1
|
Sarto F, Franchi MV, McPhee JS, Stashuk DW, Paganini M, Monti E, Rossi M, Sirago G, Zampieri S, Motanova ES, Valli G, Moro T, Paoli A, Bottinelli R, Pellegrino MA, De Vito G, Blau HM, Narici MV. Neuromuscular impairment at different stages of human sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:1797-1810. [PMID: 39236304 PMCID: PMC11446718 DOI: 10.1002/jcsm.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Degeneration of the motoneuron and neuromuscular junction (NMJ) and loss of motor units (MUs) contribute to age-related muscle wasting and weakness associated with sarcopenia. However, these features have not been comprehensively investigated in humans. This study aimed to compare neuromuscular system integrity and function at different stages of sarcopenia, with a particular focus on NMJ stability and MU properties. METHODS We recruited 42 young individuals (Y) (aged 25.98 ± 4.6 years; 57% females) and 88 older individuals (aged 75.9 ± 4.7 years; 55% females). The older group underwent a sarcopenia screening according to the revised guidelines of the European Working Group on Sarcopenia in Older People 2. In all groups, knee extensor muscle force was evaluated by isometric dynamometry, muscle morphology by ultrasound and MU potential properties by intramuscular electromyography (iEMG). MU number estimate (iMUNE) and blood samples were obtained. Muscle biopsies were collected in a subgroup of 16 Y and 52 older participants. RESULTS Thirty-nine older individuals were non-sarcopenic (NS), 31 pre-sarcopenic (PS) and 18 sarcopenic (S). A gradual decrease in quadriceps force, cross-sectional area and appendicular lean mass was observed across the different stages of sarcopenia (for all P < 0.0001). Handgrip force and the Short Physical Performance Battery score also showed a diminishing trend. iEMG analyses revealed elevated near fibre segment jitter in NS, PS and S compared with Y (Y vs. NS and S: P < 0.0001; Y vs. PS: P = 0.0169), suggestive of age-related impaired NMJ transmission. Increased C-terminal agrin fragment (P < 0.0001) and altered caveolin 3 protein expression were consistent with age-related NMJ instability in all the older groups. The iMUNE was lower in all older groups (P < 0.0001), confirming age-related loss of MUs. An age-related increase in MU potential complexity was also observed. These observations were accompanied by increased muscle denervation and axonal damage, evinced by the increase in neural cell adhesion molecule-positive fibres (Y vs. NS: P < 0.0001; Y vs. S: P = 0.02) and the increase in serum concentration of neurofilament light chain (P < 0.0001), respectively. Notably, most of these MU and NMJ parameters did not differ when comparing older individuals with or without sarcopenia. CONCLUSIONS Alterations in MU properties, axonal damage, an altered innervation profile and NMJ instability are prominent features of the ageing of the neuromuscular system. These neuromuscular alterations are accompanied by muscle wasting and weakness; however, they appear to precede clinically diagnosed sarcopenia, as they are already detectable in older NS individuals.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maira Rossi
- Institute of Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Roberto Bottinelli
- Institute of Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Maria A Pellegrino
- Institute of Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
3
|
Galiana-Melendez F, Huot JR. The Impact of Non-bone Metastatic Cancer on Musculoskeletal Health. Curr Osteoporos Rep 2024; 22:318-329. [PMID: 38649653 DOI: 10.1007/s11914-024-00872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the musculoskeletal consequences of cancer, including those that occur in the absence of bone metastases. RECENT FINDINGS Cancer patients frequently develop cachexia, a debilitating condition reflected by weight loss and skeletal muscle wasting. The negative effects that tumors exert on bone health represents a growing interest amongst cachexia researchers. Recent clinical and pre-clinical evidence demonstrates cancer-induced bone loss, even in the absence of skeletal metastases. Together with muscle wasting, losses in bone demonstrates the impact of cancer on the musculoskeletal system. Identifying therapeutic targets that comprehensively protect musculoskeletal health is essential to improve the quality of life in cancer patients and survivors. IL-6, RANKL, PTHrP, sclerostin, and TGF-β superfamily members represent potential targets to counteract cachexia. However, more research is needed to determine the efficacy of these targets in protecting both skeletal muscle and bone.
Collapse
Affiliation(s)
| | - Joshua R Huot
- Department of Anatomy, Cell Biology & Physiology, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Rocha JNDS, Pereira-Monteiro MR, Vasconcelos ABS, Pantoja-Cardoso A, Aragão-Santos JC, Da Silva-Grigoletto ME. Different resistance training volumes on strength, functional fitness, and body composition of older people: A systematic review with meta-analysis. Arch Gerontol Geriatr 2024; 119:105303. [PMID: 38128241 DOI: 10.1016/j.archger.2023.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Aging causes several changes in the body, reducing strength and muscle mass, which leads to a decline in function. Resistance training (RT) is used to counteract these changes. However, there is still ongoing debate about the optimal volume of RT in the context of aging. We systematically reviewed articles that assessed the impact of different volumes of RT on muscular strength, functional fitness, and body composition of older people. We conducted a systematic search in the PubMed/MEDLINE, Scopus, Embase, Web of Science, Cochrane Library, LILACS, PEDro, and Google Scholar databases, using keywords related to the older population and various RT volumes. We performed meta-analyses for each outcome separately using intervention time in weeks for subgroup analyses. We employed random effects models for all meta-analyses and expressed the results as standardized mean differences (Hedges' g). We included 31 studies, encompassing a total of 1.744 participants. The sample size ranged from 18 to 376, with an average size of 56 participants. Participants' ages ranged from 60 to 83 years. On average, HV-RT (High-Volume Resistance Training) induced significant adaptations in muscle strength of the upper limbs (g = 0.36; 95 % CI = 0.11-0.61) and lower limbs (g = 0.41; 95 % CI = 0.23-0.59), with superiority more pronounced after 12 weeks of training. Regarding functional fitness, there was a tendency favoring HV-RT (g = 0.41; 95 % CI = 0.23-0.59). Thus, HV-RT outperforms LV-RT (Low-Volume Resistance Training) in enhancing muscle strength, particularly in longer interventions with independent older adults.
Collapse
Affiliation(s)
| | | | | | - Alan Pantoja-Cardoso
- Graduate Program in Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe
| | - José Carlos Aragão-Santos
- Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Marzo Edir Da Silva-Grigoletto
- Department of Physical Education, Federal University of Sergipe, Aracaju, Brazil; Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil; Graduate Program in Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe
| |
Collapse
|
5
|
Yoo J, Choi W, Kim J. Analysis of maintaining human maximal voluntary contraction control strategies through the power grip task in isometric contraction. Sci Rep 2024; 14:1174. [PMID: 38216567 PMCID: PMC10786847 DOI: 10.1038/s41598-023-51096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2023] [Indexed: 01/14/2024] Open
Abstract
Power grip force is used as a representative indicator of the ability of the human neuromuscular system. However, people maintain the power grip force via different control strategies depending on the visual feedback that shows the magnitude of the force, the magnitude of the target grip force, and external disturbance. In this study, we investigated the control strategy of maintaining the power grip force in an isometric contraction depending on these conditions by expressing the power grip force as a person's Maximal Voluntary Contraction (MVC). The participants were asked to maintain the MVC for each condition. Experimental results showed that humans typically control their MVC constant abilities based on proprioception, and maintaining the target MVC becomes relatively difficult as the magnitude of the target MVC increases. In addition, through interactions between the external disturbance and the target MVC, the MVC error increases when the target MVC increases and an external disturbance is applied. When the MVC error reaches a certain level, the offset effect is expressed through visual feedback, helping to reduce the MVC error and maintain it smoothly, revealing a person's MVC maintenance control strategy for each condition.
Collapse
Affiliation(s)
- Jinyeol Yoo
- Unmanned/Intelligent Robotic Systems, LIG Nex1, 338, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Woong Choi
- College of ICT Construction and Welfare Convergence, Kangnam University, 40, Gangnam-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Jaehyo Kim
- Department of Advanced Convergence, Human Ecology and Technology, Handong Global University, 558, Handong-ro, Buk-gu, Pohang, 37554, Republic of Korea.
| |
Collapse
|
6
|
Nishikawa T, Takeda R, Hirono T, Okudaira M, Ohya T, Watanabe K. Differences in acute neuromuscular response after single session of resistance exercise between young and older adults. Exp Gerontol 2024; 185:112346. [PMID: 38104744 DOI: 10.1016/j.exger.2023.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
AIMS The purpose of this study was to investigate differences in the acute response after resistance exercise between young and older adults. METHODS Seventeen young and 18 older adults performed a single session of resistance exercise, consisting of 3 sets of 10 isometric knee extensions. Maximal voluntary contraction (MVC), motor unit (MU) activity of the vastus lateralis, and electrically elicited torque of the knee extensor were measured before and after the resistance exercise. RESULTS Although both groups showed the same degree of decline in MVC (young: -15.2 ± 14.3 %, older: -16.4 ± 7.9 %, p = 0.839), electrically elicited torque markedly decreased in the young group (young: -21.5 ± 7.7 %, older: -14.3 ± 9.5 %, p < 0.001), and the decrease in the MU firing rate was greater in the older group (young: -26.1 ± 24.1 %, older: -44.7 ± 24.5 %, p < 0.001). Changes in the MU firing rate following the exercise were correlated with the MU recruitment threshold in the older group (p < 0.001, rs = 0.457), but not young group (p = 0.960). DISCUSSION These results showed that young adults exhibited a greater acute response in the peripheral component, whereas older adults showed a greater acute response in the central component of the neuromuscular system, and the acute response in MUs with a high recruitment threshold following resistance exercise was smaller than in those with a low recruitment threshold in older adults. These findings may partly explain why there are different chronic adaptations to resistance training between young and older adults.
Collapse
Affiliation(s)
- Taichi Nishikawa
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Faculty of Education, Iwate University, Iwate, Japan
| | - Toshiyuki Ohya
- Laboratory for Exercise Physiology and Biomechanics, Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan.
| |
Collapse
|
7
|
Tøien T, Nielsen JL, Berg OK, Brobakken MF, Nyberg SK, Espedal L, Malmo T, Frandsen U, Aagaard P, Wang E. The impact of life-long strength versus endurance training on muscle fiber morphology and phenotype composition in older men. J Appl Physiol (1985) 2023; 135:1360-1371. [PMID: 37881849 PMCID: PMC10979801 DOI: 10.1152/japplphysiol.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Abstract
Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature. Thus, we compared fiber type distribution, fiber type grouping, and the prevalence of atrophic myofibers (≤1,494 µm2) in strength-trained (OS) versus endurance-trained (OE) master athletes and compared the results to recreationally active older adults (all >70 yr, OC) and young habitually active references (<30 yr, YC). Immunofluorescent stainings were performed on biopsy samples from vastus lateralis, along with leg press maximal strength and RFD measurements. OS demonstrated similar type II fiber distribution (OS: 52.0 ± 16.4%; YC: 51.1 ± 14.4%), fiber type grouping, maximal strength (OS: 170.0 ± 18.9 kg, YC: 151.0 ± 24.4 kg), and RFD (OS: 3,993 ± 894 N·s-1, YC: 3,470 ± 1,394 N·s-1) as young, and absence of atrophic myofibers (OS: 0.2 ± 0.7%; YC: 0.1 ± 0.4%). In contrast, OE and OC exhibited more atrophic fibers (OE: 1.2 ± 1.0%; OC: 1.1 ± 1.4%), more grouped fibers, and smaller proportion of type II fibers (OE: 39.3 ± 11.9%; OC: 35.0 ± 12.4%) than OS and YC (all P < 0.05). In conclusion, strength-trained master athletes were characterized by similar muscle morphology as young, which was not the case for recreationally active or endurance-trained old. These results indicate that strength training may preserve type II fibers with advancing age in older men, likely as a result of chronic use of high contractile force generation.NEW & NOTEWORTHY Aging is associated with loss of fast-twitch type II myofibers, motor unit remodeling, and grouping of myofibers. This study reveals, for the first time, that strength training preserves neural innervation of type II fibers, resulting in similar myofiber type distribution and grouping in life-long strength-trained master athletes as young moderately active adults. In contrast, life-long endurance-trained master athletes and recreationally active old adults demonstrated higher proportion of type I fibers accompanied by more marked grouping of type I myofibers, and more atrophic fibers compared with strength-trained master athletes and young individuals. Thus, strength training should be utilized as a training modality for preservation of fast-twitch musculature, maximal muscle strength, and rapid force capacity (RFD) with advancing age.
Collapse
Affiliation(s)
- Tiril Tøien
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ole Kristian Berg
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Mathias Forsberg Brobakken
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Stian Kwak Nyberg
- Department of Anesthesiology and Intensive Care, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lars Espedal
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Thomas Malmo
- Norwegian Defence University College, Norwegian Armed Forces, Oslo, Norway
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Eivind Wang
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Clark BC. Neural Mechanisms of Age-Related Loss of Muscle Performance and Physical Function. J Gerontol A Biol Sci Med Sci 2023; 78:8-13. [PMID: 36738253 PMCID: PMC10272985 DOI: 10.1093/gerona/glad029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This article discusses the putative neural mechanisms of age-related muscle weakness within the broader context of the development of function-promoting therapies for sarcopenia and age-related mobility limitations. We discuss here the evolving definition of sarcopenia and its primary defining characteristic, weakness. METHODS This review explores the premise that impairments in the nervous system's ability to generate maximal force or power contribute to sarcopenia. RESULTS Impairments in neural activation are responsible for a substantial amount of age-related weakness. The neurophysiological mechanisms of weakness are multifactorial. The roles of supraspinal descending command mechanisms, spinal motor neuron firing responsivity, and neuromuscular junction transmission failure in sarcopenia are discussed. Research/clinical gaps and recommendations for future work are highlighted. CONCLUSION Further research is needed to map putative neural mechanisms, determine the clinical relevance of age-related changes in neural activation to sarcopenia, and evaluate the effectiveness of various neurotherapeutic approaches to enhancing physical function.
Collapse
Affiliation(s)
- Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI) and the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
9
|
Ghaderian M, Ghasemi GA, Lenjannejadian S, Sadeghi Demneh E. The Effect of Combined Training on Older Men’s Walking and Turning Kinetics. PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS 2022. [DOI: 10.1080/02703181.2022.2138680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Mehdi Ghaderian
- Department of Sports Injuries and Corrective Exercises, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Gholam Ali Ghasemi
- Department of Sports Injuries and Corrective Exercises, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Shahram Lenjannejadian
- Department of Sports Injuries and Corrective Exercises, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Ebrahim Sadeghi Demneh
- Faculty of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Paris MT, McNeil CJ, Power GA, Rice CL, Dalton BH. Age-related performance fatigability: a comprehensive review of dynamic tasks. J Appl Physiol (1985) 2022; 133:850-866. [PMID: 35952347 DOI: 10.1152/japplphysiol.00319.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult ageing is associated with a myriad of changes within the neuromuscular system, leading to reductions in contractile function of old adults. One of the consequences of these age-related neuromuscular adaptations is altered performance fatigability, which can limit the ability of old adults to perform activities of daily living. Whereas age-related fatigability of isometric tasks has been well characterized, considerably less is known about fatigability of old adults during dynamic tasks involving movement about a joint, which provides a more functionally relevant task compared to static contractions. This review provides a comprehensive summary of age-related fatigability in dynamic contractions, where the importance of task specificity is highlighted with a brief discussion of the potential mechanisms responsible for differences in fatigability between young and old adults. The angular velocity of the task is critical for evaluating age-related fatigability, as tasks which constrain angular velocity (i.e., isokinetic) produce equivocal age-related differences in fatigability, whereas tasks involving unconstrained velocity (i.e., isotonic-like) consistently induce greater fatigability of old compared to young adults. These unconstrained velocity tasks, that are more closely associated with natural movements, offer an excellent model to uncover the underlying age-related mechanisms of increased fatigability. Future work evaluating the mechanisms of increased age-related fatigability of dynamic tasks should be evaluated using task-specific contractions (i.e., dynamic), particularly for assessment of spinal and supra-spinal components. Advancing our understanding of age-related fatigability is likely to yield novel insights and approaches for improving mobility limitations in old adults.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
11
|
Verschueren A, Palminha C, Delmont E, Attarian S. Changes in neuromuscular function in elders: Novel techniques for assessment of motor unit loss and motor unit remodeling with aging. Rev Neurol (Paris) 2022; 178:780-787. [PMID: 35863917 DOI: 10.1016/j.neurol.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Functional muscle fiber denervation is a major contributor to the decline in physical function observed with aging and is now a recognized cause of sarcopenia, a muscle disorder characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength. There is an interrelationship between muscle strength, motor unit (MU) number, and aging, which suggests that a portion of muscle weakness in seniors may be attributable to the loss of functional MUs. During normal aging, there is a time-related progression of MU loss, an adaptive sprouting followed by a maladaptive sprouting, and continuing recession of terminal Schwann cells leading to a reduced capacity for compensatory reinnervation in elders. In amyotrophic lateral sclerosis, increasing age at onset predicts worse survival ALS and it is possible that age-related depletion of the motor neuron pool may worsen motor neuron disease. MUNE methods are used to estimate the number of functional MU, data from MUNIX arguing for motor neuron loss with aging will be reviewed. Recently, a new MRI technique MU-MRI could be used to assess the MU recruitment or explore the activity of a single MU. This review presents published studies on the changes of neuromuscular function with aging, then focusing on these two novel techniques for assessment of MU loss and MU remodeling.
Collapse
Affiliation(s)
- A Verschueren
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France.
| | - C Palminha
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - E Delmont
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - S Attarian
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| |
Collapse
|
12
|
Oudbier SJ, Goh J, Looijaard SMLM, Reijnierse EM, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining the association between low skeletal muscle mass and cognitive function. J Gerontol A Biol Sci Med Sci 2022; 77:1959-1968. [PMID: 35661882 PMCID: PMC9536455 DOI: 10.1093/gerona/glac121] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/15/2022] Open
Abstract
Low skeletal muscle mass is associated with cognitive impairment and dementia in older adults. This review describes the possible underlying pathophysiological mechanisms: systemic inflammation, insulin metabolism, protein metabolism, and mitochondrial function. We hypothesize that the central tenet in this pathophysiology is the dysfunctional myokine secretion consequent to minimal physical activity. Myokines, such as fibronectin type III domain containing 5/irisin and cathepsin B, are released by physically active muscle and cross the blood–brain barrier. These myokines upregulate local neurotrophin expression such as brain-derived neurotrophic factor (BDNF) in the brain microenvironment. BDNF exerts anti-inflammatory effects that may be responsible for neuroprotection. Altered myokine secretion due to physical inactivity exacerbates inflammation and impairs muscle glucose metabolism, potentially affecting the transport of insulin across the blood–brain barrier. Our working model also suggests other underlying mechanisms. A negative systemic protein balance, commonly observed in older adults, contributes to low skeletal muscle mass and may also reflect deficient protein metabolism in brain tissues. As a result of age-related loss in skeletal muscle mass, decrease in the abundance of mitochondria and detriments in their function lead to a decrease in tissue oxidative capacity. Dysfunctional mitochondria in skeletal muscle and brain result in the excessive production of reactive oxygen species, which drives tissue oxidative stress and further perpetuates the dysfunction in mitochondria. Both oxidative stress and accumulation of mitochondrial DNA mutations due to aging drive cellular senescence. A targeted approach in the pathophysiology of low muscle mass and cognition could be to restore myokine balance by physical activity.
Collapse
Affiliation(s)
- Susanne Janette Oudbier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Outpatient Clinics, Amsterdam Public Health research institute, De Boelelaan, Amsterdam, The Netherlands
| | - Jorming Goh
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | | | - Esmee Mariëlle Reijnierse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Carolus Gerardus Maria Meskers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Lynch GS. Identifying the challenges for successful pharmacotherapeutic management of sarcopenia. Expert Opin Pharmacother 2022; 23:1233-1237. [PMID: 35549577 DOI: 10.1080/14656566.2022.2076593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Trade-Off Between Maximal Power Output and Fatigue Resistance of the Knee Extensors for Older Men. J Aging Phys Act 2022; 30:1003-1013. [PMID: 35453123 DOI: 10.1123/japa.2021-0384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
This study investigated associations of fatigue resistance determined by an exercise-induced decrease in neuromuscular power with prefatigue neuromuscular strength and power of the knee extensors in 31 older men (65-88 years). A fatigue task consisted of 50 consecutive maximal effort isotonic knee extensions (resistance: 20% of prefatigue isometric maximal voluntary contraction torque) over a 70° range of motion. The average of the peak power values calculated from the 46th to 50th contractions during the fatigue task was normalized to the prefatigue peak power value, which was defined as neuromuscular fatigue resistance. Neuromuscular fatigue resistance was negatively associated with prefatigue maximal power output (r = -.530) but not with prefatigue maximal voluntary contraction torque (r = -.252). This result highlights a trade-off between prefatigue maximal power output and neuromuscular fatigue resistance, implying that an improvement in maximal power output might have a negative impact on neuromuscular fatigue resistance.
Collapse
|
15
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
16
|
Ha PL, Peters WB, McGeehan MA, Dalton BH. Age-related reduction in peak power and increased postural displacement variability are related to enhanced vestibular-evoked balance responses in females. Exp Gerontol 2022; 160:111670. [PMID: 35026336 DOI: 10.1016/j.exger.2021.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
Adult aging is associated with reductions in muscle function and standing balance control. However, whether sensorimotor function adapts to maintain upright posture in the presence of age-related muscle weakness is unclear. The purpose was to determine whether vestibular control of balance is altered in older compared to younger females and whether vestibular-evoked balance responses are related to muscle power. Eight young (22.6 ± 1.8 years) and eight older (69.7 ± 6.7 years) females stood quietly on a force plate, while subjected to random, continuous electrical vestibular stimulation (EVS; 0-20 Hz, root mean square amplitude: 1.13 mA). Medial gastrocnemius (MG) and tibialis anterior (TA) surface electromyography (EMG) and force plate anterior-posterior (AP) forces were sampled and associated with the EVS signal in the frequency and time domains. Knee extensor function was evaluated using a Biodex multi-joint dynamometer. The weaker, less powerful older females exhibited a 99 and 42% greater medium-latency peak amplitude for the TA and AP force (p < 0.05), respectively, but no other differences were detected for short- and medium-latency peak amplitudes. The TA (<10 Hz) and MG (<4 Hz) EVS-EMG coherence and EVS-AP force coherence (<2 Hz) was greater in older females than young. A strong correlation was detected for AP force medium-latency peak amplitude with center of pressure displacement variability (r = 0.75; p < 0.05) and TA medium-latency peak amplitude (r = 0.86; p < 0.05). Power was negatively correlated with AP force medium-latency peak amplitude (r = -0.47; p < 0.05). Taken together, an increased vestibular control of balance may compensate for an age-related reduction in power and accompanies greater postural instability in older females than young.
Collapse
Affiliation(s)
- Phuong L Ha
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Wendy B Peters
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Michael A McGeehan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
17
|
Preventing age-related motor unit loss; is exercise the answer? Exp Gerontol 2022; 159:111695. [DOI: 10.1016/j.exger.2022.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022]
|
18
|
Deschenes MR, Stock MS. Neuromuscular adaptations to exercise and aging. Exp Gerontol 2022; 160:111712. [DOI: 10.1016/j.exger.2022.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|