1
|
Kim MJ, Simms S, Behnammanesh G, Honkura Y, Suzuki J, Park HJ, Milani M, Katori Y, Bird JE, Ikeda A, Someya S. A Mutation in Tmem135 Causes Progressive Sensorineural Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593414. [PMID: 38766120 PMCID: PMC11100813 DOI: 10.1101/2024.05.09.593414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Transmembrane protein 135 (TMEM135) is a 52 kDa protein with five predicted transmembrane domains that is highly conserved across species. Previous studies have shown that TMEM135 is involved in mitochondrial dynamics, thermogenesis, and lipid metabolism in multiple tissues; however, its role in the inner ear or the auditory system is unknown. We investigated the function of TMEM135 in hearing using wild-type (WT) and Tmem135 FUN025/FUN025 ( FUN025 ) mutant mice on a CBA/CaJ background, a normal-hearing mouse strain. Although FUN025 mice displayed normal auditory brainstem response (ABR) at 1 month, we observed significantly elevated ABR thresholds at 8, 16, and 64 kHz by 3 months, which progressed to profound hearing loss by 12 months. Consistent with our auditory testing, 13-month-old FUN025 mice exhibited a severe loss of outer hair cells and spiral ganglion neurons in the cochlea. Our results using BaseScope in situ hybridization indicate that TMEM135 is expressed in the inner hair cells, outer hair cells, and supporting cells. Together, these results demonstrate that the FUN025 mutation in Tmem135 causes progressive sensorineural hearing loss, and suggest that TMEM135 is crucial for maintaining key cochlear cell types and normal sensory function in the aging cochlea.
Collapse
|
2
|
Li W, Sun W, Zhang G, Lu Y, Dai C. Thermosensitive hydrogel containing ethosuximide-loaded multivesicular liposomes attenuates age-related hearing loss in C57BL/6J mice. Neurosci Lett 2024; 826:137693. [PMID: 38428726 DOI: 10.1016/j.neulet.2024.137693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Ethosuximide is the first drug reported to protect against age-related hearing loss, but its benefits are hampered by the pronounced side effects generated through systemic administration. We prepared a thermosensitive hydrogel containing ethosuximide-encapsulated multivesicular liposomes (ethosuximide-loaded MVLs-Gel) and evaluated its functional and histological effects on age-related hearing loss in C57BL/6J mice. The MVLs-Gel showed slow sustained-release characteristics up to over 120 h. After 8 weeks of treatment, compared to the oral systemic administration of ethosuximide, intratympanic ethosuximide-loaded MVLs-Gel injection dramatically reduced the loss of age-related spiral ganglion neurons in the apical turns of the mice (low-frequency regions, p < 0.05). Correspondingly, compared to the oral systemic administration group, the intratympanic ethosuximide-loaded MVLs-Gel injection group showed significantly lower auditory brainstem response threshold shifts at stimulus frequencies of 4, 8, and 16 kHz (low-and middle-frequency regions, p < 0.05). In conclusion, intratympanic ethosuximide-loaded MVLs-Gel injection can reach the apical turn of the cochlea, which is extremely difficult with oral systemic administration of the drug. The ethosuximide-loaded MVLs-Gel, as a novel intratympanic sustained-release drug delivery system, attenuated age-related hearing loss in C57BL/6J mice.
Collapse
Affiliation(s)
- Wei Li
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Wenfang Sun
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Guoming Zhang
- Department of Otolaryngology, Yuecheng District People's Hospital, Shaoxing, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Shanghai, China.
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China.
| |
Collapse
|
3
|
Simms SS, Milani MN, Kim MJ, Husain R, Infante L, Cooke PS, Someya S. Loss of Esr1 Does Not Affect Hearing and Balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583163. [PMID: 38496399 PMCID: PMC10942324 DOI: 10.1101/2024.03.03.583163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although estrogen affects the structure and function of the nervous system and brain and has a number of effects on cognition, its roles in the auditory and vestibular systems remain unclear. The actions of estrogen are mediated predominately through two classical nuclear estrogen receptors, estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). In the current study, we investigated the roles of ESR1 in normal auditory function and balance performance using 3-month-old wild-type (WT) and Esr1 knockout (KO) mice on a CBA/CaJ background, a normal-hearing strain. As expected, body weight of Esr1 KO females was lower than that of Esr1 KO males. Body weight of Esr1 KO females was higher than that of WT females, while there was no difference in body weight between WT and Esr1 KO males. Similarly, head diameter was higher in Esr1 KO vs. WT females. Contrary to our expectations, there were no differences in auditory brainstem response (ABR) thresholds, ABR waves I-V amplitudes and ABR waves I-V latencies at 8, 16, 32, and 48 kHz, distortion product otoacoustic emission (DPOAE) thresholds and amplitudes at 8, 16, and 32 kHz, and rotarod balance performance (latency to fall) between WT and Esr1 KO mice. Furthermore, there were no sex differences in ABRs, DPOAEs, and rotarod balance performance in Esr1 KO mice. Taken together, our findings show that Esr1 deficiency does not affect auditory function or balance performance in normal hearing mice, and suggest that loss of Esr1 is likely compensated by ESR2 or other estrogen receptors to maintain the structure and function of the auditory and vestibular systems under normal physiological conditions.
Collapse
Affiliation(s)
- Shion S Simms
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Marcus N Milani
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Ryan Husain
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Laura Infante
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Wan H, Wang W, Liu J, Zhang Y, Yang B, Hua R, Chen H, Chen S, Hua Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear Res 2023; 440:108913. [PMID: 37939412 DOI: 10.1016/j.heares.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rongkai Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
5
|
Yan L, Huo Y, Shi J, Dong Y, Tan H. Traditional Chinese medicine for the prevention and treatment of presbycusis. Heliyon 2023; 9:e22422. [PMID: 38076135 PMCID: PMC10703638 DOI: 10.1016/j.heliyon.2023.e22422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 10/10/2024] Open
Abstract
Background Presbycusis/Age-related hearing loss is a sensorineural hearing loss caused by age-related deterioration of the auditory system that poses a risk to the physical and mental health of older people, including social and cognitive decline. It is also associated with frailty, falls and depression. There are currently no specific medications for the treatment of presbycusis, and early detection and intervention are key to its prevention and management. Traditional Chinese medicine interventions may offer opportunities in the prevention and treatment of presbycusis, but there is no relevant review. Methods Literature searches was conducted using PubMed, Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) databases for review articles, research articles, clinical trials, meta-analyses, and case studies in animal models and clinical trials. Results We summarized the pathological mechanisms associated with presbycusis, related to genetic factors, environment, lifestyle, and molecular mechanisms related to oxidative stress, mitochondrial dysfunction, and inflammatory pathways. It is suggested that traditional Chinese medicine interventions may offer opportunities in the prevention and treatment of presbycusis using active ingredients of herbs or formulas, acupuncture, and exercise such as Tai Chi Chuan or Ba Duan Jin. The active ingredients of herbs or formulas may exert ear protection through Nrf2-mediated antioxidant pathways, NF-kB and NLRP3-related anti-inflammatory signaling, and regulation of autophagy. Conclusions Here, we review the pathogenetic factors and pathological mechanisms involved in presbycusis, as well as traditional Chinese medicine interventions and treatments, with the aim of providing a new perspective for the prevention and treatment of hearing loss in the elderly and further improving their quality of life.
Collapse
Affiliation(s)
- Li Yan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Huo
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jianrong Shi
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Dong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongsheng Tan
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Miwa T, Katsuno T, Wei F, Tomizawa K. Mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with age-related hearing loss. FEBS Open Bio 2023; 13:1365-1374. [PMID: 37258461 PMCID: PMC10315731 DOI: 10.1002/2211-5463.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology‐Head and Neck Surgery, Graduate School of MedicineKyoto UniversityJapan
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Tatsuya Katsuno
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Fan‐Yan Wei
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
| |
Collapse
|
7
|
Kim MJ, Carmichael PB, Bose U, Honkura Y, Suzuki J, Ding D, Erfe SL, Simms SS, Avaiya KA, Milani MN, Rymer EJ, Fragnito DT, Strom N, Salvi R, Someya S. Sex differences in body composition, voluntary wheel running activity, balance performance, and auditory function in CBA/CaJ mice across the lifespan. Hear Res 2023; 428:108684. [PMID: 36599258 PMCID: PMC11446250 DOI: 10.1016/j.heares.2022.108684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Peter B Carmichael
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Upal Bose
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Yohei Honkura
- Department of Otolaryngology-Head &Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head &Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Samantha L Erfe
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Shion S Simms
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Kishan A Avaiya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Marcus N Milani
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Elizabeth J Rymer
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Daniella T Fragnito
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Nathan Strom
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Zhao C, Yang Z, Gong S, Du Z. Adenovirus-mediated SIRT1 protects cochlear strial marginal cells in a D-gal-induced senescent model in vitro. Mol Biol Rep 2023; 50:541-551. [PMID: 36350417 DOI: 10.1007/s11033-022-08032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND A primary obstacle in age-related hearing loss (ARHL) study is the lack of accelerated senescent models in vitro that explore the precise underlying mechanism in different types of ARHL. The damage to strial marginal cells (SMCs) is a subset of strial presbycusis-associated pathological changes. We aimed to establish a D-galactose (D-gal)-induced SMCs senescent model and study the effect of deacetylase sirtuin 1 (SIRT1) on presbycusis in vitro. METHODS SMCs from C57BL/6J neonatal mice were cultured and treated with D-gal to establish accelerated senescent models. And then D-gal-induced SMCs were transfected with adenovirus (Ad)-SIRT1-GFP or Ad-GFP. Oxidative stress and mitochondrial DNA (mtDNA) damage were determined by histological analysis or RT-PCR. Western blotting (WB) and RT-PCR were used to evaluate protein and mRNA levels of superoxide dismutase 2 (SOD2) and SIRT1, respectively. Additionally, apoptosis was investigated by WB and TUNEL staining. RESULTS D-gal-induced SMCs exhibited several characteristics of senescence, including increased the level of 8-hydroxy-2'-deoxyguanosine, which is a marker of DNA oxidative damage, and elevated the amount of mtDNA 3860-bp deletion, which is a common type of mtDNA damage in the auditory system of mice. SIRT1 overexpression effectively inhibited these changes by upregulating the level of SOD2, thereby inhibiting cytochrome c translocation from mitochondria to cytoplasm, inhibiting cell apoptosis, and ultimately delaying aging in the D-gal-induced senescent SMCs. CONCLUSIONS Altogether, the evidence suggests that the D-gal-induced SMCs accelerated aging model is successfully established, and SIRT1 overexpression protects SMCs against oxidative stress by enhancing SOD2 expression in ARHL.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China. .,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China. .,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
9
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
10
|
Zou T, Ye B, Chen K, Zhang A, Guo D, Pan Y, Ding R, Hu H, Sun X, Xiang M. Impacts of impaired mitochondrial dynamics in hearing loss: Potential therapeutic targets. Front Neurosci 2022; 16:998507. [PMID: 36278017 PMCID: PMC9579438 DOI: 10.3389/fnins.2022.998507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the powerhouse of the cells. Under physiological conditions, mitochondrial fission and fusion maintain a dynamic equilibrium in the cytoplasm, which is referred to as mitochondrial dynamics. As an important approach to regulating mitochondrial function and quantity, the role of mitochondrial dynamics has been demonstrated in the pathogenesis of various disease models, including brain damage, neurodegeneration, and stress. As the vital organ of the peripheral auditory system, the cochlea consumes a significant amount of energy, and the maintenance of mitochondrial homeostasis is essential for the cochlear auditory capacity. OPA1 functions as both a necessary gene regulating mitochondrial fusion and a pathogenic gene responsible for auditory neuropathy, suggesting that an imbalance in mitochondrial dynamics may play a critical role in hearing loss, but relevant studies are few. In this review, we summarize recent evidence regarding the role of mitochondrial dynamics in the pathogenesis of noise-induced hearing loss (NIHL), drug-induced hearing loss, hereditary hearing loss, and age-related hearing loss. The impacts of impaired mitochondrial dynamics on hearing loss are discussed, and the potential of mitochondrial dynamics for the prevention and treatment of hearing loss is considered.
Collapse
Affiliation(s)
- Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xingmei Sun
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Xingmei Sun,
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Mingliang Xiang,
| |
Collapse
|
11
|
Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Environ Health Rep 2021; 8:294-308. [PMID: 34761353 PMCID: PMC8826492 DOI: 10.1007/s40572-021-00329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA.
| |
Collapse
|
12
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
13
|
Torres W, Nava M, Galbán N, Gómez Y, Morillo V, Rojas M, Cano C, Chacín M, D Marco L, Herazo Y, Velasco M, Bermúdez V, Rojas-Quintero J. Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective. Curr Pharm Des 2021; 26:4496-4508. [PMID: 32674728 DOI: 10.2174/1381612826666200716161610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Aging is a time-dependent inevitable process, in which cellular homeostasis is affected, which has an impact on tissue function. This represents a risk factor for the development of numerous non-transmissible diseases. In consequence, the scientific community continues to search for therapeutic measures capable of improving quality of life and delaying cellular aging. At the center of this research is metformin, a widely used drug in Type 2 Diabetes Mellitus treatment that has a reduced adverse effects profile. Furthermore, there is evidence that this drug has beneficial health effects that go beyond its anti-hyperglycemic properties. Among these effects, its geronto-protection capability stands out. There is growing evidence that points out to an increased life expectancy as well as the quality of life in model organisms treated with metformin. Therefore, there is an abundance of research centered on elucidating the mechanism through which metformin has its anti-aging effects. Among these, the AMPK, mTORC1, SIRT1, FOXO, NF.kB, and DICER1 pathways can be mentioned. Furthermore, studies have highlighted the possibility of a role for the gut microbiome in these processes. The next step is the design of clinical essays that have as a goal evaluating the efficacy and safety of metformin as an anti-aging drug in humans to create a paradigm in the medical horizon. The question being if metformin is, in fact, the new antiaging therapy in humans?
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nestor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology Department, Valencia, España
| | - Yaneth Herazo
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacologic Unit, Vargas School of Medicine, Universidad Central de Venezuela, Caracas,
Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| |
Collapse
|
14
|
Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, Li Y, Shi Y, He S, Wang H, Hu Z, Gong X, Liang X, Yang Y, Liu X. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD + redox. Aging Cell 2020; 19:e13206. [PMID: 32744417 PMCID: PMC7511885 DOI: 10.1111/acel.13206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022] Open
Abstract
Mammals' aging is correlated with the accumulation of somatic heteroplasmic mitochondrial DNA (mtDNA) mutations. Whether and how aging accumulated mtDNA mutations modulate fertility remains unknown. Here, we analyzed oocyte quality of young (≤30 years old) and elder (≥38 years old) female patients and show the elder group had lower blastocyst formation rate and more mtDNA point mutations in oocytes. To test the causal role of mtDNA point mutations on infertility, we used polymerase gamma (POLG) mutator mice. We show that mtDNA mutation levels inversely correlate with fertility, interestingly mainly affecting not male but female fertility. mtDNA mutations decrease female mice's fertility by reducing ovarian primordial and mature follicles. Mechanistically, accumulation of mtDNA mutations decreases fertility by impairing oocyte's NADH/NAD+ redox state, which could be rescued by nicotinamide mononucleotide treatment. For the first time, we answer the fundamental question of the causal effect of age-accumulated mtDNA mutations on fertility and its sex dependence, and show its distinct metabolic controlling mechanism.
Collapse
Affiliation(s)
- Liang Yang
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Xiaobing Lin
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Haite Tang
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Yuting Fan
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Sheng Zeng
- State Key Laboratory of Respiratory Disease Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Lei Jia
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yukun Li
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Yanan Shi
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shujing He
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Hao Wang
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Zhijuan Hu
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Xiao Gong
- Department of Epidemiology and Biostatistics School of Public Health Guangdong Pharmaceutical University Guangzhou China
| | - Xiaoyan Liang
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Center for Biomanufacturing Technology East China University of Science and Technology Shanghai China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
15
|
Kim MJ, Han C, White K, Park HJ, Ding D, Boyd K, Rothenberger C, Bose U, Carmichael P, Linser PJ, Tanokura M, Salvi R, Someya S. Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Exp Gerontol 2020; 141:111078. [PMID: 32866605 DOI: 10.1016/j.exger.2020.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Peter Carmichael
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Age-Related Deterioration of Mitochondrial Function in the Intestine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4898217. [PMID: 32922652 PMCID: PMC7453234 DOI: 10.1155/2020/4898217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Aging is an important and inevitable biological process in human life, associated with the onset of chronic disease and death. The mechanisms behind aging remain unclear. However, changes in mitochondrial function and structure, including reduced activity of the mitochondrial respiratory chain and increased production of reactive oxygen species—thus oxidative damage—are believed to play a major role. Mitochondria are the main source of cellular energy, producing adenosine triphosphate (ATP) via oxidative phosphorylation. Accumulation of damaged cellular components reduces a body's capacity to preserve tissue homeostasis and affects biological aging and all age-related chronic conditions. This includes the onset and progression of classic degenerative diseases such as cardiovascular disease, kidney failure, neurodegenerative diseases, and cancer. Clinical manifestations of intestinal disorders, such as mucosal barrier dysfunction, intestinal dysmotility, and chronic obstipation, are highly prevalent in the elderly population and have been shown to be associated with an age-dependent decline of mitochondrial function. This review summarizes our current understanding of the role of mitochondrial dysfunction in intestinal aging.
Collapse
|