1
|
Jaffer H, Andrabi SS, Petro M, Kuang Y, Steinmetz MP, Labhasetwar V. Catalytic antioxidant nanoparticles mitigate secondary injury progression and promote functional recovery in spinal cord injury model. J Control Release 2023; 364:109-123. [PMID: 37866402 PMCID: PMC10842504 DOI: 10.1016/j.jconrel.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Traumatic spinal cord injury exacerbates disability with time due to secondary injury cascade triggered largely by overproduction of reactive oxygen species (ROS) at the lesion site, causing oxidative stress. This study explored nanoparticles containing antioxidant enzymes (antioxidant NPs) to neutralize excess ROS at the lesion site and its impact. When tested in a rat contusion model of spinal cord injury, a single dose of antioxidant NPs, administered intravenously three hours after injury, effectively restored the redox balance at the lesion site, interrupting the secondary injury progression. This led to reduced spinal cord tissue inflammation, apoptosis, cavitation, and inhibition of syringomyelia. Moreover, the treatment reduced scar tissue forming collagen at the lesion site, protected axons from demyelination, and stimulated lesion healing, with further analysis indicating the formation of immature neurons. The ultimate effect of the treatment was improved motor and sensory functions and rapid post-injury weight loss recovery. Histological analysis revealed activated microglia in the spinal cord displaying rod-shaped anti-inflammatory and regenerative phenotype in treated animals, contrasting with amoeboid inflammatory and degenerative phenotype in untreated control. Overall data suggest that restoring redox balance at the lesion site shifts the dynamics in the injured spinal cord microenvironment from degenerative to regenerative, potentially by promoting endogenous repair mechanisms. Antioxidant NPs show promise to be developed as an early therapeutic intervention in stabilizing injured spinal cord for enhanced recovery.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Syed Suhail Andrabi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marianne Petro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael P Steinmetz
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
2
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
| |
Collapse
|
3
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Fernández-Espejo E, Rodríguez de Fonseca F, Gavito AL, Córdoba-Fernández A, Chacón J, Martín de Pablos Á. Myeloperoxidase and Advanced Oxidation Protein Products in the Cerebrospinal Fluid in Women and Men with Parkinson's Disease. Antioxidants (Basel) 2022; 11:1088. [PMID: 35739985 PMCID: PMC9219636 DOI: 10.3390/antiox11061088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Myeloperoxidase (MPO) and advanced oxidation protein products, or AOPP (a type of MPO-derived chlorinated adducts), have been implicated in Parkinson´s disease (PD). Human MPO also show sex-based differences in PD. The objective was to study the relationship of MPO and AOPP in the cerebrospinal fluid (CSF) with motor features of idiopathic PD in male and female patients. Methods: MPO concentration and activity and AOPP content were measured in the CSF and serum in 34 patients and 30 controls. CSF leukocytes and the integrity of the blood-brain barrier were evaluated. Correlations of MPO and AOPP with clinical variables were examined. Results: The blood-brain barrier was intact and CSF leukocyte count was normal in all patients. CSF MPO concentration and activity were similar in the cohort of patients and controls, but CSF MPO content was significantly higher in male patients than in PD women (p = 0.0084). CSF MPO concentration correlated with disease duration in male and female patients (p < 0.01). CSF MPO concentration was significantly higher in men with disease duration ≥12 years versus the remainder of the male subjects (p < 0.01). Changes in CSF MPO in women were not significant. Serum MPO concentration and activity were significantly higher in all PD patients relative to controls (p < 0.0001). CSF MPO was not correlated with serum MPO. Serum AOPP were detected in all patients, but CSF AOPP was undetectable in 53% of patients. AOPP were not quantifiable in controls. Conclusions: CSF MPO is not a good biomarker for PD because mean CSF MPO concentration and activity are not different between the cohort of patients and controls. CSF MPO concentration positively correlated with disease duration in men and women, but CSF MPO is significantly enhanced only in male patients with disease duration longer than 12 years. It can be hypothesized that the MPO-related immune response in early-stage PD might be weak in all patients, but then the MPO-related immune response is progressively enhanced in men, not women. Since the blood-brain barrier is intact, and CSF MPO is not correlated with serum MPO, CSF myeloperoxidase would reflect MPO content in brain cells, not blood-derived cells. Finally, serum AOPP was detected in all patients, but not controls, which is consistent with the occurrence of chlorinative stress in blood serum in PD. The study of CSF AOPP as biomarker could not be assessed because the ELISA assay was hampered by its detection limit in the CSF.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08001 Barcelona, Spain
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ana Luisa Gavito
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | | | - José Chacón
- Servicio de Neurología, Hospital Quirónsalud Infanta Luisa, 41010 Sevilla, Spain;
| | - Ángel Martín de Pablos
- Departamento de Cirugía, Universidad de Sevilla, 41009 Sevilla, Spain;
- Unidad de Anestesiología y Reanimación, Servicio de Cirugía, Hospital Macarena, 41009 Sevilla, Spain
| |
Collapse
|
5
|
Ganoderma tsugae prevents cognitive impairment and attenuates oxidative damage in d-galactose-induced aging in the rat brain. PLoS One 2022; 17:e0266331. [PMID: 35390035 PMCID: PMC8989198 DOI: 10.1371/journal.pone.0266331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Lingzhi has long been regarded as having life-prolonging effects. Research in recent years has also reported that Lingzhi possesses anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, and anti-lipogenic effects. The D-galactose (D-gal, 100 mg/kg/day)-induced aging Long-Evans rats were simultaneously orally administered a DMSO extract of Ganoderma tsugae (GTDE, 200 μg/kg/day) for 25 weeks to investigate the effects of GTDE on oxidative stress and memory deficits in the D-galactose-induced aging rats. We found that GTDE significantly improved the locomotion and spatial memory and learning in the aging rats. GTDE alleviated the aging-induced reduction of dendritic branching in neurons of the hippocampus and cerebral cortex. Immunoblotting revealed a significant increase in the protein expression levels of the superoxide dismutase-1 (SOD-1) and catalase, and the brain-derived neurotrophic factor (BDNF) in rats that received GTDE. D-gal-induced increase in the lipid peroxidation product 4-hydroxynonenal (4-HNE) was significantly attenuated after the administration of GTDE, and pyrin domain-containing 3 protein (NLRP3) revealed a significant decrease in NLRP3 expression after GTDE administration. Lastly, GTDE significantly reduced the advanced glycosylation end products (AGEs). In conclusion, GTDE increases antioxidant capacity and BDNF expression of the brain, protects the dendritic structure of neurons, and reduces aging-induced neuronal damage, thereby attenuating cognitive impairment caused by aging.
Collapse
|
6
|
Fernández-Espejo E, Gavito AL, Suárez J, Tolosa E, Vilas D, Aldecoa I, Berenguer J, Córdoba-Fernández A, Damas-Hermoso F, Rodríguez de Fonseca F. Salivary ATP13A2 is a potential marker of therapy-induced motor complications and is expressed by inclusions in submandibulary glands in Parkinson ́s disease. Clin Park Relat Disord 2022; 7:100163. [PMID: 36081833 PMCID: PMC9445999 DOI: 10.1016/j.prdoa.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with motor complications, not the remainder of the patients, show quantifiable levels of salivary ATP13A2. Patients with motor complications present high salivary ATP13A2 concentration relative to controls. Salivary ATP13A2 content in patients with motor complications positively correlates with levodopa equivalent daily dose and MDS-UPDRS. The submandibulary gland in PD patients contains ATP13A2-expressing rounded inclusions of 10–20 µm in diameter. This is the first description of ATP13A2-expressing inclusions outside the nervous system in PD patients.
Background ATP13A2 holds promise as biomarker for Parkinsońs disease (PD). No study has examined how salivary ATP13A2 is related to motor features in idiopathic PD. Methods Salivary ATP13A2 concentration was evaluated with ELISA, and statistical correlations of ATP13A2 level with PD parameters were examined. The dose intensity of the dopaminergic medication regimen was expressed as levodopa equivalent daily dose (LEDD). ATP13A2 expression on histological sections of submandibular glands was evaluated using immunohistochemistry. Results Salivary ATP13A2 was undetectable in many subjects (28 % of patients, 43.7 % of controls). However, all the patients with motor complications (n = 28) showed quantifiable levels of ATP13A2, that positively correlated with MDS-UPDRS (total, parts III and IV), and LEDD (p < 0.05). Dyskinetic patients showed the highest LEDD values (p < 0.05). The histological study revealed: a) ATP13A2 staining was very intense in duct cells and vascular endothelium, and b) two patterns of ATP13A2-positive deposits are observed: rounded inclusions of 10–20 µm in diameter located in the interlobular tissue of the patients, and amorphous aggregates inside duct lumen in controls and patients. Conclusions The sensitivity of the ELISA assay was a major limitation for quantifying ATP13A2. However, salivary ATP13A2 was detected in all patients with motor complications, where a direct relationship among ATP13A2 concentration, levodopa equivalent daily dose, and MDS-UPDRS was found. Therefore, salivary ATP13A2 might be a reliable index of therapy-induced motor complications. ATP13A2 was expressed by rounded inclusions in the submandibulary gland of patients. This is the first description of ATP13A2-positive inclusions outside the nervous system.
Collapse
|
7
|
Fernández-Espejo E, Rodriguez de Fonseca F, Suárez J, González-Aparicio R, Santurtún A. ATP13A2 levels in serum and cerebrospinal fluid in patients with idiopathic Parkinson's disease. Parkinsonism Relat Disord 2021; 88:3-9. [PMID: 34090180 DOI: 10.1016/j.parkreldis.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The enzyme ATP13A2 holds promise as biomarker in Parkinson's disease (PD). No study has examined the content of ATP13A2 in serum and cerebrospinal fluid (CSF) in idiopathic PD cohorts, or how ATP13A2 relates to the clinical features of the disease. METHODS ATP13A2 concentration was evaluated with ELISA and immunoblotting. Correlations of serum and CSF ATP13A2 with clinical parameters were examined. The antiparkinsonian medication regimen was expressed as levodopa equivalent dose (LED, mg/day). RESULTS Serum ATP13A2 concentration was similar in patients and controls, and it correlated with LED and MDS-UPDRS part-IV score (p < .0001), a scale which allows evaluating motor complications. LED also correlated with MDS-UPDRS part-IV score (p < .0001). Serum ATP13A2 concentration and LED were higher in patients with motor complications than in patients without motor complications (p < .0001). The ratio of serum ATP13A2 concentration versus LED was calculated, and mean value was similar in patients with or without motor complications. ATP13A2 concentration in the CSF was undetectable in many subjects because the ELISA assay was hampered by its detection limit. Immunoblotting indicated that CSF ATP13A2 content was higher in patients relative to controls (p = .0002), and no clinical correlations were found. CONCLUSIONS Increasing LED enhanced serum ATP13A2 concentration and facilitated the development of motor complications. There is a direct relationship between serum ATP13A2 level and the dose intensity of the antiparkinsonian dopaminergic medication. The associations between serum ATP13A2 and LED suggest that serum ATP13A2 content might be a marker of dopamine replacement therapy.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08010, Barcelona, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010, Málaga, Spain.
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010, Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010, Málaga, Spain
| | - Juan Suárez
- Departamento de Anatomía Humana, Medicina Legal e Historia de La Ciencia, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010, Málaga, Spain
| | - Ramiro González-Aparicio
- Departamento de Ciencias, San Francisco de Paula - Sevilla International College, 41003, Sevilla, Spain
| | - Ana Santurtún
- Unidad de Medicina Legal, Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
8
|
Fernández-Espejo E, Rodríguez de Fonseca F, Suárez J, Tolosa E, Vilas D, Aldecoa I, Berenguer J, Damas-Hermoso F. Native α-Synuclein, 3-Nitrotyrosine Proteins, and Patterns of Nitro-α-Synuclein-Immunoreactive Inclusions in Saliva and Submandibulary Gland in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10050715. [PMID: 34062880 PMCID: PMC8147273 DOI: 10.3390/antiox10050715] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background. Salivary α-synuclein (aSyn) and its nitrated form, or 3-nitrotyrosine-α-synuclein (3-NT-αSyn), hold promise as biomarkers for idiopathic Parkinson's disease (IPD). Nitrative stress that is characterized by an excess of 3-nitrotyrosine proteins (3-NT-proteins) has been proposed as a pathogenic mechanism in IPD. The objective is to study the pathological role of native αSyn, 3-NT-αSyn, and 3-NT-proteins in the saliva and submandibulary glands of patients with IPD. Methods. The salivary and serum αSyn and 3-NT-proteins concentration is evaluated with ELISA in patients and controls. Correlations of αSyn and 3-NT-proteins content with clinical features of the disease are examined. Immunohistochemical 3-NT-αSyn expression in submandibulary gland sections is analyzed. Results. (a) Salivary concentration and saliva/serum ratios of native αSyn and 3-NT-proteins are similar in patients and controls; (b) salivary αSyn and 3-NT-proteins do not correlate with any clinical feature; and (c) three patterns of 3-NT-αSyn-positive inclusions are observed on histological sections: rounded "Lewy-type" aggregates of 10-25 µm in diameter, coarse deposits with varied morphology, and spheroid inclusions or bodies of 3-5 µm in diameter. "Lewy-type" and coarse inclusions are observed in the interlobular connective tissue of the gland, and small-sized bodies are located within the cytoplasm of duct cells. "Lewy-type" inclusions are only observed in patients, and the remaining patterns of inclusions are observed in both the patients and controls. Conclusions. The patients' saliva presents a similar concentration of native αSyn and 3-nitrotyrosine-proteins than that of the controls, and no correlations with clinical features are found. These findings preclude the utility of native αSyn in the saliva as a biomarker, and they indicate the absence of nitrative stress in the saliva and serum of patients. As regards nitrated αSyn, "Lewy-type" inclusions expressing 3-NT-αSyn are observed in the patients, not the controls-a novel finding that suggests that a biopsy of the submandibulary gland, if proven safe, could be a useful technique for diagnosing IPD. Finally, to our knowledge, this is also the first description of 3-NT-αSyn-immunoreactive intracytoplasmic bodies in cells that are located outside the nervous system. These intracytoplasmic bodies are present in duct cells of submandibulary gland sections from all subjects regardless of their pathology, and they can represent an aging or involutional change. Further immunostaining studies with different antibodies and larger samples are needed to validate the data.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08001 Barcelona, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
- Correspondence: (E.F.-E.); (F.R.d.F.); Tel.: +34-954-184-712 (E.F.-E.); +34-952-614-012 (F.R.d.F.)
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
- Correspondence: (E.F.-E.); (F.R.d.F.); Tel.: +34-954-184-712 (E.F.-E.); +34-952-614-012 (F.R.d.F.)
| | - Juan Suárez
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, IBIMA, Universidad de Málaga, 29071 Málaga, Spain;
| | - Eduardo Tolosa
- Unidad de Parkinson y movimientos anormales, Servicio de Neurología, Hospital Clínic, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
| | - Dolores Vilas
- Servicio de Neurología, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Iban Aldecoa
- Centro de Diagnóstico Biomédico, Departamento de Patología, Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain;
- Banco de Tejidos Neurológicos del Biobanco, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joan Berenguer
- Servicio de Radiología, Hospital Clínic, 08036 Barcelona, Spain;
| | | |
Collapse
|
9
|
Fernández-Espejo E, Rodriguez de Fonseca F, Suárez J, Martín de Pablos Á. Cerebrospinal fluid lactoperoxidase level is enhanced in idiopathic Parkinson's disease, and correlates with levodopa equivalent daily dose. Brain Res 2021; 1761:147411. [PMID: 33676939 DOI: 10.1016/j.brainres.2021.147411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
Lactoperoxidase (LPO) is proposed to play a role in the pathogenesis of Parkinson's disease (PD). This enzyme has been reported to be enhanced in the cerebrospinal fluid (CSF) in parkinsonian patients. The objective was to look at the relationship of LPO in the CSF and serum with clinical features of idiopathic PD. LPO concentration was analyzed through ELISA techniques. Correlation of CSF or serum LPO and MDS-UPDRS, dopaminergic medication, and other clinical parameters was examined. The findings revealed that LPO concentration in the CSF, not serum, was found to be elevated in patients with PD relative to controls (p < 0.001). CSF LPO concentration negatively correlated with MDS-UPDRS part-IV score (p < .0001), a rating scale that allows evaluating motor complications. CSF LPO level inversely correlated with the dose intensity of the dopaminergic medication regimen, as evaluated with levodopa equivalent dose or LED (mg/day; p < .0001). LED value positively correlated with MDS-UPDRS part-IV score (p < .0001). To sum up, the findings indicate that CSF LPO is found to be elevated in the CSF of PD patients, and this enzyme holds promise as potential biomarker for diagnosis of PD. Increasing the dose intensity of the dopaminergic medication regimen attenuates the elevation in LPO levels in the CSF, and it facilitates the development of motor complications in patients. The pathophysiological mechanisms that seem to be responsible for LPO increase would include dopamine deficiency, oxidative stress, and less likely, microbial infection.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08010 Barcelona, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain.
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ángel Martín de Pablos
- Departamento de Anestesiología, Servicio de Cirugía, Hospital Universitario Macarena, 41009 Sevilla, Spain
| |
Collapse
|
10
|
de Vries I, Schmitt H, Lenarz T, Prenzler N, Alvi S, Staecker H, Durisin M, Warnecke A. Detection of BDNF-Related Proteins in Human Perilymph in Patients With Hearing Loss. Front Neurosci 2019; 13:214. [PMID: 30971872 PMCID: PMC6445295 DOI: 10.3389/fnins.2019.00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 12/05/2022] Open
Abstract
The outcome of cochlear implantation depends on multiple variables including the underlying health of the cochlea. Brain derived neurotrophic factor (BDNF) has been shown to support spiral ganglion neurons and to improve implant function in animal models. Whether endogenous BDNF or BDNF-regulated proteins can be used as biomarkers to predict cochlear health and implant outcome has not been investigated yet. Gene expression of BDNF and downstream signaling molecules were identified in tissue of human cochleae obtained from normal hearing patients (n = 3) during skull base surgeries. Based on the gene expression data, bioinformatic analysis was utilized to predict the regulation of proteins by BDNF. The presence of proteins corresponding to these genes was investigated in perilymph (n = 41) obtained from hearing-impaired patients (n = 38) during cochlear implantation or skull base surgery for removal of vestibular schwannoma by nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Analyzed by mass spectrometry were 41 perilymph samples despite three patients undergoing bilateral cochlear implantation. These particular BDNF regulated proteins were not detectable in any of the perilymph samples. Subsequently, targeted analysis of the perilymph proteome data with Ingenuity Pathway Analysis (IPA) identified further proteins in human perilymph that could be regulated by BDNF. These BDNF regulated proteins were correlated to the presence of residual hearing (RH) prior to implantation and to the performance data with the cochlear implant after 1 year. There was overall a decreased level of expression of BDNF-regulated proteins in profoundly hearing-impaired patients compared to patients with some RH. Phospholipid transfer protein was positively correlated to the preoperative hearing level of the patients. Our data show that combination of gene expression arrays and bioinformatic analysis can aid in the prediction of downstream signaling proteins related to the BDNF pathway. Proteomic analysis of perilymph may help to identify the presence or absence of these molecules in the diseased organ. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.
Collapse
Affiliation(s)
- Ines de Vries
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Nils Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Sameer Alvi
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| |
Collapse
|
11
|
Zebrafish models of epigenetic regulation of CNS functions. Brain Res Bull 2018; 142:344-351. [DOI: 10.1016/j.brainresbull.2018.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
|