1
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
2
|
Bhardwaj K, Singh AA, Kumar H. Unveiling the Journey from the Gut to the Brain: Decoding Neurodegeneration-Gut Connection in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2454-2469. [PMID: 38896463 DOI: 10.1021/acschemneuro.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
3
|
Jiang L, Sun XY, Wang SQ, Liu YL, Lu LJ, Wu WH, Zhi H, Wang ZY, Liu XD, Liu L. Indoxyl sulphate-TNFα axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin 2024; 45:1406-1424. [PMID: 38589687 PMCID: PMC11192958 DOI: 10.1038/s41401-024-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Ling Jiang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Ying Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Lin Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Jue Lu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Han Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhong-Yan Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Chen F, Lu K, Bai N, Hao Y, Wang H, Zhao X, Yue F. Oral administration of ellagic acid mitigates perioperative neurocognitive disorders, hippocampal oxidative stress, and neuroinflammation in aged mice by restoring IGF-1 signaling. Sci Rep 2024; 14:2509. [PMID: 38291199 PMCID: PMC10827749 DOI: 10.1038/s41598-024-53127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
This study investigates the potential of ellagic acid (EA), a phytochemical with antioxidant and anti-inflammatory properties, in managing perioperative neurocognitive disorders (PND). PND, which represents a spectrum of cognitive impairments often faced by elderly patients, is principally linked to surgical and anesthesia procedures, and heavily impacted by oxidative stress in the hippocampus and microglia-induced neuroinflammation. Employing an aged mice model subjected to abdominal surgery, we delve into EA's ability to counteract postoperative oxidative stress and cerebral inflammation by engaging the Insulin-like growth factor-1 (IGF-1) pathway. Our findings revealed that administering EA orally notably alleviated post-surgical cognitive decline in older mice, a fact that was manifested in improved performance during maze tests. This enhancement in the behavioral performance of the EA-treated mice corresponded with the rejuvenation of IGF-1 signaling, a decrease in oxidative stress markers in the hippocampus (like MDA and carbonylated protein), and an increase in the activity of antioxidant enzymes such as SOD and CAT. Alongside these, we observed a decrease in microglia-driven neuroinflammation in the hippocampus, thus underscoring the antioxidant and anti-inflammatory roles of EA. Interestingly, when EA was given in conjunction with an IGF1R inhibitor, these benefits were annulled, accentuating the pivotal role that the IGF-1 pathway plays in the neuroprotective potential of EA. Hence, EA could serve as a potent candidate for safeguarding against PND in older patients by curbing oxidative stress and neuroinflammation through the activation of the IGF-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Kai Lu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yabo Hao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Xinrong Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Fang Yue
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
5
|
Dong W, Peng Q, Liu Z, Xie Z, Guo X, Li Y, Chen C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother 2023; 167:115554. [PMID: 37738797 DOI: 10.1016/j.biopha.2023.115554] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important part of the natural immune system that plays an important role in many diseases. Estrogen is a sex hormone that plays an important role in controlling reproduction and regulates many physiological and pathological processes. Recent studies have indicated that estrogen is associated with disease progression. Estrogen can ameliorate some diseases (e. g, sepsis, mood disturbances, cerebral ischemia, some hepatopathy, Parkinson's disease, amyotrophic lateral sclerosis, inflammatory bowel disease, spinal cord injury, multiple sclerosis, myocardial ischemia/reperfusion injury, osteoarthritis, and renal fibrosis) by inhibiting the NLRP3 inflammasome. Estrogen can also promote the development of diseases (e.g., ovarian endometriosis, dry eye disease, and systemic lupus erythematosus) by upregulating the NLRP3 inflammasome. In addition, estrogen has a dual effect on the development of cancers and asthma. However, the mechanism of these effects is not summarized. This article reviewed the progress in understanding the effects of estrogen on the NLRP3 inflammasome and its mechanisms in recent years to provide a theoretical basis for an in-depth study.
Collapse
Affiliation(s)
- Wanglin Dong
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhuoxin Liu
- Clinical College of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China.
| | - Xiajun Guo
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yuanyuan Li
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
6
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
7
|
Xia J, Yang L, Huang C, Deng S, Yang Z, Zhang Y, Zhang C, Song C. Omega-3 Polyunsaturated Fatty Acid Eicosapentaenoic Acid or Docosahexaenoic Acid Improved Ageing-Associated Cognitive Decline by Regulating Glial Polarization. Mar Drugs 2023; 21:398. [PMID: 37504929 PMCID: PMC10382059 DOI: 10.3390/md21070398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Neuroinflammation induced by microglial and astrocyte polarizations may contribute to neurodegeneration and cognitive impairment. Omega (n)-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory and neuroprotective effects, but conflicting results were reported after different n-3 PUFA treatments. This study examined both the change in glial polarizations in ageing rats and the differential effects of two omega-3 PUFAs. The results showed that both PUFAs improved spatial memory in ageing rats, with docosahexaenoic acid (DHA) being more effective than eicosapentaenoic acid (EPA). The imbalance between microglial M1/M2 polarizations, such as up-regulating ionized calcium binding adaptor molecule 1 (IBA1) and down-regulating CD206 and arginase-1 (ARG-1) was reversed in the hippocampus by both n-3 PUFAs, while the DHA effect on CD206 was stronger. Astrocyte A1 polarization presented increasing S100B and C3 but decreasing A2 parameter S100A10 in the ageing brain, which were restored by both PUFAs, while DHA was more effective on S100A10 than EPA. Consistent with microglial M1 activation, the concentration of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were significantly increased, which were attenuated by DHA, while EPA only suppressed IL-6. In correlation with astrocyte changes, brain-derived neurotrophic factor precursor was increased in ageing rats, which was more powerfully down-regulated by DHA than EPA. In summary, enhanced microglial M1 and astrocytic A1 polarizations may contribute to increased brain pro-inflammatory cytokines, while DHA was more powerful than EPA to alleviate ageing-associated neuroimmunological changes, thereby better-improving memory impairment.
Collapse
Affiliation(s)
- Juan Xia
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Longen Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyi Huang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuyi Deng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine Research and Development Center, Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine Research and Development Center, Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine Research and Development Center, Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
8
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
9
|
De Chirico F, Poeta E, Babini G, Piccolino I, Monti B, Massenzio F. New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Front Cell Neurosci 2022; 16:1038721. [PMID: 36523814 PMCID: PMC9744797 DOI: 10.3389/fncel.2022.1038721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 09/17/2023] Open
Abstract
Microglia activation and neuroinflammation have been extensively studied in murine models of neurodegenerative diseases; however, to overcome the genetic differences between species, a human cell model of microglia able to recapitulate the activation profiles described in patients is needed. Here we developed human models of Parkinson's like neuroinflammation by using the human microglia clone 3 (HMC3) cells, whose activation profile in response to classic inflammatory stimuli has been controversial and reported only at mRNA levels so far. In fact, we showed the increased expression of the pro-inflammatory markers iNOS, Caspase 1, IL-1β, in response to IFN-γ plus high glucose, a non-specific disease stimulus that emphasized the dynamic polarization and heterogenicity of the microglial population. More specifically, we demonstrated the polarization of HMC3 cells through the upregulation of iNOS expression and nitrite production in response to the Parkinson's like stimuli, 6-hydroxidopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the latter depending on the NF-κB pathway. Furthermore, we identified inflammatory mediators that promote the pro-inflammatory activation of human microglia as function of different pathways that can simulate the phenotypic transition according to the stage of the pathology. In conclusion, we established and characterized different systems of HMC3 cells activation as in vitro models of Parkinson's like neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Combined physical exercise reverses the reduced expression of Bmal1 in the liver of aged mice. Life Sci 2022; 312:121175. [PMID: 36414092 DOI: 10.1016/j.lfs.2022.121175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Aging can modify the morphology and function of the liver, such as generating a decrease in the mitochondria content, autophagy, and cell senescence. Although exercise training has several beneficial effects on hepatic metabolism, its actions on autophagy processes, mitochondrial function, and cellular senescence need to be more widely explored. The present study verified the effects of aging and exercise on hepatic circadian markers, autophagy, and mitochondria activity in 24-month-old mice with a combined exercise training protocol. In addition, we used public datasets from human livers in several conditions and BMAL1 knockout mice. C57BL/6 mice were distributed into Control (CT, young, 6-month-old mice), sedentary old (Old Sed, sedentary, 24-month-old mice), and exercised old (Old Ex, 24-month-old mice submitted to a combined exercise training protocol). The exercise training protocol consisted of three days of endurance exercise - treadmill running, and two days of resistance exercise - climbing a ladder, for three weeks. At the end of the protocol, the liver was removed and prepared for histological analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunoblotting technique, and oxygen consumption. Heatmaps were built using a human dataset and Bmal1 knockout samples. In summary, the Old Sed had reduced strength, coordination, and balance, as well as a decrease in Bmal1 expression and the presence of degenerated liver cells. Still, this group upregulated the transcription factors related to mitochondrial biogenesis. The Old Ex group had increased strength, coordination, and balance, improved glucose sensitivity, as well as restored Bmal1 expression and the mitochondrial transcription factors. The human datasets indicated that mitochondrial markers and autophagy strongly correlate with specific liver diseases but not aging. We can speculate that mitochondrial and autophagy molecular markers alterations may depend on long-term training.
Collapse
|
12
|
Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022; 11:cells11172693. [PMID: 36078101 PMCID: PMC9454928 DOI: 10.3390/cells11172693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents. The acute inflammatory response, expressed in the deafferented VNs was recently proven to be crucial for the expression of the endogenous plasticity supporting functional recovery. Neuroinflammation is supported by reactive microglial cells, known to have various phenotypes with adverse effects on brain tissue. Here, we used markers of pro-inflammatory and anti-inflammatory phenotypes of reactive microglia to study microglial dynamics following a unilateral vestibular neurectomy (UVN) in the adult rat. In addition, to highlight the role of acute inflammation in vestibular compensation and its underlying mechanisms, we enhanced the inflammatory state of the deafferented VNs using systemic injections of lipopolysaccharide (LPS) during the acute phase after a UVN. We observed that the UVN induced the expression of both M1 proinflammatory and M2 anti-inflammatory microglial phenotypes in the deafferented VNs. The acute LPS treatment exacerbated the inflammatory reaction and increased the M1 phenotype while decreasing M2 expression. These effects were associated with impaired postlesional plasticity in the deafferented VNs and exacerbated functional deficits. These results highlight the importance of a homeostatic inflammatory level in the expression of the adaptative plasticity mechanisms underlying vestibular compensation. Understanding the rules that govern neuroinflammation would provide therapeutic leads in neuropathologies associated with these processes.
Collapse
|
13
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
14
|
Yu Y, Zhu MJ, Wei CF, Yang J, Song JY, Dong L, Xiang S, Zhang L, Qiu Y, Lian F. Age-related differential gene expression in granulosa cells and its effects on fertility using high-throughput transcriptomics. Syst Biol Reprod Med 2022; 68:190-202. [PMID: 35331074 DOI: 10.1080/19396368.2022.2028320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
More couples worldwide, delay their childbearing years. The increase in age causes a gradual decrease in female ovarian function and fertility, leading to an exponential decrease in women over 35 years of age having children. Although promising for some, assisted reproductive technology (ART) is not promising for older women. Decreased fertility in advanced age has become a growing concern in the field of reproduction. In this study, high-throughput transcriptome sequencing was used to identify the differentially expressed genes (DEGs) in the ovarian granulosa cells (GCs) of older women (aged 35-44) with infertility and younger women (aged 25-34). The enriched functions and signaling pathways of DEGs were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The function of DEGs were analyzed and predicted combined with clinical ART data. Sequencing results were verified by quantitative reverse transcription-polymerase chain reaction. Retrospective clinical data and bioinformatics analyses revealed marked reductions in the retrieved oocyte, metaphase II oocyte, 2PN fertilization, and effective embryo numbers in older women. Although the clinical pregnancy and live birth rates did not differ notably between the groups, the miscarriage rate increased significantly in older women. In total, 620 DEGs were identified, of which 246 were upregulated, and 374 were downregulated in the older group. GO, and KEGG analyses indicated that the mechanism of fertility decline in older women was probably related to chronic inflammation, cytokine receptor interaction, and oxidative stress. In conclusion, combined with basic clinical ART data and pregnancy outcomes, we tried to provide a more intuitive and in-depth understanding of age-related reduction in ovarian function and pathogenesis of infertility with regard to chronic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yi Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Reproductive and Genetic Center of Integrated Traditional and Western Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming-Jie Zhu
- School of Medicine, Department of Orthopedics, University of Colorado, Colorado, CO, USA
| | - Chao-Feng Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- The personnel department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Yan Song
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Dong
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Zhang
- Reproductive and Genetic Center of Integrated Traditional and Western Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Qiu
- Reproductive and Genetic Center of Integrated Traditional and Western Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Reproductive and Genetic Center of Integrated Traditional and Western Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Yang XB, Zu HB, Zhao YF, Yao K. Agomelatine Prevents Amyloid Plaque Deposition, Tau Phosphorylation, and Neuroinflammation in APP/PS1 Mice. Front Aging Neurosci 2022; 13:766410. [PMID: 35153715 PMCID: PMC8828541 DOI: 10.3389/fnagi.2021.766410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Agomelatine, an agonist of melatonergic MT1 and MT2 receptors and a selective 5-hydroxytryptamine 2C receptor antagonist, is widely applied in treating depression and insomnia symptoms in several neurogenerative diseases. However, the neuroprotective effect of agomelatine in Alzheimer’s disease (AD) is less known. In this study, a total of 30 mice were randomly divided into three groups, namely, wild type (WT), APP/PS1, and agomelatine (50 mg/kg). After 30 days, the Morris water maze was performed to test the cognitive ability of mice. Then, all mice were sacrificed, and the hippocampus tissues were collected for ELISA, Western blot, and immunofluorescence analysis. In this study, we found that agomelatine attenuated spatial memory deficit, amyloid-β (Aβ) deposition, tau phosphorylation, and neuroinflammation in the hippocampus of APP/PS1 mice. Further study demonstrated that agomelatine treatment upregulated the protein expression of DHCR24 and downregulated P-Akt, P-mTOR, p-p70s6k, Hes1, and Notch1 expression. In summary, our results identified that agomelatine could improve cognitive impairment and ameliorate AD-like pathology in APP/PS1 mice via activating DHCR24 signaling and inhibiting Akt/mTOR and Hes1/Notch1 signaling pathway. Agomelatine may become a promising drug candidate in the therapy of AD.
Collapse
|
16
|
Li Q, Shen C, Liu Z, Ma Y, Wang J, Dong H, Zhang X, Wang Z, Yu M, Ci L, Sun R, Shen R, Fei J, Huang F. Partial depletion and repopulation of microglia have different effects in the acute MPTP mouse model of Parkinson's disease. Cell Prolif 2021; 54:e13094. [PMID: 34312932 PMCID: PMC8349650 DOI: 10.1111/cpr.13094] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored. MATERIALS AND METHODS An acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation-related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP-challenged mice. RESULTS The receptor for colony-stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397-formulated diet for 21 days. Microglial depletion downregulated both pro-inflammatory and anti-inflammatory molecule expression at baseline and after MPTP administration. At 1d post-MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397-fed mice, but not in control diet (CD)-fed mice. However, partial microglial depletion in mice exerted little effect on MPTP-induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication. CONCLUSIONS Microglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.
Collapse
Affiliation(s)
- Qing Li
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Chenye Shen
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hongtian Dong
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zishan Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruling Shen
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Jian Fei
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Jalloh A, Flowers A, Hudson C, Chaput D, Guergues J, Stevens SM, Bickford PC. Polyphenol Supplementation Reverses Age-Related Changes in Microglial Signaling Cascades. Int J Mol Sci 2021; 22:6373. [PMID: 34198710 PMCID: PMC8232085 DOI: 10.3390/ijms22126373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.
Collapse
Affiliation(s)
- Ahmad Jalloh
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, USF Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 78, Tampa, FL 33612, USA; (A.J.); (A.F.)
| | - Antwoine Flowers
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, USF Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 78, Tampa, FL 33612, USA; (A.J.); (A.F.)
| | - Charles Hudson
- Research Service, James A Haley VA Hospital, Tampa, FL 33620, USA;
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (J.G.); (S.M.S.J.)
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (J.G.); (S.M.S.J.)
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (J.G.); (S.M.S.J.)
| | - Paula C. Bickford
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, USF Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 78, Tampa, FL 33612, USA; (A.J.); (A.F.)
- Research Service, James A Haley VA Hospital, Tampa, FL 33620, USA;
| |
Collapse
|
18
|
Rabaneda-Lombarte N, Serratosa J, Bové J, Vila M, Saura J, Solà C. The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson's disease. J Neuroinflammation 2021; 18:88. [PMID: 33823877 PMCID: PMC8025338 DOI: 10.1186/s12974-021-02132-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Background It is suggested that neuroinflammation, in which activated microglial cells play a relevant role, contributes to the development of Parkinson’s disease (PD). Consequently, the modulation of microglial activation is a potential therapeutic target to be taken into account to act against the dopaminergic neurodegeneration occurring in this neurological disorder. Several soluble and membrane-associated inhibitory mechanisms contribute to maintaining microglial cells in a quiescent/surveillant phenotype in physiological conditions. However, the presence of activated microglial cells in the brain in PD patients suggests that these mechanisms have been somehow overloaded. We focused our interest on one of the membrane-associated mechanisms, the CD200-CD200R1 ligand-receptor pair. Methods The acute MPTP experimental mouse model of PD was used to study the temporal pattern of mRNA expression of CD200 and CD200R1 in the context of MPTP-induced dopaminergic neurodegeneration and neuroinflammation. Dopaminergic damage was assessed by tyrosine hydroxylase (TH) immunoreactivity, and neuroinflammation was evaluated by the mRNA expression of inflammatory markers and IBA1 and GFAP immunohistochemistry. The effect of the modulation of the CD200-CD200R1 system on MPTP-induced damage was determined by using a CD200R1 agonist or CD200 KO mice. Results MPTP administration resulted in a progressive decrease in TH-positive fibres in the striatum and TH-positive neurons in the substantia nigra pars compacta, which were accompanied by transient astrogliosis, microgliosis and expression of pro- and anti-inflammatory markers. CD200 mRNA levels rapidly decreased in the ventral midbrain after MPTP treatment, while a transient decrease of CD200R1 mRNA expression was repeatedly observed in this brain area at earlier and later phases. By contrast, a transient increase in CD200R1 expression was observed in striatum. The administration of a CD200R1 agonist resulted in the inhibition of MPTP-induced dopaminergic neurodegeneration, while microglial cells showed signs of earlier activation in CD200-deficient mice. Conclusions Collectively, these findings provide evidence for a correlation between CD200-CD200R1 alterations, glial activation and neuronal loss. CD200R1 stimulation reduces MPTP-induced loss of dopaminergic neurons, and CD200 deficiency results in earlier microglial activation, suggesting that the potentiation of CD200R1 signalling is a possible approach to controlling neuroinflammation and neuronal death in PD.
Collapse
Affiliation(s)
- Neus Rabaneda-Lombarte
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Bové
- Vall d'Hebrón Research Institute-CIBERNED, Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebrón Research Institute-CIBERNED, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
19
|
Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, Ahmadiani A. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson's disease. CNS Neurosci Ther 2021; 27:308-319. [PMID: 33497031 PMCID: PMC7871791 DOI: 10.1111/cns.13609] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson’s disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. Methods Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6‐OHDA‐induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC‐1α, TFAM, Drp‐1, GFAP, and Iba‐1 were assessed. Results Intranasal insulin significantly reduces 6‐OHDA‐induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. Conclusion Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease‐modifying therapy for PD should be considered for extensive research.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Jian B, Hu M, Cai W, Zhang B, Lu Z. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol 2020; 11:585655. [PMID: 33362768 PMCID: PMC7756147 DOI: 10.3389/fimmu.2020.585655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed.
Collapse
Affiliation(s)
- Banghao Jian
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyan Hu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center of Clinical Immunology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. Int J Mol Sci 2020; 21:ijms21217871. [PMID: 33114176 PMCID: PMC7660637 DOI: 10.3390/ijms21217871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Activated microglia involved in the development of orofacial pain hypersensitivity have two major polarization states. The aim of this study was to assess the involvement of the aging-related phenotypic conversion of medullary microglia in the enhancement of intraoral pain sensitivity using senescence-accelerated mice (SAM)-prone/8 (SAMP8) and SAM-resistant/1 (SAMR1) mice. Mechanical head-withdrawal threshold (MHWT) was measured for 21 days post palatal mucosal incision. The number of CD11c-immunoreactive (IR) cells [affective microglia (M1)] and CD163-IR cells [protective microglia (M2)], and tumor-necrosis-factor-α (TNF-α)-IR M1 and interleukin (IL)-10-IR M2 were analyzed via immunohistochemistry on days 3 and 11 following incision. The decrease in MHWT observed following incision was enhanced in SAMP8 mice. M1 levels and the number of TNF-α-IR M1 were increased on day 3 in SAMP8 mice compared with those in SAMR1 mice. On day 11, M1 and M2 activation was observed in both groups, whereas IL-10-IR M2 levels were attenuated in SAMP8 mice, and the number of TNF-α-IR M1 cells increased, compared to those in SAMR1 mice. These results suggest that the mechanical allodynia observed following intraoral injury is potentiated and sustained in SAMP8 mice due to enhancement of TNF-α signaling, M1 activation, and an attenuation of M2 activation accompanying IL-10 release.
Collapse
|
22
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
23
|
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? JOURNAL OF PARKINSONS DISEASE 2020; 9:501-515. [PMID: 31282427 PMCID: PMC6700650 DOI: 10.3233/jpd-191683] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Liudmila Mus
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
24
|
Rodríguez-Cruz A, Romo-Mancillas A, Mendiola-Precoma J, Escobar-Cabrera JE, García-Alcocer G, Berumen LC. "Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson's disease". IBRO Rep 2020; 8:28-35. [PMID: 31909290 PMCID: PMC6938966 DOI: 10.1016/j.ibror.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomolecules are interesting candidates for the regulation of inflammation and possible neuroprotection, such as valerenic acid, one of the main components of Valeriana officinalis. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced mouse model of Parkinson's disease was developed to evaluate the motor effects of valerenic acid. The evaluation was carried out with four tests (an invert screen test for muscle strength, cross beam test, open field mobility test and lifting on hind legs test). Subsequently, the neuroinflammatory process was evaluated through ELISA of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ). The decreases in the inflammatory and neurodegenerative processes were evaluated by Western blot and immunohistochemistry analyses of the tissues, which included an evaluation of the tyrosine hydroxylase and GFAP proteins. Finally, the predicted mechanism of action of valerenic acid was supported by molecular docking calculations with the 5-HT5A receptor. The results indicate that the use of valerenic acid as a co-treatment decreases the neuroinflammation in Parkinson's disease induced by MPTP and provides evidence of a decrease in the evaluated pro-inflammatory cytokines and in the amount of GFAP in the mesencephalic area. Valerenic acid prevents neuroinflammation in a Parkinson's disease mouse model, which might reflect the neuroprotection of dopaminergic neurons with the recovery of motor ability.
Collapse
Affiliation(s)
- Alfredo Rodríguez-Cruz
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Antonio Romo-Mancillas
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Jesus Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Jesica Esther Escobar-Cabrera
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Guadalupe García-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Laura Cristina Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
25
|
Hamada T, Aratake T, Higashi Y, Ueba Y, Shimizu T, Shimizu S, Yawata T, Ueba T, Nakamura R, Akizawa T, Fujieda M, Saito M. Zinc-aggravated M1 microglia regulate astrocytic engulfment via P2×7 receptors. J Trace Elem Med Biol 2020; 61:126518. [PMID: 32353820 DOI: 10.1016/j.jtemb.2020.126518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Glial cells such as astrocytes and microglia play an important role in the central nervous system via communication between these glial cells. Activated microglia can exhibit either the inflammatory M1 phenotype or the anti-inflammatory M2 phenotype, which influences astrocytic neuroprotective functions, including engulfment of cell debris. Recently, extracellular zinc has been shown to promote the inflammatory M1 phenotype in microglia through intracellular zinc accumulation and reactive oxygen species (ROS) generation. PURPOSE Here, we investigated whether the zinc-enhanced inflammatory M1 phenotype of microglia affects the astrocytic engulfing activity. METHODS Engulfing activity was assessed in astrocytes treated with microglial-conditioned medium (MCM) from lipopolysaccharide (LPS)-activated or from ZnCl2-pretreated LPS-activated M1 microglia. The effect of zinc on microglia phenotype was also validated using the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and the ROS scavenger Trolox. RESULTS Although treatment of astrocytes with LPS showed no significant effect on the engulfing activity, MCM from LPS-induced M1 microglia increased the beads uptake by astrocytes. This increased uptake activity was suppressed when MCM from LPS-induced M1 microglia pretreated with ZnCl2 was applied to astrocytes, which was further abolished by the intracellular zinc chelator TPEN and the ROS scavenger Trolox. In addition, expression of P2×7 receptors (P2×7R) was increased in astrocytes treated with MCM derived from M1 microglia but not in the M1 microglia pretreated with ZnCl2. CONCLUSION These findings suggest that zinc pre-treatment abolishes the ability of LPS-induced M1 microglia to increase the engulfing activity in astrocytes via alteration of astrocytic P2×7R.
Collapse
Affiliation(s)
- Tomoya Hamada
- Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan; Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Takaaki Aratake
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan.
| | - Yusuke Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Toshio Yawata
- Department of Neurosurgery, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Tetsuya Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Rina Nakamura
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Toshifumi Akizawa
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| |
Collapse
|
26
|
Tantingco G, Ryou MG. Normobaric intermittent hypoxic training regulates microglia phenotype and enhances phagocytic activity. Exp Biol Med (Maywood) 2020; 245:740-747. [PMID: 32299228 PMCID: PMC7221485 DOI: 10.1177/1535370220919361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/25/2020] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT The effects of intermittent hypoxic training or conditioning on many pathological conditions have been widely investigated. One of the pathological conditions dealt with intermittent hypoxic training is ischemic stroke. Well-known mechanisms of intermittent hypoxia-induced protection are related to increased energy metabolism and the enhanced antioxidant effects. In the last decades, the role of microglia in the progress of ischemic stroke-related brain damage has been focused. The dual-edge function of microglia indicates that the microglia-mediated inflammatory response is definitely beneficial in the early stage of ischemic stroke, but long-term activation of microglia is rather detrimental during the recovery process. The effect of IHT on microglia polarization is not investigated. This study focused on whether IHT regulates the polarization of microglia without dampening its classic phagocytic function. This study will provide pivotal information regarding the effects of IHT on the long-term effects on the recovery process from ischemic stroke.
Collapse
Affiliation(s)
- Genell Tantingco
- Department of Medical Laboratory Science and Public Health Tarleton State
University, Fort Worth, TX 76104, USA
| | - Myoung-Gwi Ryou
- Department of Medical Laboratory Science and Public Health Tarleton State
University, Fort Worth, TX 76104, USA
- Department of Physiology and Anatomy University of North Texas Health
Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
27
|
Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci 2020; 11:372. [PMID: 31998119 PMCID: PMC6965030 DOI: 10.3389/fnagi.2019.00372] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD), the main risk factor of which is age, is one of the most common neurodegenerative diseases, thus presenting a substantial burden on the health of affected individuals as well as an economic burden. Sirtuin 2 (SIRT2), a subtype in the family of sirtuins, belongs to class III histone deacetylases (HDACs). It is known that SIRT2 levels increase with aging, and a growing body of evidence has been accumulating, showing that the activity of SIRT2 mediates various processes involved in PD pathogenesis, including aggregation of α-synuclein (α-syn), microtubule function, oxidative stress, inflammation, and autophagy. There have been conflicting reports about the role of SIRT2 in PD, in that some studies indicate its potential to induce the death of dopaminergic (DA) neurons, and that inhibition of SIRT2 may, therefore, have protective effects in PD. Other studies suggest a protective role of SIRT2 in the context of neuronal damage. As current treatments for PD are directed at alleviating symptoms and are very limited, a comprehensive understanding of the enzymology of SIRT2 in PD may be essential for developing novel therapeutic agents for the treatment of this disease. This review article will provide an update on our knowledge of the structure, distribution, and biological characteristics of SIRT2, and highlight its role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Konghua Zhu
- Department of Neurology, The Eighth People Hospital of Qingdao City, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Kim B, Park JY, Cho DY, Ko HM, Yoon SH, Choi DK. 2-(5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)-N-(2-hydroxyethyl)-2-oxoacetamide (CDMPO) has anti-inflammatory properties in microglial cells and prevents neuronal and behavioral deficits in MPTP mouse model of Parkinson's disease. Neuropharmacology 2019; 166:107928. [PMID: 31887307 DOI: 10.1016/j.neuropharm.2019.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective loss of nigrostriatal dopamine neurons associated with microglial activation. Inhibition of the inflammatory response elicited by activated microglia could be an effective strategy to alleviate the progression of PD. Here, we synthesized 2-(5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)-N-(2-hydroxyethyl)-2-oxoacetamide (CDMPO) and studied its protective anti-inflammatory mechanisms following lipopolysaccharide (LPS)-induced neuroinflammation in vitro and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in vivo. CDMPO and its parent compound, rimonabant, significantly attenuated nitric oxide (NO) production in LPS-stimulated primary microglia and BV2 cells. Furthermore, CDMPO significantly inhibited the release of proinflammatory cytokines and prostaglandin E2 (PGE2) by activated BV2 cells, also suppressed expression of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Mechanistically, CDMPO attenuated LPS-induced activation of nuclear factor-kappa B (NF-κB), inhibitor of kappa B alpha (IκBα), and p38 phosphorylation in BV2 cells. MPTP intoxication of mice results in glial activation, tyrosine hydroxylase (TH) depletion, and significant behavioral deficits. Prophylactic treatment with CDMPO decreased proinflammatory molecules via NF-κB and p38 mitogen-activated protein kinase signaling, resulting in protection of dopaminergic neurons and improved behavioral impairments. These results suggest that CDMPO is a promising neuroprotective agent for the prevention and treatment of microglia-mediated neuroinflammatory conditions and may be useful for behavioral improvement in PD phenotype.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Applied Life Science, BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hyun Myung Ko
- Department of Biotechnology, Konkuk University, Chungju, 27478, Republic of Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Dong-Kug Choi
- Department of Applied Life Science, BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biotechnology, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
29
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
30
|
Biochanin A protects against angiotensin II-induced damage of dopaminergic neurons in rats associated with the increased endophilin A2 expression. Behav Pharmacol 2019; 30:700-711. [PMID: 31703032 DOI: 10.1097/fbp.0000000000000515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The brain renin-angiotensin system plays a vital role in the modulation of the neuroinflammatory responses and the progression of dopaminergic (DA) degeneration. Angiotensin II (Ang II) induces microglia activation via angiotensin II type 1 receptor (AT1R), which in turn affects the function of DA neurons. Endophilin A2 (EPA2) is involved in fast endophilin-mediated endocytosis and quickly endocytoses several G-protein-coupled receptor (GPCR), while AT1R belongs to GPCR family. Therefore, we speculated that EPA2 may modulate microglia activation via endocytosing AT1R. Biochanin A is an O-methylated isoflavone, classified as a kind of phytoestrogen due to its chemical structure that is similar to mammalian estrogens. In this study, we investigated the protective effects of biochanin A on Ang II-induced DA neurons damage in vivo, and molecular mechanisms. The results showed that biochanin A treatment for 7 days attenuated the behavioral dysfunction, inhibited the microglial activation, and prevented DA neuron damage in Ang II-induced rats. Furthermore, biochanin A increased EPA2 expression and decreased the expression of AT1R, gp91phox, p22 phox, NLRP3, ASC, Caspase-1, IL-1β, IL-6, IL-18, and TNF-α. In summary, these results suggest that biochanin A exerts protective effects in Ang II-induced model rats, and the mechanisms may involve inhibition of inflammatory responses, an increase in EPA2 expression and a decrease in AT1R expression.
Collapse
|
31
|
Tarrant JC, Savickas P, Omodho L, Spinazzi M, Radaelli E. Spontaneous Incidental Brain Lesions in C57BL/6J Mice. Vet Pathol 2019; 57:172-182. [PMID: 31272300 DOI: 10.1177/0300985819859878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetically engineered mouse lines on a C57BL/6J background are widely employed as preclinical models to study neurodegenerative human disorders and brain tumors. However, because of the lack of comprehensive data on the spontaneous background neuropathology of the C57BL/6J strain, discriminating between naturally occurring changes and lesions caused by experimental mutations can be challenging. In this context, this study aims at defining the spectrum and frequency of spontaneous brain changes in a large cohort of C57BL/6J mice and their association with specific biological variables, including age and sex. Brains from 203 experimentally naive and clinically unremarkable C57BL/6J mice were collected and analyzed by means of histopathology and immunohistochemistry. Mice ranged in age from 3 to 110 weeks with 89 females, 111 males, and 3 unknowns. Sixteen different spontaneous lesion categories were described in this cohort. Age-related neurodegenerative and/or neuroinflammatory findings represented the most common pathologic changes and included (1) Hirano-like inclusions in the thalamic neurons, (2) neuroaxonal dystrophy in the medulla oblongata, (3) periodic acid-Schiff-positive granular deposits in the neuropil of the hippocampus, and (4) progressive neuroinflammation characterized by microgliosis and astrogliosis. Neoplastic conditions, developmental abnormalities, and circulatory disorders were rarely observed incidental findings. In conclusion, this study describes spontaneous age-related brain lesions of the C57BL/6J mouse and provides a reference for evaluating and interpreting the neuropathological phenotype in genetically engineered mouse models developed and maintained on this congenic background.
Collapse
Affiliation(s)
- James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Patrick Savickas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lorna Omodho
- VIB Center for the Biology of Disease and KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Marco Spinazzi
- Centre de Référence des Maladies Neuromusculaires, Service de Neurologie, Centre Hospitalier Universitaire d' Angers, Angers, France
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,VIB Center for the Biology of Disease and KU Leuven Center for Human Genetics, Leuven, Belgium
| |
Collapse
|
32
|
Yao K, Zu HB. Microglial polarization: novel therapeutic mechanism against Alzheimer's disease. Inflammopharmacology 2019; 28:95-110. [PMID: 31264132 DOI: 10.1007/s10787-019-00613-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that results in progressive dementia, and exhibits high disability and fatality rates. Recent evidence has demonstrated that neuroinflammation is critical in the pathophysiological processes of AD, which is characterized by the activation of microglia and astrocytes. Under different stimuli, microglia are usually activated into two polarized states, termed the classical 'M1' phenotype and the alternative 'M2' phenotype. M1 microglia are considered to promote inflammatory injury in AD; in contrast, M2 microglia exert neuroprotective effects. Imbalanced microglial polarization, in the form of excessive activation of M1 microglia and dysfunction of M2 microglia, markedly promotes the development of AD. Furthermore, an increasing number of studies have shown that the transition of microglia from the M1 to M2 phenotype could potently alleviate pathological damage in AD. Hence, this article reviews the current knowledge regarding the role of microglial M1/M2 polarization in the pathophysiology of AD. In addition, we summarize several approaches that protect against AD by altering the polarization states of microglia. This review aims to contribute to a better understanding of the pathogenesis of AD and, moreover, to explore the potential of novel drugs for the treatment of AD in the future.
Collapse
Affiliation(s)
- Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|