1
|
Chrzanowska E, Denisow B, Ekiert H, Pietrzyk Ł. Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients-A Review. Molecules 2024; 29:5088. [PMID: 39519729 PMCID: PMC11547297 DOI: 10.3390/molecules29215088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
One of the challenges of the pharmaceutical and cosmetic industries is to deliver biochemical compounds that can be advantageous for the skin. Research on Boraginaceae taxa has confirmed their use in traditional medicine and proved the potential biological importance of various molecules in cosmetology. The main classes of valuable compounds associated with Boraginaceae taxa are fatty acids, including γ-linolenic acid, essential oils, phenolic acids (e.g., rosmarinic acid), flavonoids, anthocyanins, tannins, and saponins. Highly specific are naphthoquinone pigments (including shikonin) and allantoin. Another distinguishing feature is the accumulation of silica (silicon dioxide) in trichomes. Some taxa produce mucilages. However, pyrrolizidine alkaloids (PAs) with toxic properties are also found (mainly in Symphytum spp.); therefore, their applications should be avoided. Extracts or individual compounds of Boraginaceae plants are characterized by antioxidant, anti-inflammatory, antiseptic, anti-irritant, antiaging, and photoprotective activities. Boraginaceae products are widespread in the cosmetic industry as ingredients of creams, balms, lotions, gels, shampoos, lipsticks, perfumes, and deodorants. The most valuable for the cosmetic industry are raw materials obtained from the genera Alcanna Anchusa, Arnebia, Borago, Buglossoides, Cerinthe, Cordia, Echium, Ehretia, Eriodictyon, Glendora, Lappula, Lithospermum, Lycopsis, Macrotomia, Maharanga, Mertensia, Messerschmidia, Myosotis, Omphalodes, Onosma, Pulmonaria, Rindera, Symphytum, Trachystemon, and Trigonotis. Further research should focus on the search for active substances in other plants of the family.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Bożena Denisow
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Halina Ekiert
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland;
| | - Łukasz Pietrzyk
- Faculty of Medicine, Institute of Medical Sciences, The John Paul II Catholic University of Lublin, 1H Konstantynów Str., 20-708 Lublin, Poland;
| |
Collapse
|
2
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Slama M, Slougui N, Benaissa A, Nekkaa A, Sellam F, Canabady-Rochelle L. Borago Officinalis L.: A Review Oon Extraction, Phytochemical, and Pharmacological Activities. Chem Biodivers 2024; 21:e202301822. [PMID: 38426739 DOI: 10.1002/cbdv.202301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
Borago officinalis L., an annual herb belonging to the Boraginaceae family, is used in the traditional medical practices of various countries and for multiple treatments, including respiratory disorders, colds, influenza, diarrhea, cramps, inflammation, palpitation, hypertension menopause, and post-menopausal symptoms. Its pharmacological properties and biological activities - among them antioxidant, antimicrobial, anticancer, anti-inflammatory, insecticidal, antigenotoxic, and anti-obesity activity - were demonstrated in vitro and in vivo and are related to its rich content of bioactive compounds (mainly phenolic acids, flavonoids, anthocyanins, alkaloids, and terpenes) extracted from various parts of B. officinalis including leaves, flowers, seeds, and roots. This review summarizes all updated information on applied extraction processes, phytochemistry, pharmacology, and toxicity of B. officinalis.
Collapse
Affiliation(s)
- Meriem Slama
- Laboratoire de Génie des Procédés pour le Développement Durable et Les Produits de Santé, Ecole Nationale Polytechnique de Constantine, Constantine, 25016, Algeria
| | - Nabila Slougui
- Laboratoire de Bio Géochimie des Milieux Désertiques, Université Kasdi Merbah Ouargla, Route de Ghardaia, Ouargla, 30000, Algeria
- Ecole Nationale Polytechnique de Constantine, Ville Universitaire Ali Mendjeli, BP 75 A RP Ali Mendjeli, Constantine, 25016, Algeria
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amine Nekkaa
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
| | - Feriel Sellam
- Genetic diagnosis and microscopy laboratory, Health and biotechnology division, National Research Center of Biotechnology, Constantine, Algeria
| | | |
Collapse
|
4
|
Carvalho MJ, Pedrosa SS, Mendes A, Azevedo-Silva J, Fernandes J, Pintado M, Oliveira ALS, Madureira AR. Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE). Int J Mol Sci 2023; 25:21. [PMID: 38203191 PMCID: PMC10778757 DOI: 10.3390/ijms25010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Collapse
Affiliation(s)
- Maria João Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Sílvia Santos Pedrosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Adélia Mendes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| |
Collapse
|
5
|
Michalak M, Zagórska-Dziok M, Klimek-Szczykutowicz M, Szopa A. Phenolic Profile and Comparison of the Antioxidant, Anti-Ageing, Anti-Inflammatory, and Protective Activities of Borago officinalis Extracts on Skin Cells. Molecules 2023; 28:868. [PMID: 36677923 PMCID: PMC9865334 DOI: 10.3390/molecules28020868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, methanol and water-methanol extracts of borage (Borago officinalis) herb dried using various methods were analysed for their phenolic profile and biological activity. Twelve compounds, including flavonoids (astragalin, kaempferol 4-glucoside, rutoside, and vitexin) and phenolic acids (caffeic, chlorogenic, 3,4-dihydroxyphenylacetic, ferulic, p-hydroxybenzoic, protocatechuic, rosmarinic, and syringic), were determined qualitatively and quantitatively in B. officinalis extracts by the HPLC-DAD method. The highest total flavonoid content was confirmed for the methanol extract from the hot-air-dried herb, while the methanol extract from the air-dried herb was most abundant in phenolic acids. The results of in vitro tests on human keratinocytes (HaCaT) and fibroblasts (BJ) showed that the extracts were able to reduce the intracellular level of reactive oxygen species in skin cells. Tests performed to assess inhibition of protein denaturation, lipoxygenase activity, and proteinase activity demonstrated that borage extracts have anti-inflammatory properties. In addition, the methanol extract of the herb dried in a convection oven showed the strongest inhibition of both collagenase and elastase activity, which is indicative of anti-ageing properties. The results show that the borage extracts are a source of valuable bioactive compounds with beneficial properties in the context of skin cell protection.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
6
|
Ajjoun M, Kharchoufa L, Alami Merrouni I, Elachouri M. Moroccan medicinal plants traditionally used for the treatment of skin diseases: From ethnobotany to clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115532. [PMID: 35843409 DOI: 10.1016/j.jep.2022.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin diseases are among the most common human health affections. A healthy skin promotes a healthy body that can be achieved through modern, allopathic and natural medicines. Therefore, medicinal plants can be a reliable therapy in treating skin diseases in humans through a diverse range of bioactive molecules they contain. AIM OF THE STUDY This review aims to provide for the first-time scientific evidence related to the dermatological properties of Morocco's medicinal plants and it aims to provide a baseline for the discovery of new drugs having activities against skin issues. METHODS This review involved an investigation with different search engines for Moroccan ethnobotanical surveys published between 1991 and 2021. The plants used to treat skin diseases have been determined. Information regarding pharmacological effects, phytochemical, and clinical trials related to the plants listed in this review was collected from different scientific databases like PubMed, Science Direct, Google Scholar, Web of Science and Scopus. The data were analyzed and summarized in the review. RESULTS A total of 401 plants belonging to 86 families mainly represented by Asteraceae, Lamiaceae, Fabaceae, and Apiaceae which have been documented to be in common use by Moroccans for managing skin diseases. Among those plants recorded, the most commonly used are Allium cepa L, Chamaeleon gummifer (L.) Cass and Salvia rosmarinus Schleid. Mill. Leaves were the most commonly used plant part, while powder and decoction were the most common method of traditional drug preparation. 107 of the 401 plants (27%) have undergone pharmacological validation. A total of 44 compounds isolated from 27 plants were investigated to treat different types of skin diseases, and 25 plants have been clinically studied for their activities against skin diseases. CONCLUSION The beneficial effects of using Moroccan medicinal plants to treat skin diseases, according to traditional practices, have been proven in numerous scientific studies. Therefore, other studies should focus on isolating and identifying specific bioactive compounds from plant extracts, revealing more valuable therapeutic properties. Furthermore, additional reliable clinical trials are needed to confirm their beneficial effect on patients with skin diseases.
Collapse
Affiliation(s)
- Mohammed Ajjoun
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Ilyass Alami Merrouni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
7
|
Neuroprotective Profile of Edible Flowers of Borage (Borago officinalis L.) in Two Different Models: Caenorhabditis elegans and Neuro-2a Cells. Antioxidants (Basel) 2022; 11:antiox11071244. [PMID: 35883735 PMCID: PMC9312273 DOI: 10.3390/antiox11071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The flowers of Borago officinalis L. (Boraginaceae), commonly known as borage, are widely used as a culinary ingredient. The aim of this study was to assess the potential benefits of fresh borage flower extract related to antioxidant, neuroprotective and anti-aging properties. The extract was obtained by Soxhlet extraction with ethanol as a solvent, and fatty acids were detected by GC-FID. The antioxidant activity was evaluated in vitro through the DPPH, FRAP and ORAC assays. Regarding the fatty acid (FA) composition, the extract showed high amounts of polyunsaturated FA. The Neuro-2a cell line was used to determine the cytoprotective capacity of the extract subjected to oxidative stress (H2O2). Moreover, the model organism Caenorhabditis elegans was used to assess antioxidant activity, delayed ageing as well as cytoprotection and reduced β-amyloid toxicity. Cells treated with the extract and H2O2 showed a better response to oxidative stress than the control group, particularly in terms of mitochondrial activity (MTT assay), redox state (ROS formation) and the activity of antioxidant enzymes (catalase and superoxide dismutase). B. officinalis flower extract showed promising antioxidant activity in the selected models, without causing toxicity. Hence, the results obtained support the antioxidant properties of borage flowers in different bioassays using living organisms.
Collapse
|
8
|
Kim M, Ha LK, Oh S, Fang M, Zheng S, Bellere AD, Jeong J, Yi TH. Antiphotoaging Effects of Damiana ( Turnera diffusa) Leaves Extract via Regulation AP-1 and Nrf2/ARE Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111486. [PMID: 35684259 PMCID: PMC9182839 DOI: 10.3390/plants11111486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 05/13/2023]
Abstract
Damiana (Turnera diffusa), of the family Passifloraceae, has been widely studied for its pharmacological effects, especially for antioxidant and antibacterial actions. However, there are limited scientific findings describing its antiphotoaging effects on the skin. In the present study, the underlying molecular mechanisms of the protective effect of Damiana were investigated in keratinocytes (HaCaTs) and normal human dermal fibroblasts (HDFs) subject to UVB irradiation. The mRNA expression of matrix metalloproteinases (MMPs) and procollagen type I was determined by reverse transcription-polymerase chain reaction. The protein expression of antiphotoaging-related signaling molecules in the activator protein-1 (AP-1) and nuclear factor erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathways was assessed by Western blotting. We observed that Damiana blocked the upregulated production of reactive oxygen species induced in UVB-irradiated HaCaTs and HDFs in a dose-dependent manner. Treatment with Damiana also significantly ameliorated the mRNA expression of MMPs and procollagen type I. In addition, the phosphorylation level of c-Jun and c-Fos was also decreased through the attenuated expression of p-38, p-ERK, and p-JNK after treatment with Damiana. Furthermore, the treatment of cells with Damiana resulted in the inhibition of Smad-7 expression in the TGF-β/Smad pathway and upregulated the expression of the Nrf2/ARE signaling pathway. Hence, the synthesis of procollagen type I, a precursor of collagen I, was promoted. Collectively, these results provide us with the novel insight that Damiana is a potential source of antiphotoaging compounds.
Collapse
Affiliation(s)
- Minseon Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Lee-Keun Ha
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Sarang Oh
- Snow White Factory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Korea; (S.O.); (J.J.)
| | - Minzhe Fang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Arce D. Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Jeehaeng Jeong
- Snow White Factory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Korea; (S.O.); (J.J.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
- Correspondence: ; Tel.: +82-31-201-3693
| |
Collapse
|
9
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
10
|
A Nazir L, Tanveer MA, Umar SA, Love S, Divya G, Tasduq SA. Inhibition of Ultraviolet-B Radiation Induced Photodamage by Trigonelline Through Modulation of Mitogen Activating Protein Kinases and Nuclear Factor-κB Signaling Axis in Skin. Photochem Photobiol 2021; 97:785-794. [PMID: 33345344 DOI: 10.1111/php.13369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous photodamage is incited via exposure of ultraviolet-B (UV-B) radiation to skin, characterized by the manifestation of oxidative stress, inflammation, collagen degradation and apoptosis which translates to external aging signs such as wrinkle formation and leathery skin appearance. Meanwhile, it increases cellular susceptibility to photocarcinogenesis. Several studies have accumulated evidence regarding the usage of natural agents in reversing the clinical signs of photoaging as well as preventing photo-toxicity at molecular level. In this study, we have explored the therapeutic potential of natural agent Trigonelline (TG) against UV-B radiation mediated skin photodamage. Various parameters modulated by the exposure of UV-B radiation were investigated in human skin cells and chronic photodamage mice model (Balb/c). We found that TG alleviates UV-B radiation induced photodamage in human skin cells and Balb/c skin mice. TG treatment in UV-B irradiated skin cells abates UV-B radiation mediated phototoxicity, oxidative stress, inflammation and apoptosis. At molecular level, we observed TG treatment significantly prevents the reactive oxygen species (ROS) generation and lipid peroxidation, restores collagen synthesis and matrix metalloproteinase (MMPs) levels. The in vitro findings were replicated in the in vivo model. We found that the TG acts potentially via modulation of ROS-MAPKs-NF-κB axis. Collectively, we propose that TG acts antagonistically against UV-B mediated skin damage and has strong potential to be developed as a therapeutic and cosmetical agent against photodamage disorders.
Collapse
Affiliation(s)
- Lone A Nazir
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malik A Tanveer
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sheikh A Umar
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharma Love
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gupta Divya
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sheikh A Tasduq
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Ramezani M, Amiri MS, Zibaee E, Boghrati Z, Ayati Z, Sahebkar A, Emami SA. A Review on the Phytochemistry, Ethnobotanical Uses and Pharmacology of Borago Species. Curr Pharm Des 2020; 26:110-128. [PMID: 31840597 DOI: 10.2174/1381612825666191216152733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Borago L., (family Boraginaceae) is a small genus of annual or perennial herbs with branched flowers, which is commonly found in the Mediterranean region. Some species known as Gavzabȃn in Asian and some African countries are traditionally used instead of Borago. Aims of the review: The purpose of this study was to provide comprehensive scientific information on phytochemistry, traditional uses and pharmacological activities of Borago species to provide an insight into further research on the therapeutic potential of these plants. In many studies, it has been shown that different parts of Borago species, including leaves, flowers, seeds, roots and aerial parts possess numerous ethnobotanical values. MATERIALS AND METHODS All ethnobotanical, phytochemical, pharmacological, and clinical data were collected from online journals, magazines and books (all of which were published in English, Arabic, and Persian) from 1968 to 2018. Electronic databases such as Google, Google Scholar, PubMed, Science Direct, Researchgate, and other online collections were used. RESULTS The phytochemical studies on five species showed a wide range of phytochemicals belonging to different classes of secondary metabolites. From a pharmacological point of view, different extracts and fractions, essential oils, and pure compounds isolated from various Borago species have shown diverse activities in in vitro, in vivo, and clinical studies confirming various traditional uses of Borago genus. CONCLUSION Considering the reported activities of the Borago genus both in traditional and modern medicine, further studies on biological aspects and identification of the mechanism of action for drug discovery are highly required.
Collapse
Affiliation(s)
- Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elaheh Zibaee
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Boghrati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr 2020; 61:3740-3755. [PMID: 32772550 DOI: 10.1080/10408398.2020.1805407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Besides providing essential nutrients for humans, food contains bioactive compounds that exert diverse biological activities such as anti-microbial, anti-cancerogenic, anti-viral, anti-inflammatory and antioxidant. The cosmetic industry is interested in natural bioactive compounds for their use in nutricosmetic and cosmeceutical products. These products aimed to reduce skin aging, inflammation or provide photoprotection against UV radiation. As a result, nutricosmetics and cosmeceuticals are becoming innovative self-care products in the beauty market. These products contain phytochemicals as active compounds obtained from fruits, vegetables, legumes, medicinal herbs and plants with anti-aging potential. This review summarizes the information within the last 5 years related to bioactive compounds present in fruits, vegetables, herbs and spices commonly used for human consumption. Their antioxidant and biological potential for modulating molecular markers involved in the aging process, as well as their mechanism of action. Diverse natural foods and their byproducts could be used as a source of bioactive compounds for developing cosmeceutical and nutricosmetic products.
Collapse
Affiliation(s)
- David Fonseca Hernandez
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Eugenia Lugo Cervantes
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, Department of Bioengineering and Science, Puebla, Puebla, Mexico
| | - Luis Mojica
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| |
Collapse
|
13
|
Lopreiato M, Cocchiola R, Falcucci S, Leopizzi M, Cardone M, Di Maio V, Brocco U, D'Orazi V, Calvieri S, Scandurra R, De Marco F, Scotto d'Abusco A. The Glucosamine-derivative NAPA Suppresses MAPK Activation and Restores Collagen Deposition in Human Diploid Fibroblasts Challenged with Environmental Levels of UVB. Photochem Photobiol 2019; 96:74-82. [PMID: 31769510 DOI: 10.1111/php.13185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
The ultraviolet (UV) component of solar radiation is the driving force of life on earth, but it can cause photoaging and skin cancer. In this study, we investigated the effects of the glucosamine-derivative 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose (NAPA) on human primary fibroblasts (FBs) stimulated in vitro with environmental levels of UVB radiation. FBs were irradiated with 0.04 J cm-2 UVB dose, which resulted a mild dosage as shown by the cell viability and ROS production measurement. This environmental UVB dose induced activation of MAP kinase ERK 1/2, the stimulation of c-fos and at lower extent of c-jun, and in turn AP-1-dependent up-regulation of pro-inflammatory factors IL-6 and IL-8 and suppression of collagen type I expression. On the contrary, 0.04 J cm-2 UVB dose was not able to stimulate metalloprotease production. NAPA treatment was able to suppress the up-regulation of IL-6 and IL-8 via the inhibition of MAP kinase ERK phosphorylation and the following AP-1 activation, and was able to attenuate the collagen type I down-regulation induced by the UVBs. Taken together, our results show that NAPA, considering its dual action on suppression of inflammation and stimulation of collagen type I production, represents an interesting candidate as a new photoprotective and photorepairing agents.
Collapse
Affiliation(s)
| | - Rossana Cocchiola
- Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Susanna Falcucci
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Michele Cardone
- Department of Dermatology and Venereology, Sapienza University of Roma, Policlinico Umberto I, Roma, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Umberto Brocco
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Roma, Roma, Italy
| | - Stefano Calvieri
- Department of Dermatology and Venereology, Sapienza University of Roma, Policlinico Umberto I, Roma, Italy
| | - Roberto Scandurra
- Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Federico De Marco
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | | |
Collapse
|
14
|
Protective Effects of Unsaponifiable Matter from Perilla Seed Meal on UVB-induced Damages and the Underlying Mechanisms in Human Skin Fibroblasts. Antioxidants (Basel) 2019; 8:antiox8120644. [PMID: 31847198 PMCID: PMC6943425 DOI: 10.3390/antiox8120644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Unsaponifiable matter (USM) from perilla seed meal contains numerous phytochemicals, including tocopherols, phytosterols, squalene, and policosanols, that exhibit antioxidant and health-promoting properties. In this study, the protective effects of USM on UVB-induced skin aging were investigated in Hs68 cells. UVB irradiation decreased cell viability by 26% compared to the control. However, USM blocked UVB-induced cytotoxicity. Moreover, USM treatment significantly decreased the UVB-induced production of reactive oxygen species and attenuated the UVB-induced production and mRNA expression of matrix metalloproteinases (MMPs) by inhibiting the phosphorylation of mitogen-activated protein kinases and activator protein 1 (AP-1). Furthermore, UVB exposure led to a 49.4% reduction in collagen synthesis. However, USM treatment restored collagen synthesis through upregulation of the transforming growth factor beta (TGF-β)/Smad2/3 pathways. These data indicate that USM regulates the production of MMPs and collagen by modulation of the TGF-β/Smad pathway and AP-1 activity, suggesting that USM may be a useful anti-photoaging ingredient.
Collapse
|
15
|
Zhao P, Alam MB, Lee SH. Protection of UVB-Induced Photoaging by Fuzhuan-Brick Tea Aqueous Extract via MAPKs/ Nrf2-Mediated Down-Regulation of MMP-1. Nutrients 2018; 11:nu11010060. [PMID: 30597920 PMCID: PMC6357030 DOI: 10.3390/nu11010060] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B (UVB) irradiation is viewed as the principal inducer of skin photo-aging, associated with acceleration of collagen degradation and upregulation of matrix metalloproteinases (MMPs). The ethnic groups of southern/western China use Fuzhuan brick-tea (FBT) as a beverage and as a nutritional supplement. In this study, we scrutinized the antagonistic effects of aqueous extract of Fuzhuan-brick tea (FBTA) on skin photo-aging in UVB-exposed human keratinocyte (HaCaT) cells. FBTA exhibited strong antioxidant activity and quenched UVB-induced generation of cellular reactive oxygen species (ROS) without showing any toxicity. FBTA was capable of combating oxidative stress by augmenting messenger RNA (mRNA) and protein levels of both phase I and phase II detoxifying enzymes, especially heme oxygenase 1 (HO-1), by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathway in HaCaT cells via the phosphorylation of p38 and extracellular signal-regulated kinase (ERK). FBTA also downregulated the expression of matrix metalloproteinase-1 (MMP-1) while upregulating type I procollagen by modulating Nrf2 signaling in UVB-irradiated HaCaT cells. Collectively, our results show that FBTA might be useful as a functional food while being a good candidate in the development of cosmetic products and medicines for the remedy of UVB-induced skin photo-aging.
Collapse
Affiliation(s)
- Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
16
|
Zhao X, Qi Y, Yi R, Park KY. Anti-ageing skin effects of Korean bamboo salt on SKH1 hairless mice. Int J Biochem Cell Biol 2018; 103:1-13. [PMID: 30053505 DOI: 10.1016/j.biocel.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Bamboo salt is generated by baking bamboo and sea salt and is used as a traditional food or medicine. The aim of this study was to investigate the anti-ageing skin effects of Korean bamboo salt and to compare the antioxidant, anti-ageing and anti-inflammatory effects of various salts, including purified salt, solar salt, bath solar salt, Masada solar salt, 1-time baked bamboo salt (1× bamboo salt), and 9-times baked bamboo salt (9× bamboo salt). Based on the content of mineral elements, pH, OH groups and redox potential amperometric analysis, the 9× bamboo salt showed the most antioxidant components and characteristics compared to the other salts. The in vitro results showed that the 9× bamboo salt could inhibit oxidative damage by hydrogen peroxide (H2O2) treatment in HaCaT keratinocytes, and its effect was better than that of the other salts. In an in vivo experiment, SHK-1 hairless mice were treated with UV (ultraviolet) radiation to induce ageing. The epidermal thickness and epidermal structures were then assessed by phenotypic and histological analyses. The 0.2% 9× bamboo salt- and 1× bamboo salt-treated mice had a thinner epidermis than the control mice, and the sebaceous glands were almost intact with a regular arrangement that was similar to those in the normal group. Compared with the UV-treated group (control group) and other salt-treated groups, the 9× bamboo salt- and 1× bamboo salt-treated groups had higher dermal collagen and elastic fibre content. Fewer mast cells were observed in the 9× bamboo salt- and 1× bamboo salt-treated groups than in the control group. The activities of the skin antioxidant-related enzymes superoxide dismutase (SOD) and catalase (CAT) in the 9× bamboo salt- and 1× bamboo salt-treated groups were higher than those in other groups and similar to those in the normal group, but lipid peroxide (LPO) activity and carbonylated protein levels showed the opposite trends. Furthermore, the 9× bamboo salt- and 1× bamboo salt-treated groups had protein contents similar to those of the normal group. In addition, the 9× bamboo salt and 1× bamboo salt effectively down-regulated the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and up-regulated the expression of tissue inhibitor expression of matrix metalloproteinase-1 (TIMP-1), matrix metalloproteinase-2 (TIMP-2), SOD and CAT compared to the other salts at a concentration of 0.2% (p < 0.05). These results suggest that at appropriate concentrations, bamboo salt could prevent skin ageing induced by ultraviolet radiation b (UVB) photodamage.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China
| | - Yongcai Qi
- Department of Food Science and Nutrition, Pusan National University, Busan, 609-735, South Korea
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; Department of Food Science and Biotechnology, Cha University, Gyeongghi-do, 487-010, South Korea.
| |
Collapse
|