimed to investigate the impact of lifelong exercise, including both moderate-intensity continuous training and high-intensity interval training, on blood lipid levels and mental behaviour in naturally ageing mice to identify effective exercise strategies for ageing-related health issues. METHODS Six-week-old male BALB/c mice were randomly assigned to one of four groups: young control (YC), natural ageing control (OC), lifelong moderate-intensity continuous exercise (EM), and lifelong high-intensity interval exercise (EH) groups. The EM group was trained at a speed corresponding to 70 % of the maximum running speed, while the EH group was trained at a running speed alternating between 50 % of the maximum running speed, 70 % of the maximum running speed, and 90 % of the maximum running speed. All exercise sessions were conducted three times per week, with each session lasting 50 min. Behavioural tests and blood sample collection were conducted at 72 weeks of age. RESULTS Ageing in mice led to changes in muscle and fat mass. Both the EM and EH groups showed greater muscle mass and lower fat mass than did the OC group. Ageing was associated with elevated anxiety (fewer open arm entries, time spent in the central region) and depression (lower sucrose preference) indicators. However, these changes were reversed in both exercise groups, with no differences between the two exercise groups. Blood lipid levels, including total cholesterol (TC), total triglycerides (TGs), low-density lipoprotein (LDL), and free fatty acid (FFA) levels, were greater in the OC group than in the YC group. Additionally, the OC group exhibited lower high-density lipoprotein (HDL) levels. However, both the EM and EH groups exhibited improved lipid profiles compared to those of the YC group. CONCLUSION Lifelong exercise, whether moderate-intensity continuous or high-intensity interval training, can preserve body health during ageing, prevent anxiety and depression, and maintain stable blood lipid levels. Both exercise types are equally effective, suggesting that exercise intensity may not be the critical factor underlying these beneficial adaptations.
Collapse
Affiliation(s)
- Ling Yang
- School of Physical Education, Shaoguan University, Shaoguan 512000, Guangdong, China; Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
| | - Wentao Lin
- School of Physical Education and Health, Zhuhai College of Science and Technology, Zhuhai 519090, Guangdong, China
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
| | - Zhishang Zhang
- Department of Physical Education, Guangdong Medical University, Dongguan 523808, Guangdong, China.
| |
Collapse
|
3
|
Yan R, Song Y, Liu D, Yu W, Sun Y, Tang C, Yang X, Ding W, Yu N, Zhang Z, Ling M, Li X, Zhao C, Xing Y. Multi-omics reveals the role of MCM2 and hnRNP K phosphorylation in mouse renal aging through genomic instability. Exp Cell Res 2024; 440:114115. [PMID: 38844260 DOI: 10.1016/j.yexcr.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related β-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.
Collapse
Affiliation(s)
- Rong Yan
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yiping Song
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Di Liu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenzhuo Yu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Sun
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Congmin Tang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuechun Yang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjing Ding
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan, China
| | - Zhen Zhang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Mingying Ling
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuehui Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqiu Xing
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Woolbright BL, Xuan H, Ahmed I, Rajendran G, Abbott E, Dennis K, Zhong C, Umar S, Taylor JA. Aging induces changes in cancer formation and microbial content in a murine model of bladder cancer. GeroScience 2024; 46:3361-3375. [PMID: 38270807 PMCID: PMC11009212 DOI: 10.1007/s11357-024-01064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Bladder cancer (BCa) incidence is tightly linked to aging. Older patients with BCa present with higher grade tumors and have worse outcomes on Bacillus-Calmette-Guerin (BCG) immunotherapy. Aging is also known to result in changes in the gut microbiome over mammalian lifespan, with recent studies linking alterations in the gut microbiome to changes in tumor immunity. There is limited information on the microbiome in BCa models though, despite known links to aging and immunotherapy. The purpose of this study was to evaluate how aging impacts tumor formation, inflammation, and the microbiome of mice given the model BCa carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). We hypothesized old animals would have larger, more inflamed tumors and a shift in their fecal microbiome compared to their younger counterparts. Young (~8-week-old) or old (~78-week-old) C57Bl/6J animals were administered 0.05% BBN in drinking water for 16 weeks and then euthanized or allowed to progress for an additional 4 weeks. After 16 weeks of BBN, old mice had higher bladder to body weight ratio than young mice, and also muscle invasive tumors, which were not seen in their young counterparts. Old animals also had increased innate immune recruitment, but CD4+/CD8+ T cell recruitment did not appear different. BBN dramatically altered the microbiome in both sets of animals as measured by ß-diversity, including changes in multiple genera of bacteria. These data suggest old mice have a differential response to BBN-induced BCa. Given the median age of patients with BCa, understanding how the aged phenotype interacts with BCa is imperative.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Urology, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
- Department of Cancer Biology, Kansas University Medical Center, Kansas City, KS, USA
| | - Hao Xuan
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
| | - Ishfaq Ahmed
- Department of Surgery, Kansas University Medical Center, Kansas City, KS, USA
| | - Ganeshkumar Rajendran
- Department of Urology, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Erika Abbott
- Department of Urology, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Katie Dennis
- Department of Pathology, Kansas University Medical Center, Kansas City, KS, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
| | - Shahid Umar
- Department of Surgery, Kansas University Medical Center, Kansas City, KS, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
7
|
Jin J, Yang X, Gong H, Li X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int J Mol Sci 2023; 24:12790. [PMID: 37628974 PMCID: PMC10454612 DOI: 10.3390/ijms241612790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Compared to young people and adults, there are differences in the ability of elderly people to resist diseases or injuries, with some noticeable features being gender-dependent. However, gender differences in age-related viscera alterations are not clear. To evaluate a potential possibility of gender differences during the natural aging process, we used three age groups to investigate the impact on spleens, kidneys, and adrenal glands. The immunofluorescence results showed that male-specific p21 proteins were concentrated in the renal tubule epithelial cells of the kidney. Histological staining revealed an increase in the frequencies of fat vacuoles located in the renal tubule epithelial cells of the cortex, under the renal capsule in the kidneys of male mice with age. In female mice, we found that the width of the globular zone in the adrenal gland cortex was unchanged with age. On the contrary, the male displayed a reduction in width. Compared to females, the content of epinephrine in adrenal gland tissue according to ELISA analysis was higher in adults, and a greater decline was observed in aged males particularly. These data confirmed the age-dependent differences between female and male mice; therefore, gender should be considered one of the major factors for personalized treatment in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Carrageta DF, Guerra-Carvalho B, Spadella MA, Yeste M, Oliveira PF, Alves MG. Animal models of male reproductive ageing to study testosterone production and spermatogenesis. Rev Endocr Metab Disord 2022; 23:1341-1360. [PMID: 35604584 DOI: 10.1007/s11154-022-09726-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/11/2023]
Abstract
Ageing is the time-dependent gradual decline of the functional characteristics in an organism. It has been shown that it results in the loss of reproductive health and fertility. The age-dependent decline of fertility is a potential issue as the parenthood age is increasing in Western countries, mostly due to socioeconomic factors. In comparison to women, for whom the consequences of ageing are well documented and general awareness of the population is extensively raised, the effects of ageing for male fertility and the consequences of advanced paternal age for the offspring have not been widely studied. Studies with humans are welcome but it is hard to implement relevant experimental approaches to unveil the molecular mechanisms by which ageing affects male reproductive potential. Animal models have thus been extensively used. These models are advantageous due to their reduced costs, general easy maintenance in laboratory facilities, rigorous manipulation tools, short lifespan, known genetic backgrounds, and reduced ethical constraints. Herein, we discuss animal models for the study of male reproductive ageing. The most well-known and studied reproductive ageing models are rodents and non-human primates. The data collected from these models, particularly studies on testicular ageing, steroidogenesis, and genetic and epigenetic changes in spermatogenesis are detailed. Notably, some species challenge the currently accepted ageing theories and the concept of senescence itself, which renders them interesting animal models for the study of male reproductive ageing.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Bárbara Guerra-Carvalho
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | | | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
| |
Collapse
|
9
|
Perinatal Obesity Induces Hepatic Growth Restriction with Increased DNA Damage Response, Senescence, and Dysregulated Igf-1-Akt-Foxo1 Signaling in Male Offspring of Obese Mice. Int J Mol Sci 2022; 23:ijms23105609. [PMID: 35628414 PMCID: PMC9144113 DOI: 10.3390/ijms23105609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.
Collapse
|
10
|
Noorani B, Chowdhury EA, Alqahtani F, Sajib MS, Ahn Y, Nozohouri E, Patel D, Mikelis C, Mehvar R, Bickel U. A Semi-Physiological Three-Compartment Model Describes Brain Uptake Clearance and Efflux of Sucrose and Mannitol after IV Injection in Awake Mice. Pharm Res 2022; 39:251-261. [PMID: 35146590 PMCID: PMC9645436 DOI: 10.1007/s11095-022-03175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate a three-compartmental semi-physiological model for analysis of uptake clearance and efflux from brain tissue of the hydrophilic markers sucrose and mannitol, compared to non-compartmental techniques presuming unidirectional uptake. METHODS Stable isotope-labeled [13C]sucrose and [13C]mannitol (10 mg/kg each) were injected as IV bolus into the tail vein of awake young adult mice. Blood and brain samples were taken after different time intervals up to 8 h. Plasma and brain concentrations were quantified by UPLC-MS/MS. Brain uptake clearance (Kin) was analyzed using either the single-time point analysis, the multiple time point graphical method, or by fitting the parameters of a three-compartmental model that allows for symmetrical exchange across the blood-brain barrier and an additional brain efflux clearance. RESULTS The three-compartment model was able to describe the experimental data well, yielding estimates for Kin of sucrose and mannitol of 0.068 ± 0.005 and 0.146 ± 0.020 μl.min-1.g-1, respectively, which were significantly different (p < 0.01). The separate brain efflux clearance had values of 0.693 ± 0.106 (sucrose) and 0.881 ± 0.20 (mannitol) μl.min-1.g-1, which were not statistically different. Kin values obtained by single time point and multiple time point analyses were dependent on the terminal sampling time and showed declining values for later time points. CONCLUSIONS Using the three-compartment model allows determination of Kin for small molecule hydrophilic markers with low blood-brain barrier permeability. It also provides, for the first time, an estimate of brain efflux after systemic administration of a marker, which likely represents bulk flow clearance from brain tissue.
Collapse
Affiliation(s)
- Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214, USA
| | - Faleh Alqahtani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Dhavalkumar Patel
- LC-MS Core Facility, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Constantinos Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | - Reza Mehvar
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California, 92618, USA.
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA.
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA.
| |
Collapse
|
11
|
Chen PH, Chang CH, Lin WS, Nagabhushanam K, Ho CT, Pan MH. S-allylcysteine Ameliorates Aging Features Via Regulating Mitochondrial Dynamics in Naturally Aged C57BL/6J Mice. Mol Nutr Food Res 2022; 66:e2101077. [PMID: 35092643 DOI: 10.1002/mnfr.202101077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Indexed: 11/10/2022]
Abstract
SCOPE S-allylcysteine (SAC) is the most abundant organosulfur molecule derived from aged garlic. We evaluated the effects of S-allylcysteine (SAC) on improving aging in naturally aged C57BL/6J male mice and mitochondrial dynamics in C. elegans and its underlying mechanisms. METHODS AND RESULTS When mice had attained reproductive senescence at 60 weeks of age, SAC was supplemented to 0.05% and 0.2% into their normal diet for 12 weeks The results showed that SAC could significantly improve the level of hepatic OPA1 mRNA, which is a key factor for mitochondrial fusion, and consequently elevated the mitochondrial biogenesis-related proteins SIRT1 and PGC-1α, thus ameliorating oxidative stress, such as MDA in the liver and 8-OHdG in urine. Among the biochemical markers of aging, SAC significantly reduced liver GLB1 and SA-βgal, which were induced by replicative senescence. The mitochondria with GFP-tagged transgenic strain SJ4103 C. elegans was incubated with 5 or 50 μM SAC, and SAC treated groups maintained the linear morphology of mitochondria. CONCLUSION SAC regulated mitochondrial dynamics and ameliorated aging to a significant degree. This study also confirmed that mitochondrial dynamics are a promising target for screening materials to combat aging and as a direction for anti-aging product development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pin-Hua Chen
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Han Chang
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Sheng Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
12
|
Ameliorating Effect on Aβ-Induced Alzheimer's Mice by Litsea cubeba Persoon Powder. Molecules 2021; 26:molecules26185709. [PMID: 34577179 PMCID: PMC8469224 DOI: 10.3390/molecules26185709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is caused by excessive oxidative damage and aging. The objective of this study was to investigate the anti-dementia effect of LCP fruit powder on amyloid β (Aβ)-induced Alzheimer’s mice. The composition of LCP essential oil was determined by gas chromatography/mass spectrometry. In addition, the water maze was used to evaluate the learning and memorizing abilities of the mice. The concentrations of malondialdehyde (MDA), protein carbonyl, phosphorylated τ-protein, and the deposition of Aβ plaques in mouse brains were also assessed. The results showed that the main components of essential oils in LCP and d-limonene, neral, and geranial contents were 14.15%, 30.94%, and 31.74%, respectively. Furthermore, oral administration with different dosages of LCP significantly decreased the escape time (21.25~33.62 s) and distance (3.23~5.07 m) in the reference memory test, and increased the duration time (26.14~28.90 s) and crossing frequency (7.00~7.88 times) in the target zone of probe test (p < 0.05). LCP also inhibited the contents of MDA and the phosphor-τ-protein from oxidative stress, reduced the brain atrophy by about 3~8%, and decreased the percentage of Aβ plaques from 0.44 to 0.05%. Finally, it was observed that the minimum dosage of LCP fruit powder (LLCP, 30.2 mg/day) could prevent oxidative stress induced by Aβ and subsequently facilitate memory and learning deficits in Aβ-induced neurotoxicity and cognitively impaired mice.
Collapse
|
13
|
Chen L, Liao F, Wu J, Wang Z, Jiang Z, Zhang C, Luo P, Ma L, Gong Q, Wang Y, Wang Q, Luo M, Yang Z, Han S, Shi C. Acceleration of ageing via disturbing mTOR-regulated proteostasis by a new ageing-associated gene PC4. Aging Cell 2021; 20:e13370. [PMID: 33957702 PMCID: PMC8208792 DOI: 10.1111/acel.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
Research on ageing‐associated genes is important for investigating ageing and anti‐ageing strategies. Here, we firstly reported that the human positive cofactor 4 (PC4), a multifunctional and highly conserved nucleoprotein, is accumulated and activated during ageing and causes global accelerated ageing process by disrupting proteostasis. Mechanistically, PC4 interacts with Sin3‐HDAC complex and inhibits its deacetylated activity, leads to hyper‐acetylation of the histones at the promoters of mTOR‐related genes and causes mTOR signalling activation. Accordingly, mTOR activation causes excessive protein synthesis, resulting in impaired proteostasis and accelerated senescence. These results reveal a new biological function of PC4 in vivo, recognizes PC4 as a new ageing‐associated gene and provides a genetically engineered mouse model to simulate natural ageing. More importantly, our findings also indicate that PC4 is involved in histone acetylation and serves as a potential target to improve proteostasis and delay ageing.
Collapse
Affiliation(s)
- Long Chen
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Fengying Liao
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Jie Wu
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Ziwen Wang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
- Department of Cardiology Geriatric Cardiovascular Disease Research and Treatment Center 252 Hospital of PLA (82nd Group Army Hospital of PLA) Baoding China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Chi Zhang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Peng Luo
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Le Ma
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Qiang Gong
- Department of Hematology Southwest Hospital Third Military Medical University Chongqing China
| | - Yang Wang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Qing Wang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Min Luo
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Zeyu Yang
- Breast and Thyroid Surgical Department Chongqing General Hospital University of Chinese Academy of Sciences Chongqing China
| | - Shiqian Han
- Institute of Tropical Medicine Third Military Medical University Chongqing China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| |
Collapse
|
14
|
Wu Y, Jiao Z, Wan Z, Qu S. Role of autophagy and oxidative stress to astrocytes in fenpropathrin-induced Parkinson-like damage. Neurochem Int 2021; 145:105000. [PMID: 33617931 DOI: 10.1016/j.neuint.2021.105000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Fenpropathrin is an insecticide that is widely used in agriculture. It remains unknown whether fenpropathrin exposure increases the risk of Parkinson's disease. We found that fenpropathrin increased oxidative stress both in vitro and in vivo. Additionally, fenpropathrin increased production of ROS, NOS2, and HO-1, and decreased SOD and GSH in astrocytes. We further found that fenpropathrin-mediated oxidative stress might inhibit autophagic flow, including decreased expression of LC3A/B and enhanced expression of SQSTM1 via down-regulation of CDK-5, an upstream marker of autophagy. In mice, autophagy was slightly different from that found in astrocytes, as reflected in the increased expressions of LC3A/B and SQSTM1. Our findings elucidate the toxicological phenomena and pathogenic mechanisms of fenpropathrin and may provide guidance for improved pesticide control and environmental protection.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhigang Jiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
15
|
Menees KB, Earls RH, Chung J, Jernigan J, Filipov NM, Carpenter JM, Lee JK. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. IMMUNITY & AGEING 2021; 18:3. [PMID: 33419446 PMCID: PMC7791703 DOI: 10.1186/s12979-021-00214-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Background Physiological homeostasis decline, immunosenescence, and increased risk for multiple diseases, including neurodegeneration, are all hallmarks of ageing. Importantly, it is known that the ageing process is sex-biased. For example, there are sex differences in predisposition for multiple age-related diseases, including neurodegenerative and autoimmune diseases. However, sex differences in age-associated immune phenotypes are not clearly understood. Results Here, we examined the effects of age on immune cell phenotypes in both sexes of C57BL/6J mice with a particular focus on NK cells. We found female-specific spleen weight increases with age and concordant reduction in the number of splenocytes per gram of spleen weight compared to young females. To evaluate sex- and age-associated changes in splenic immune cell composition, we performed flow cytometry analysis. In male mice, we observed an age-associated reduction in the frequencies of monocytes and NK cells; female mice displayed a reduction in B cells, NK cells, and CD8 + T cells and increased frequency of monocytes and neutrophils with age. We then performed a whole blood stimulation assay and multiplex analyses of plasma cytokines and observed age- and sex-specific differences in immune cell reactivity and basal circulating cytokine concentrations. As we have previously illustrated a potential role of NK cells in Parkinson’s disease, an age-related neurodegenerative disease, we further analyzed age-associated changes in NK cell phenotypes and function. There were distinct differences between the sexes in age-associated changes in the expression of NK cell receptors, IFN-γ production, and impairment of α-synuclein endocytosis. Conclusions This study demonstrates sex- and age-specific alterations in splenic lymphocyte composition, circulating cytokine/chemokine profiles, and NK cell phenotype and effector functions. Our data provide evidence that age-related physiological perturbations differ between the sexes which may help elucidate sex differences in age-related diseases, including neurodegenerative diseases, particularly Parkinson’s disease, where immune dysfunction is implicated in their etiology.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Rachael H Earls
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jaegwon Chung
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Janna Jernigan
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Wu Q, He S, Zhu Y, Pu S, Zhou Z. Antiobesity Effects of Adipose-Derived Stromal/Stem Cells in a Naturally Aged Mouse Model. Obesity (Silver Spring) 2021; 29:133-142. [PMID: 33185001 DOI: 10.1002/oby.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Adipose-derived stromal/stem cells (ASCs) have multilineage differentiation potential and functional properties, as well as applications for cell-based therapies in tissue repair and regeneration. However, there is a lack of evidence regarding the efficacy of ASCs as an antiobesity agent in aged organisms. This study aimed to clarify the effectiveness of ASCs at treating obesity using a naturally aged mouse model. METHODS Old (22 months) C57BL/6J mice with transplanted young-mice (2 months) donor ASCs were measured for weight change, biochemistry, cytokines, hormone secretion, cell senescence, lipid metabolism, and functional changes of ASCs. RESULTS The results indicated that old mice treated with ASCs showed antiaging and antiobesity effects such as significant loss of body and organ weight, improved stem cell plasticity, increased antioxidant capacity (superoxide dismutase and catalase), improved liver and kidney function, improved lipid metabolism, and increased hormone secretion (sex hormone-binding globulin, thyrotropin, and leptin). Treatment with ASCs decreased cell senescence and suppressed secretion of inflammatory agents (interleukin-6 and tumor necrosis factor alpha). CONCLUSIONS Traditional drugs used in the treatment of obesity have limitations and are unsuitable for the elderly. Based on the results, the future use of ASCs as primary antiaging and antiobesity agents is suggested because of their positive effects on aged animals.
Collapse
Affiliation(s)
- Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shuangli He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Yu Zhu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
17
|
Distinct physical condition and social behavior phenotypes of CD157 and CD38 knockout mice during aging. PLoS One 2020; 15:e0244022. [PMID: 33326496 PMCID: PMC7743928 DOI: 10.1371/journal.pone.0244022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The ability of CD38 and CD157 to utilize nicotinamide adenine dinucleotide (NAD) has received much attention because the aging-induced elevation of CD38 expression plays a role in the senescence-related decline in NAD levels. Therefore, it is of interest to examine and compare the effects of age-associated changes on the general health and brain function impairment of Cd157 and Cd38 knockout (CD157 KO and CD38 KO) mice. The body weight and behaviors were measured in 8-week-old (young adult) or 12-month-old (middle-aged) male mice of both KO strains. The locomotor activity, anxiety-like behavior, and social behavior of the mice were measured in the open field and three-chamber tests. The middle-aged CD157 KO male mice gained more body weight than young adult KO mice, while little or no body weight gain was observed in the middle-aged CD38 KO mice. Middle-aged CD157 KO mice displayed increased anxiety-like behavior and decreased sociability and interaction compared with young adult KO mice. Middle-aged CD38 KO mice showed less anxiety and hyperactivity than CD157 KO mice, similar to young adult CD38 KO mice. The results reveal marked age-dependent changes in male CD157 KO mice but not in male CD38 KO mice. We discuss the distinct differences in aging effects from the perspective of inhibition of NAD metabolism in CD157 and CD38 KO mice, which may contribute to differential behavioral changes during aging.
Collapse
|
18
|
Chlorella vulgaris Ameliorates Oxidative Stress and Improves the Muscle Regenerative Capacity of Young and Old Sprague-Dawley Rats. Nutrients 2020; 12:nu12123752. [PMID: 33297295 PMCID: PMC7762232 DOI: 10.3390/nu12123752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy in ageing is a multifactorial degenerative process impacted by cellular ageing biology, which includes oxidative stress. Chlorella vulgaris is a coccoid green eukaryotic microalga rich in antioxidants. The aim of this study was to determine the effect of C. vulgaris in ameliorating oxidative stress, thus elucidating its mechanism in improving muscle mass, strength and function in young and old rats. Fifty-six male Sprague-Dawley (SD) rats aged 3 months (young) and 21 months (old) were divided into three groups: Group 1 (control) was given distilled water; Group 2 was treated with 150 mg/kg body weight (BW) of C. vulgaris; and Group 3 was treated with 300 mg/kg BW of C. vulgaris for three months. Grip and muscle strength and muscle integrity were determined on days 0, 30, 60, and 90 of treatment. Urine and blood were collected on days 0 and 90 of treatment for oxidative stress marker determination, while the gastrocnemius muscles were collected for muscle oxidative stress analysis. Increased grip strength of the front and hind paws was observed in young C. vulgaris-treated rats on days 30, 60, and 90 compared to the untreated control on the same days (p < 0.05). There was a significant increase in lean bone mineral content (BMC) in young rats treated with 300 mg/kg BW C. vulgaris compared to untreated rats on days 30 and 60. The fat mass was significantly decreased in young and old C. vulgaris-treated rats on day 90 compared to the untreated control. The total path was significantly increased for old rats treated with 300 mg/kg BW C. vulgaris on days 60 and 90 compared to day 0. Young and old C. vulgaris-treated rats demonstrated a significant decrease in urinary isoprostane F2t and plasma creatine kinase-MM (CKMM) compared to the control on day 90. A significant decrease in malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) levels were observed in young and old rats treated with C. vulgaris. C. vulgaris improved the muscle mass, strength, and function in young and old rats. This effect could be due to its potency in ameliorating oxidative stress in the skeletal muscle of young and old rats.
Collapse
|
19
|
Shi X, Lim Y, Myers AK, Stallings BL, Mccoy A, Zeiger J, Scheck J, Cho G, Marsh ED, Mirzaa GM, Tao T, Golden JA. PIK3R2/Pik3r2 Activating Mutations Result in Brain Overgrowth and EEG Changes. Ann Neurol 2020; 88:1077-1094. [PMID: 32856318 PMCID: PMC8176885 DOI: 10.1002/ana.25890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) complex have been associated with a broad spectrum of brain and organ overgrowth syndromes. For example, mutations in phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2) have been identified in human patients with megalencephaly polymicrogyria polydactyly hydrocephalus (MPPH) syndrome, which includes brain overgrowth. To better understand the pathogenesis of PIK3R2-related mutations, we have developed and characterized a murine model. METHODS We generated a knock-in mouse model for the most common human PIK3R2 mutation, p.G373R (p.G367R in mice) using CRISPR/Cas9. The mouse phenotypes, including brain size, seizure activity, cortical lamination, cell proliferation/size/density, interneuron migration, and PI3K pathway activation, were analyzed using standard methodologies. For human patients with PIK3R2 mutations, clinical data (occipitofrontal circumference [OFC] and epilepsy) were retrospectively obtained from our clinical records (published / unpublished). RESULTS The PI3K-AKT pathway was hyperactivated in these mice, confirming the p.G367R mutation is an activating mutation in vivo. Similar to human patients with PIK3R2 mutations, these mice have enlarged brains. We found cell size to be increased but not cell numbers. The embryonic brain showed mild defects in cortical lamination, although not observed in the mature brain. Furthermore, electroencephalogram (EEG) recordings from mutant mice showed background slowing and rare seizures, again similar to our observations in human patients. INTERPRETATION We have generated a PIK3R2 mouse model that exhibits megalencephaly and EEG changes, both of which overlap with human patients. Our data provide novel insight into the pathogenesis of the human disease caused by PIK3R2 p.G373R mutation. We anticipate this model will be valuable in testing therapeutic options for human patients with MPPH. ANN NEUROL 2020;88:1077-1094.
Collapse
Affiliation(s)
- Xiuyu Shi
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Youngshin Lim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail K. Myers
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brenna L. Stallings
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Almedia Mccoy
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jordan Zeiger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Joshua Scheck
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric D. Marsh
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jeffrey A. Golden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Lossow K, Kopp JF, Schwarz M, Finke H, Winkelbeiner N, Renko K, Meçi X, Ott C, Alker W, Hackler J, Grune T, Schomburg L, Haase H, Schwerdtle T, Kipp AP. Aging affects sex- and organ-specific trace element profiles in mice. Aging (Albany NY) 2020; 12:13762-13790. [PMID: 32620712 PMCID: PMC7377894 DOI: 10.18632/aging.103572] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
A decline of immune responses and dynamic modulation of the redox status are observed during aging and are influenced by trace elements such as copper, iodine, iron, manganese, selenium, and zinc. So far, analytical studies have focused mainly on single trace elements. Therefore, we aimed to characterize age-specific profiles of several trace elements simultaneously in serum and organs of adult and old mice. This allows for correlating multiple trace element levels and to identify potential patterns of age-dependent alterations. In serum, copper and iodine concentrations were increased and zinc concentration was decreased in old as compared to adult mice. In parallel, decreased copper and elevated iron concentrations were observed in liver. The age-related reduction of hepatic copper levels was associated with reduced expression of copper transporters, whereas the increased hepatic iron concentrations correlated positively with proinflammatory mediators and Nrf2-induced ferritin H levels. Interestingly, the age-dependent inverse regulation of copper and iron was unique for the liver and not observed in any other organ. The physiological importance of alterations in the iron/copper ratio for liver function and the aging process needs to be addressed in further studies.
Collapse
Affiliation(s)
- Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,German Institute of Human Nutrition, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany.,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Xheni Meçi
- Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Nuthetal, Germany.,DZHK German Centre for Cardiovascular Research, Berlin, Germany
| | - Wiebke Alker
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Tilman Grune
- German Institute of Human Nutrition, Nuthetal, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| |
Collapse
|
21
|
Zymantiene J, Juozaitiene V, Zelvyte R, Oberauskas V, Spancerniene U, Sederevicius A, Aniuliene A. Effect of Electromagnetic Field Exposure on Mouse Brain Morphological and Histopathological Profiling. J Vet Res 2020; 64:319-324. [PMID: 32587921 PMCID: PMC7305646 DOI: 10.2478/jvetres-2020-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/17/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Mobile phones (MP) and other electronic and communication devices that are used daily expose users to electromagnetic fields (EMF) and contribute to an increasing incidence of neurological disorders. Brain tissue is the closest organ to the MP as it operates, thus the influence of MP radiation on brain tissue is of particular concern, although research is still inconclusive. The present study investigated the possible effect of an EMF (1,350-1,375 megahertz (MHz)) from an MP on morphological and histopathological profiles in the mouse brain. MATERIAL AND METHODS Healthy BALB/c mice were assigned to three equal groups (a control and two experimental groups, n = 10 each). Experimental mice were exposed to EMFs continuously for 72 h, those of experimental group I to a 1,350 MHz field at a specific absorption rate (SAR) of 4.0 W/kg, and group II to a 1,375 MHz field EMF at an SAR of 4.0 W/kg. Brain segmentation and histopathological analysis were applied to detect changes in the morphometric parameters of the brain lobes and identify pathological lesions, respectively. RESULTS Histopathology results revealed shrinkage of pyramidal neurons, presence of mild perivascular and perineural oedema, and some vacuolation of neurons and glial cells derived from mouse great hemispheres. The lesions also included reduction of Purkinje cells, vacuolisation of neurons and glial cells, and interstitial oedema in the cerebellum. CONCLUSION MP distance of 3 cm from the cage may induce appreciable morphological changes in mouse brain structures; therefore, more comprehensive research is essential for assessment of safe distance. These pronounced effects may interfere with the results of laboratory tests on murine experimental models in veterinary or biomedical research.
Collapse
Affiliation(s)
- Judita Zymantiene
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| | - Vida Juozaitiene
- Department of Animal Breeding, Faculty of Animal Science, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| | - Rasa Zelvyte
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| | - Vaidas Oberauskas
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| | - Ugne Spancerniene
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| | - Antanas Sederevicius
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| | - Albina Aniuliene
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithaunia
| |
Collapse
|
22
|
Zhang B, Podolskiy DI, Mariotti M, Seravalli J, Gladyshev VN. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 2020; 19:e13119. [PMID: 32323920 PMCID: PMC7253066 DOI: 10.1111/acel.13119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/28/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Aging involves coordinated yet distinct changes in organs and systems throughout life, including changes in essential trace elements. However, how aging affects tissue element composition (ionome) and how these changes lead to dysfunction and disease remain unclear. Here, we quantified changes in the ionome across eight organs and 16 age groups of mice. This global profiling revealed novel interactions between elements at the level of tissue, age, and diet, and allowed us to achieve a broader, organismal view of the aging process. We found that while the entire ionome steadily transitions along the young-to-old trajectory, individual organs are characterized by distinct element changes. The ionome of mice on calorie restriction (CR) moved along a similar but shifted trajectory, pointing that at the organismal level this dietary regimen changes metabolism in order to slow down aging. However, in some tissues CR mimicked a younger state of control mice. Even though some elements changed with age differently in different tissues, in general aging was characterized by the reduced levels of elements as well as their increased variance. The dataset we prepared also allowed to develop organ-specific, ionome-based markers of aging that could help monitor the rate of aging. In some tissues, these markers reported the lifespan-extending effect of CR. These aging biomarkers have the potential to become an accessible tool to test the age-modulating effects of interventions.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of GeneticsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Dmitriy I. Podolskiy
- Division of GeneticsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Marco Mariotti
- Division of GeneticsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Javier Seravalli
- Redox Biology Center and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Vadim N. Gladyshev
- Division of GeneticsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
23
|
Esquivel N, García Y, Lores B, Gutiérrez M, Rodríguez C. Characterization of aged male BALB/c cenp mice as a model of dementia. Lab Anim Res 2020; 36:7. [PMID: 32206613 PMCID: PMC7081599 DOI: 10.1186/s42826-020-00038-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/12/2020] [Indexed: 11/10/2022] Open
Abstract
Dementia is defined as cognitive impairment in more than one cognitive area and leads to an abnormal degree of impairment in the ability to remember past events. Among mice models of dementia the most used strains are SAMP8 and C57BL/6. There is no reference to characterizing a model of dementia in naturally aged mice of the BALB/c strain, or to the minimum age at which these animals can be used. The aim of this study was the characterization of aged male BALB/ccenp mice as a model of dementia from the evaluation of behavioural, pathological and biochemical markers. One hundred and twenty mice were used and 10 of these were analysed from 8 to 9 months of age, and every 4 months, in a comparative way to young control animals from 4 to 5 months. At the age of 12-13 months there was cognitive impairment in the animals from the Y-maze and object recognition tests and this impairment was maintained at 16-17 months of age. An increase in oxidative damage to proteins in the brains of aged animals was also found in relation to young animals; as well as a decrease in the concentration of triglycerides. At the age of 16-17 months, a significant decrease in the size of the thymus and brain was obtained. We consider that it's a very useful option to use animals 12-13 months of age where there are symptoms of cognitive deficiency, histopathological and biochemical elements characteristic of dementia.
Collapse
Affiliation(s)
- Nashelly Esquivel
- Laboratorio de Antianémicos y Nutracéuticos, Centro Nacional de Biopreparados (BioCen). Beltrán main road km 1 1/2, Mayabeque, Cuba
| | - Yenela García
- Laboratorio de Antianémicos y Nutracéuticos, Centro Nacional de Biopreparados (BioCen). Beltrán main road km 1 1/2, Mayabeque, Cuba
| | - Bestraida Lores
- Laboratorio de Antianémicos y Nutracéuticos, Centro Nacional de Biopreparados (BioCen). Beltrán main road km 1 1/2, Mayabeque, Cuba
| | - Marivy Gutiérrez
- Department of Patology, Experimental Toxicology Center (CETEX), Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB), 3rd street, N° 40759 between 6th street and Tirabeque main road, Havana, Cuba
| | - Claudio Rodríguez
- Laboratorio de Antianémicos y Nutracéuticos, Centro Nacional de Biopreparados (BioCen). Beltrán main road km 1 1/2, Mayabeque, Cuba
| |
Collapse
|
24
|
Ghanam AR, Cao J, Ouyang X, Song X. New Insights into Chronological Mobility of Retrotransposons In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2818415. [PMID: 31346359 PMCID: PMC6617872 DOI: 10.1155/2019/2818415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Tissue aging is the gradual decline of physiological homeostasis accompanied with accumulation of senescent cells, decreased clearance of unwanted biological compounds, and depletion of stem cells. Senescent cells were cell cycle arrested in response to various stimuli and identified using distinct phenotypes and changes in gene expression. Senescent cells that accumulate with aging can compromise normal tissue function and inhibit or stop repair and regeneration. Selective removal of senescent cells can slow the aging process and inhibits age-associated diseases leading to extended lifespans in mice and thus provides a possibility for developing antiaging therapy. To monitor the appearance of senescent cells in vivo and target them, a clearer understanding of senescent cell expression markers is needed. We investigated the age-associated expression of three molecular hallmarks of aging: SA-β-gal, P16INK4a, and retrotransposable elements (RTEs), in different mouse tissues during chronological aging. Our data showed that the expression of these markers is variable with aging in the different tissues. P16INK4a showed consistent increases with age in most tissues, while expression of RTEs was variable among different tissues examined. These data suggest that biological changes occurring with physiological aging may be useful in choosing the appropriate timing of therapeutic interventions to slow the aging process or keep more susceptible organs healthier in the aging process.
Collapse
Affiliation(s)
- Amr. R. Ghanam
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
Ehrhardt N, Cui J, Dagdeviren S, Saengnipanthkul S, Goodridge HS, Kim JK, Lantier L, Guo X, Chen YDI, Raffel LJ, Buchanan TA, Hsueh WA, Rotter JI, Goodarzi MO, Péterfy M. Adiposity-Independent Effects of Aging on Insulin Sensitivity and Clearance in Mice and Humans. Obesity (Silver Spring) 2019; 27:434-443. [PMID: 30801985 PMCID: PMC6474357 DOI: 10.1002/oby.22418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Aging is associated with impaired insulin sensitivity and increased prevalence of type 2 diabetes. However, it remains unclear whether aging-associated insulin resistance is due to increased adiposity or other age-related factors. To address this question, the impact of aging on insulin sensitivity was investigated independently of changes in body composition. METHODS Cohorts of mice aged 4 to 8 months ("young") and 18 to 27 months ("aged") exhibiting similar body composition were characterized for glucose metabolism on chow and high-fat diets. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp analyses. The relationship between aging and insulin resistance in humans was investigated in 1,250 nondiabetic Mexican Americans who underwent hyperinsulinemic-euglycemic clamps. RESULTS In mice with similar body composition, age had no detrimental effect on plasma glucose and insulin levels. While aging did not diminish glucose tolerance, hyperinsulinemic-euglycemic clamps demonstrated impaired insulin sensitivity and reduced insulin clearance in aged mice on chow and high-fat diets. Consistent with results in the mouse, age remained an independent determinant of insulin resistance after adjustment for body composition in Mexican American males. CONCLUSIONS This study demonstrates that in addition to altered body composition, adiposity-independent mechanisms also contribute to aging-associated insulin resistance in mice and humans.
Collapse
Affiliation(s)
- Nicole Ehrhardt
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sezin Dagdeviren
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yii-Der I. Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Leslie J. Raffel
- Department of Pediatrics, Division of Genetic and Genomic Medicine, University of California, Irvine, CA 92697, USA
| | - Thomas A. Buchanan
- Department of Physiology and Biophysics and Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Willa A. Hsueh
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Walters DC, Jansen EEW, Ainslie GR, Salomons GS, Brown MN, Schmidt MA, Roullet J, Gibson KM. Preclinical tissue distribution and metabolic correlations of vigabatrin, an antiepileptic drug associated with potential use-limiting visual field defects. Pharmacol Res Perspect 2019; 7:e00456. [PMID: 30631446 PMCID: PMC6321982 DOI: 10.1002/prp2.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023] Open
Abstract
Vigabatrin (VGB; (S)-(+)/(R)-(-) 4-aminohex-5-enoic acid), an antiepileptic irreversibly inactivating GABA transaminase (GABA-T), manifests use-limiting ocular toxicity. Hypothesizing that the active S enantiomer of VGB would preferentially accumulate in eye and visual cortex (VC) as one potential mechanism for ocular toxicity, we infused racemic VGB into mice via subcutaneous minipump at 35, 70, and 140 mg/kg/d (n = 6-8 animals/dose) for 12 days. VGB enantiomers, total GABA and β-alanine (BALA), 4-guanidinobutyrate (4-GBA), and creatine were quantified by mass spectrometry in eye, brain, liver, prefrontal cortex (PFC), and VC. Plasma VGB concentrations increased linearly by dose (3 ± 0.76 (35 mg/kg/d); 15.1 ± 1.4 (70 mg/kg/d); 34.6 ± 3.2 μmol/L (140 mg/kg/d); mean ± SEM) with an S/R ratio of 0.74 ± 0.02 (n = 14). Steady state S/R ratios (35, 70 mg/kg/d doses) were highest in eye (5.5 ± 0.2; P < 0.0001), followed by VC (3.9 ± 0.4), PFC (3.6 ± 0.3), liver (2.9 ± 0.1), and brain (1.5 ± 0.1; n = 13-14 each). Total VGB content of eye exceeded that of brain, PFC and VC at all doses. High-dose VGB diminished endogenous metabolite production, especially in PFC and VC. GABA significantly increased in all tissues (all doses) except brain; BALA increases were confined to liver and VC; and 4-GBA was prominently increased in brain, PFC and VC (and eye at high dose). Linear correlations between enantiomers and GABA were observed in all tissues, but only in PFC/VC for BALA, 4-GBA, and creatine. Preferential accumulation of the VGB S isomer in eye and VC may provide new insight into VGB ocular toxicity.
Collapse
Affiliation(s)
- Dana C. Walters
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Erwin E. W. Jansen
- Metabolic LaboratoryDepartment of Clinical ChemistryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Garrett R. Ainslie
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Gajja S. Salomons
- Metabolic LaboratoryDepartment of Clinical ChemistryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Madalyn N. Brown
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Michelle A. Schmidt
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Jean‐Baptiste Roullet
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - K. M. Gibson
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| |
Collapse
|
27
|
Nilsson MI, Bourgeois JM, Nederveen JP, Leite MR, Hettinga BP, Bujak AL, May L, Lin E, Crozier M, Rusiecki DR, Moffatt C, Azzopardi P, Young J, Yang Y, Nguyen J, Adler E, Lan L, Tarnopolsky MA. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One 2019; 14:e0210863. [PMID: 30682077 PMCID: PMC6347267 DOI: 10.1371/journal.pone.0210863] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological aging is associated with progressive damage accumulation, loss of organ reserves, and systemic inflammation ('inflammaging'), which predispose for a wide spectrum of chronic diseases, including several types of cancer. In contrast, aerobic exercise training (AET) reduces inflammation, lowers all-cause mortality, and enhances both health and lifespan. In this study, we examined the benefits of early-onset, lifelong AET on predictors of health, inflammation, and cancer incidence in a naturally aging mouse model (C57BL/J6). Lifelong, voluntary wheel-running (O-AET; 26-month-old) prevented age-related declines in aerobic fitness and motor coordination vs. age-matched, sedentary controls (O-SED). AET also provided partial protection against sarcopenia, dynapenia, testicular atrophy, and overall organ pathology, hence augmenting the 'physiologic reserve' of lifelong runners. Systemic inflammation, as evidenced by a chronic elevation in 17 of 18 pro- and anti-inflammatory cytokines and chemokines (P < 0.05 O-SED vs. 2-month-old Y-CON), was potently mitigated by lifelong AET (P < 0.05 O-AET vs. O-SED), including master regulators of the cytokine cascade and cancer progression (IL-1β, TNF-α, and IL-6). In addition, circulating SPARC, previously known to be upregulated in metabolic disease, was elevated in old, sedentary mice, but was normalized to young control levels in lifelong runners. Remarkably, malignant tumours were also completely absent in the O-AET group, whereas they were present in the brain (pituitary), liver, spleen, and intestines of sedentary mice. Collectively, our results indicate that early-onset, lifelong running dampens inflammaging, protects against multiple cancer types, and extends healthspan of naturally-aged mice.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Department of Pathology and Molecular Medicine, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacqueline M. Bourgeois
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Joshua P. Nederveen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Marlon R. Leite
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Linda May
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Lin
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Daniel R. Rusiecki
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Chris Moffatt
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Paul Azzopardi
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacob Young
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Yifan Yang
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jenny Nguyen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Adler
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Lucy Lan
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Blackmore DG, Turpin F, Mohamed AZ, Zong F, Pandit R, Pelekanos M, Nasrallah F, Sah P, Bartlett PF, Götz J. Multimodal analysis of aged wild-type mice exposed to repeated scanning ultrasound treatments demonstrates long-term safety. Am J Cancer Res 2018; 8:6233-6247. [PMID: 30613294 PMCID: PMC6299703 DOI: 10.7150/thno.27941] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier presents a major challenge for the delivery of therapeutic agents to the brain; however, it can be transiently opened by combining low intensity ultrasound with microbubble infusion. Studies evaluating this technology have largely been performed in rodents, including models of neurological conditions. However, despite promising outcomes in terms of drug delivery and the amelioration of neurological impairments, the potential for long-term adverse effects presents a major concern in the context of clinical applications. Methods: To fill this gap, we repeatedly treated 12-month-old wild-type mice with ultrasound, followed by a multimodal analysis for up to 18 months of age. Results: We found that spatial memory in these aged mice was not adversely affected as assessed in the active place avoidance test. Sholl analysis of Golgi impregnations in the dentate gyrus of the hippocampus did not reveal any changes to the neuronal cytoarchitecture. Long-term potentiation, a cellular correlate of memory, was still achievable, magnetic resonance spectroscopy revealed no major changes in metabolites, and diffusion tensor imaging revealed normal microstructure and tissue integrity in the hippocampus. More specifically, all measures of diffusion appeared to support a neuroprotective effect of ultrasound treatment on the brain. Conclusion: This multimodal analysis indicates that therapeutic ultrasound for blood-brain barrier opening is safe and potentially protective in the long-term, underscoring its validity as a potential treatment modality for diseases of the brain.
Collapse
|
29
|
Muratoğlu S, Akarca Dizakar OS, Keskin Aktan A, Ömeroğlu S, Akbulut KG. The protective role of melatonin and curcumin in the testis of young and aged rats. Andrologia 2018; 51:e13203. [PMID: 30467869 DOI: 10.1111/and.13203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023] Open
Abstract
We aimed to investigate the effect of melatonin and curcumin treatment on oxidative stress, apoptosis, and histology of testicular tissue in our study. Four groups were formed using young (4 months old, n = 6) and aged (20-22 months old, n = 18) male Wistar albino rats: (a) Young control (1% ethanol:phosphate-buffered saline [PBS], subcutaneously [s.c.]); (b) Aged control (CTL; n = 6, 1% ethanol:PBS, s.c.); (c) Aged Melatonin (MLT; n = 6, 10 mg/kg, s.c.); (d) Aged Curcumin (CUR; n = 6, 30 mg/kg, i.p.). At the end of 21 days, the rats were sacrificed, and testicular tissues were removed. Malondialdehyde (MDA) in the testicular tissue was determined with thiobarbituric acid reactive substances formation, and glutathione (GSH) was determined with modified Ellman method; testosterone level was determined with chemiluminescence method and histologic changes were determined with Haematoxylin-Eosin and Johnsen's scoring; Apoptotic cell counts were made with TUNEL staining of seminiferous tubule in testis. With ageing, MDA level increased in testicular tissue, but GSH and blood testosterone levels decreased. Melatonin treatment for aged rats significantly decreased Paired total testicular/body weight ratio compared to aged control group (p < 0.05). Curcumin treatment for aged rats significantly increased GSH level compared to the aged control group (p < 0.05). Besides, melatonin and curcumin treatment significantly decreased the number of apoptotic cells and significantly increased Johnsen's score (p < 0.05).
Collapse
Affiliation(s)
- Saide Muratoğlu
- Department of Physiology, Gazi University School of Medicine, Ankara, Turkey
| | - Ozen S Akarca Dizakar
- Department of Histology and Embryology, Gazi University School of Medicine, Ankara, Turkey
| | - Arzu Keskin Aktan
- Department of Physiology, Gazi University School of Medicine, Ankara, Turkey.,Department of Physical Therapy and Rehabilitation, Health Science Faculty, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Suna Ömeroğlu
- Department of Histology and Embryology, Gazi University School of Medicine, Ankara, Turkey
| | | |
Collapse
|
30
|
Reed MJ, Damodarasamy M, Pathan JL, Erickson MA, Banks WA, Vernon RB. The Effects of Normal Aging on Regional Accumulation of Hyaluronan and Chondroitin Sulfate Proteoglycans in the Mouse Brain. J Histochem Cytochem 2018; 66:697-707. [PMID: 29782809 DOI: 10.1369/0022155418774779] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The brain changes in volume and composition with normal aging. Cellular components of the brain are supported by an extracellular matrix (ECM) comprised largely of hyaluronan (HA) and HA-associated members of the lectican family of chondroitin sulfate proteoglycans (CSPGs). We examined regional differences in microvascular density, neuronal and glial markers, and accumulation of HA and CSPGs in mouse brains during normal aging. The cortex, hippocampus, dentate gyrus, and cerebellum of young (4 months), middle-aged (14 months), and aged (24-26 months) brains were analyzed. Microvascular density decreased in cerebral cortex and cerebellum with age. There were no detectable differences in neuronal density. There was an increase in astrocytes in the hippocampus with aging. HA accumulation was higher in aged brain relative to young brain in the cerebral cortex and cerebellum, but not in other regions examined. In contrast, CSPGs did not change with aging in any of the brain regions examined. HA and CSPGs colocalized with a subset of neuronal cell bodies and astrocytes, and at the microvasculature. Differences in accumulation of ECM in the aging brain, in the setting of decreased microvascular density and/or increased glial activation, might contribute to age-related regional differences in vulnerability to injury and ischemia.
Collapse
Affiliation(s)
- May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Mamatha Damodarasamy
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Jasmine L Pathan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Michelle A Erickson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| | - Robert B Vernon
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
31
|
Age-dependent changes in brain hydration and synaptic plasticity. Brain Res 2017; 1680:46-53. [PMID: 29246764 DOI: 10.1016/j.brainres.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022]
Abstract
Aging in humans and animals is associated with gradual and variable changes in some cognitive functions, but what causes them and explains individual variations remains unclear. Hydration decreases with aging but whether dehydration contributes to cognitive dysfunction is not known. The brain hydration of aging mice was determined by colloidosmotic-pressure titration. Dehydration increased with age from ∼76 mmHg at 6 weeks to ∼105 mmHg at 40 weeks, or a progressive ∼10 percent loss of brain water but seemed to level off afterward. When we adjusted dehydration in hippocampal slices of <8-week-old mice to the levels seen in mice 40 weeks and older, their basal synaptic responses were amplified at all stimulus voltages tested, but induction of late-phase long-term potentiation was impaired. Our results document progressive brain dehydration with age in inbred mice to levels at which in vitro synaptic plasticity appears dysregulated. They also suggest that dehydration contributes to some of the changes in synaptic plasticity observed with aging, possibly due to adjustments in neuronal excitation mechanisms.
Collapse
|
32
|
Rudolf AM, Dańko MJ, Sadowska ET, Dheyongera G, Koteja P. Age-related changes of physiological performance and survivorship of bank voles selected for high aerobic capacity. Exp Gerontol 2017; 98:70-79. [PMID: 28803134 DOI: 10.1016/j.exger.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Variation in lifespans is an intriguing phenomenon, but how metabolic rate influence this variation remains unclear. High aerobic capacity can result in health benefits, but also in increased oxidative damage and accelerated ageing. We tested these contradictory predictions using bank voles (Myodes=Clethrionomys glareolus) from lines selected for high swim-induced aerobic metabolism (A), which had about 50% higher maximum metabolic rate and a higher basal and routine metabolic rates, than those from unselected control lines (C). We measured sprint speed (VSmax), forced-running maximum metabolic rate (VO2run), maximum long-distance running speed (VLmax), running speed at VO2run (VVO2), and respiratory quotient at VO2run (RQ) at three age classes (I: 3-5, II: 12-14, III: 17-19months), and analysed survivorship. We asked if ageing, understood as the age-related decline of the performance traits, differs between the A and C lines. At age class I, voles from A lines had 19% higher VO2run, and 12% higher VLmax, but tended to have 19% lower VSmax, than those from C lines. RQ was nearly 1.0 for both A and C lines. The pattern of age-related changes differed between the lines mainly between age classes I and II, but not in older animals. VSmax increased by 27% in A lines and by 10% in C lines between age class I and II, but between classes II and III, it increased by 16% in both selection directions. VO2run decreased by 7% between age class I and II in A lines only, but in C lines it remained constant across all age classes. VLmax decreased by 8% and VVO2 by 12% between age classes II and III, but similarly in both selection directions. Mortality was higher in A than in C lines only between the age of 1 and 4months. The only trait for which the changes in old animals differed between the lines was RQ. In A lines, RQ increased between age classes II and III, whereas in C lines such an increase occurred between age classes I and II. Thus, we did not find obvious effects of selection on the pattern of ageing. However, the physiological performance and mortality of bank voles remained surprisingly robust to ageing, at least until the age of 17-19months, similar to the maximum lifespan under natural conditions. Therefore, it is possible that the selection could affect the pattern of ageing in even older individuals when symptoms of senility might be more profound.
Collapse
Affiliation(s)
- Agata Marta Rudolf
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Maciej Jan Dańko
- Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057 Rostock, Germany
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
33
|
Lessard-Beaudoin M, Laroche M, Loudghi A, Demers MJ, Denault JB, Grenier G, Riechers SP, Wanker EE, Graham RK. Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process. Neurobiol Aging 2016; 47:50-62. [DOI: 10.1016/j.neurobiolaging.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
34
|
Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice. Biogerontology 2016; 17:817-828. [PMID: 27465500 DOI: 10.1007/s10522-016-9651-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice. Overall, Daxx mRNA expression decreases with aging in the liver, kidney, heart, cortex and cerebellum. In contrast, an increase is observed in the striatum. The protein expression of DAXX and of its proteolytic fragments increases with aging in the kidney, heart and cortex. In liver and spleen, no changes are observed while in the striatum and cerebellum, certain forms increase and others decrease with age, suggesting that the functions of DAXX may be cell type dependent. This study provides important details regarding the expression and post-translational modifications of DAXX in aging in the entire organism and provides reference data for the deregulation observed in age-associated diseases.
Collapse
|