1
|
Moshal T, Lasky S, Roohani I, Jolibois MI, Manasyan A, Munabi NCO, Fahradyan A, Lee JA, Hammoudeh JA. The Forgotten Flap: The Pedicled Trapezius Flap's Utility in Pediatric Head and Neck Reconstruction-A Systematic Review. J Reconstr Microsurg 2025; 41:113-122. [PMID: 38917840 DOI: 10.1055/s-0044-1787741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
BACKGROUND When free tissue transfer is precluded or undesired, the pedicled trapezius flap is a viable alternative for adults requiring complex head and neck (H&N) defect reconstruction. However, the application of this flap in pediatric reconstruction is underexplored. This systematic review aimed to describe the use of the pedicled trapezius flap and investigate its efficacy in pediatric H&N reconstruction. METHODS A systematic review was performed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles describing the trapezius flap for H&N reconstruction in pediatric patients were included. Patient demographics, surgical indications, wound characteristics, flap characteristics, complications, and functional outcomes were abstracted. RESULTS A systematic review identified 22 articles for inclusion. Studies mainly consisted of case reports (n = 11) and case series (n = 8). In total, 67 pedicled trapezius flaps were successfully performed for H&N reconstruction in 63 patients. The most common surgical indications included burn scar contractures (n = 46, 73.0%) and chronic wounds secondary to H&N masses (n = 9, 14.3%). Defects were most commonly located in the neck (n = 28, 41.8%). The mean flap area and arc of rotation were 326.4 ± 241.7 cm2 and 157.6 ± 33.2 degrees, respectively. Most flaps were myocutaneous (n = 48, 71.6%) and based on the dorsal scapular artery (n = 32, 47.8%). Complications occurred in 10 (14.9%) flaps. The flap's survival rate was 100% (n = 67). No instances of functional donor site morbidity were reported. The mean follow-up was 2.2 ± 1.8 years. CONCLUSION This systematic review demonstrated the reliability of the pedicled trapezius flap in pediatric H&N reconstruction, with a low complication rate, no reports of functional donor site morbidity, and a 100% flap survival rate. The flap's substantial surface area, bulk, and arc of rotation contribute to its efficacy in covering soft tissue defects ranging from the proximal neck to the vertex of the scalp. The pedicled trapezius flap is a viable option for pediatric H&N reconstruction.
Collapse
Affiliation(s)
- Tayla Moshal
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sasha Lasky
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Idean Roohani
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marah I Jolibois
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Artur Manasyan
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Naikhoba C O Munabi
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Artur Fahradyan
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Jessica A Lee
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Jeffrey A Hammoudeh
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California
| |
Collapse
|
2
|
Karami E, Bazgir B, Shirvani H, Mohammadi MT, Khaledi M. Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09683-7. [PMID: 39508952 DOI: 10.1007/s10974-024-09683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Inflammation stands as a vital and innate function of the immune system, essential for maintaining physiological homeostasis. Its role in skeletal muscle regeneration is pivotal, with the activation of satellite cells (SCs) driving the repair and generation of new myofibers. However, the relationship between inflammation and SCs is intricate, influenced by various factors. Muscle injury and repair prompt significant infiltration of immune cells, particularly macrophages, into the muscle tissue. The interplay of cytokines and chemokines from diverse cell types, including immune cells, fibroadipogenic progenitors, and SCs, further shapes the inflammation-SCs dynamic. While some studies suggest heightened inflammation associates with reduced SC activity and increased fibro- or adipogenesis, others indicate an inflammatory stimulus benefits SC function. Yet, the existing literature struggles to delineate clearly between the stimulatory and inhibitory effects of inflammation on SCs and muscle regeneration. This paper comprehensively reviews studies exploring the impact of pharmacological agents, dietary interventions, genetic factors, and exercise regimes on the interplay between inflammation and SC activity.
Collapse
Affiliation(s)
- Esmail Karami
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Bazgir
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Kiss O, Bahri R, Watson REB, Chike C, Langton AK, Newton VL, Bell M, Griffiths CEM, Bulfone-Paus S, Pilkington SM. The impact of irritant challenge on the skin barrier and myeloid-resident immune cells in women who are postmenopausal is modulated by hormone replacement therapy. Br J Dermatol 2024; 191:746-759. [PMID: 38819239 DOI: 10.1093/bjd/ljae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Sex hormone changes during menopausal transition contribute to declining skin health. However, how menopause and its treatment by hormone replacement therapy (HRT) impact the skin barrier and immune system is unclear. OBJECTIVES To examine how menopause and HRT affect the skin barrier and immune cell composition in postmenopausal women following irritant challenge. METHODS Two cohorts of postmenopausal women were recruited to the study. The first cohort consisted of 10 untreated women [HRT-; mean (SEM) age 56.5 (1.6) years (range 48-63)] and the second was composed of 8 women receiving HRT [HRT+; mean (SEM) age 54.0 (2.1) years (range 48-63)]. Skin irritation was induced by applying topical sodium lauryl sulfate (SLS) 1.25% to occluded buttock skin for 48 h. Clinical assessment was conducted after 24 h, followed by biopsy of both SLS-challenged and unchallenged skin for analysis of skin barrier proteins and immune cell distribution using immunofluorescence. RESULTS Clinically, there were no significant differences in skin irritant responses between those taking or not taking HRT (including increased skin redness and blood flow). In response to SLS challenge a significant increase in transepidermal water loss (P < 0.05), filaggrin deposition and cytokeratin 10 (K10)+ cell layers (P < 0.01) was observed in individuals receiving HRT compared with the HRT- group. Following SLS challenge in individuals taking HRT, a significant (P < 0.01) reduction in CD207+ cells in the epidermis was observed, accompanied by an increase of CD207+ cells in the dermis, indicative of migrating Langerhans cells (LCs). Significantly fewer migrating LCs were found in those who were not receiving HRT (P < 0.01). Furthermore, the numbers of dermal dendritic cells (DCs), macrophages, and CD11c+CD206- and CD68+CD206- subsets were found to be significantly (P < 0.05) higher in those taking HRT following SLS challenge. CONCLUSIONS Individuals receiving HRT displayed enhanced skin barrier response to SLS challenge with thicker filaggrin and increased K10+ epidermal cell layers. Following challenge, HRT users exhibited elevated LC, inflammatory DC and macrophage counts in the dermis. These may render skin both more prone to inflammation and more capable of resolving it, while also promoting skin repair.
Collapse
Affiliation(s)
- Orsolya Kiss
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rajia Bahri
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation and Manchester Collaborative Centre for Inflammation Research, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), National Skin Centre and Skin Research Institute of Singapore (SRIS), Republic of Singapore
| | - Chidera Chike
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Abigail K Langton
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Mike Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Christopher E M Griffiths
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital NHS Foundation Trust, King's College London, London, UK
| | - Silvia Bulfone-Paus
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation and Manchester Collaborative Centre for Inflammation Research, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Suzanne M Pilkington
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
4
|
Chen X, Müller A, Pishnamaz M, Hildebrand F, Bollheimer LC, Nourbakhsh M. Differential Fatty Acid Response of Resident Macrophages in Human Skeletal Muscle Fiber and Intermuscular Adipose Tissue. Int J Mol Sci 2024; 25:10722. [PMID: 39409051 PMCID: PMC11477279 DOI: 10.3390/ijms251910722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Human skeletal muscle contains different types of tissues with skeletal muscle fibers (SMFs) and intermuscular adipose tissues (IMATs) as the main components. We maintained human skeletal muscle tissues from 12 study participants under native conditions in vitro for 11 days to investigate the dynamics of macrophages that reside in adjacent IMATs and SMFs simultaneously. The samples were subjected to immunohistochemical analysis for macrophage phenotyping and mitochondrial mass assessment before and after maintenance in vitro. Multiplex protein analysis was used to determine cytokine/chemokine expression in tissue extracts. The results revealed significant correlations between donor age or body mass index (BMI) and distinct phenotypes of resident macrophages in SMFs and IMATs. The dynamics of SMF- and IMAT-resident macrophages differed significantly in vitro and exhibited inverse correlations with chemokine/cytokine expression levels and mitochondrial activity. Moreover, the responses of macrophages to saturated and unsaturated fatty acids (FAs) differed substantially between SMFs and IMATs. These findings showed the functional diversity of phenotypically identical macrophages in adjacent niches. Thus, the currently available macrophage markers cannot capture the functional diversity of human tissue-resident macrophages. The model used in the present study may help elucidate how macrophages affect muscle homeostasis and disease in humans.
Collapse
Affiliation(s)
- Xiaoying Chen
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| | - Aline Müller
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| | - Miguel Pishnamaz
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.P.); (F.H.)
| | - Frank Hildebrand
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.P.); (F.H.)
| | - Leo Cornelius Bollheimer
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| | - Mahtab Nourbakhsh
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| |
Collapse
|
5
|
Minuzzi LG, Ferrauti A, Chupel MU, Hacker S, Weyh C, Valenzuela PL, Lucia A, Krüger K, Reichel T. Acute Inflammatory Response to Eccentric Exercise in Young and Master Resistance-trained Athletes. Int J Sports Med 2024; 45:897-907. [PMID: 39068934 DOI: 10.1055/a-2348-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This study aimed to compare the acute inflammatory response following high-intensity eccentric exercise between resistance-trained young and master athletes with similar performance levels. Resistance-trained young (n=8; 22±2 years) and master (n=8; 52±4 years) male athletes of a similar performance level performed a standardized high-intensity eccentric squat exercise protocol (10 sets of half-squats at 70% of 1-repetition maximum). The serum concentration of 20 biomarkers related to tissue damage, inflammation, remodeling, and repair was measured at baseline, immediately after exercise, and over a 72 h recovery period. Both groups experienced similar muscle damage as evidenced by a comparable increase in creatine kinase activity 24 h after exercise (p<0.001). Interleukin-6 (p=0.009) and growth hormone (p<0.001) increased immediately post-exercise in both groups. Monocyte chemoattractant protein-1 increased immediately post-exercise only in young athletes (p=0.003) and then decreased 24 h later. There were no significant differences for the remaining variables, including cell markers related to neutrophil/macrophage activation or pro/anti-inflammatory cytokines. Resistance-trained young and master athletes, matched for performance level, showed an overall similar inflammatory response to eccentric exercise, possibly reflecting regulatory mechanisms or immunological adaptations to chronic stimulation in master athletes.
Collapse
Affiliation(s)
- Luciele Guerra Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, UNESP Campus de Presidente Prudente, Presidente Prudente, Brazil
- Faculty of Sport Sciences and Physical Education, Research Center for Sport and Physical Activity, University of Coimbra, Coimbra, Portugal
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | | | - Matheus Uba Chupel
- Biological Sciences Platform - Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sebastian Hacker
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | - Pedro L Valenzuela
- Department of Systems Biology, Universidad de Alcala de Henares, Madrid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Bi W, Yang M, Shi M, Hou M, Jiang C, Fan G, Guo W. A comprehensive single-cell RNA transcriptomic analysis identifies a unique SPP1+ macrophages subgroup in aging skeletal muscle. Sci Rep 2024; 14:18156. [PMID: 39103421 PMCID: PMC11300837 DOI: 10.1038/s41598-024-69284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence of skeletal muscle (SkM) has been a primary contributor to senior weakness and disability in recent years. The gradually declining SkM function associated with senescence has recently been connected to an imbalance between damage and repair. Macrophages (Mac) are involved in SkM aging, and different macrophage subgroups hold different biological functions. Through comprehensive single-cell transcriptomic analysis, we first compared the metabolic pathways and biological functions of different types of cells in young (Y) and old (O) mice SkM. Strikingly, the Mac population in mice SkM was also explored, and we identified a unique Mac subgroup in O SkM characterized by highly expressed SPP1 with strong senescence and adipogenesis features. Further work was carried out on the metabolic and biological processes for these Mac subgroups. Besides, we verified that the proportion of the SPP1+ Mac was increased significantly in the quadriceps tissues of O mice, and the senotherapeutic drug combination dasatinib + quercetin (D + Q) could dramatically reduce its proportion. Our study provides novel insight into the potential role of SPP1+ Mac in SkM, which may serve as a senotherapeutic target in SkM aging.
Collapse
Affiliation(s)
- Wen Bi
- Department of Sports Medicine, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China
| | - Mengyue Yang
- Department of Cardiology, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China
| | - Mengjia Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mirong Hou
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Changqing Jiang
- Department of Sports Medicine, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China
| | - Gang Fan
- Department of Urology, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China.
| | - Weiming Guo
- Department of Sports Medicine, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China.
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, 518052, China.
| |
Collapse
|
7
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
8
|
Cornish SM, Cordingley DM. Inflammatory pathway communication with skeletal muscle-Does aging play a role? A topical review of the current evidence. Physiol Rep 2024; 12:e16098. [PMID: 38872451 PMCID: PMC11176593 DOI: 10.14814/phy2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle plays an integral role in locomotion, but also as part of the integrative physiological system. Recent progress has identified crosstalk between skeletal muscle and various physiological systems, including the immune system. Both the musculoskeletal and immune systems are impacted by aging. Increased age is associated with decreased muscle mass and function, while the immune system undergoes "inflammaging" and immunosenescence. Exercise is identified as a preventative medicine that can mitigate loss of function for both systems. This review summarizes: (1) the inflammatory pathways active in skeletal muscle; and (2) the inflammatory and skeletal muscle response to unaccustomed exercise in younger and older adults. Compared to younger adults, it appears older individuals have a muted pro-inflammatory response and elevated anti-inflammatory response to exercise. This important difference could contribute to decreased regeneration and recovery following unaccustomed exercise in older adults, as well as in chronic disease. The current research provides specific information on the role inflammation plays in altering skeletal muscle form and function, and adaptation to exercise; however, the pursuit of more knowledge in this area will delineate specific interventions that may enhance skeletal muscle recovery and promote resiliency in this tissue particularly with aging.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean M Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Wang L, Hong W, Zhu H, He Q, Yang B, Wang J, Weng Q. Macrophage senescence in health and diseases. Acta Pharm Sin B 2024; 14:1508-1524. [PMID: 38572110 PMCID: PMC10985037 DOI: 10.1016/j.apsb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. Persistent senescence of macrophages may lead to maladaptation, immune dysfunction, and finally the development of age-related diseases, infections, autoimmune diseases, and malignancies. However, it is a ubiquitous, multi-factorial, and dynamic complex phenomenon that also plays roles in remodeled processes, including wound repair and embryogenesis. In this review, we summarize some general molecular changes and several specific biomarkers during macrophage senescence, which may bring new sight to recognize senescent macrophages in different conditions. Also, we take an in-depth look at the functional changes in senescent macrophages, including metabolism, autophagy, polarization, phagocytosis, antigen presentation, and infiltration or recruitment. Furthermore, some degenerations and diseases associated with senescent macrophages as well as the mechanisms or relevant genetic regulations of senescent macrophages are integrated, not only emphasizing the possibility of regulating macrophage senescence to benefit age-associated diseases but also has an implication on the finding of potential targets or drugs clinically.
Collapse
Affiliation(s)
- Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
10
|
Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol 2023; 14:1274816. [PMID: 37954602 PMCID: PMC10634307 DOI: 10.3389/fimmu.2023.1274816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle is essential for body physical activity, energy metabolism, and temperature maintenance. It has excellent capabilities to maintain homeostasis and to regenerate after injury, which indispensably relies on muscle stem cells, satellite cells (MuSCs). The quiescence, activation, and differentiation of MuSCs are tightly regulated in homeostatic and regenerating muscles. Among the important regulators are intramuscular macrophages, which are functionally heterogeneous with different subtypes present in a spatiotemporal manner to regulate the balance of different MuSC statuses. During chronic injury and aging, intramuscular macrophages often undergo aberrant activation, which in turn disrupts muscle homeostasis and regenerative repair. Growing evidence suggests that the aberrant activation is mainly triggered by altered muscle microenvironment. The trained immunity that affects myeloid progenitors during hematopoiesis may also contribute. Aged immune system may contribute, in part, to the aging-related sarcopenia and compromised skeletal muscle injury repair. As macrophages are actively involved in the progression of many muscle diseases, manipulating their functional activation has become a promising therapeutic approach, which requires comprehensive knowledge of the cellular and molecular mechanisms underlying the diverse activation. To this end, we discuss here the current knowledge of multifaceted role of macrophages in skeletal muscle homeostasis, injury, and repair.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
11
|
Chen X, Hao D, Becker N, Müller A, Pishnamaz M, Bollheimer LC, Hildebrand F, Nourbakhsh M. Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model. BIOLOGY 2023; 12:1111. [PMID: 37626996 PMCID: PMC10452335 DOI: 10.3390/biology12081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Phenotypically heterogeneous populations of tissue-resident macrophages and stem cells play important roles in the regeneration of the skeletal muscle tissue. Previous studies using animal and cell culture models implied a beneficial effect of fatty acid (FA) species on tissue regeneration. Here, we applied a human experimental model using excised muscle tissues from reconstructive surgeries to study the effects of FAs on resident macrophages and stem cells in the natural environment of human skeletal muscle tissue. Muscle tissue samples from 20 donors were included in this study. The expression of 34 cytokines/chemokines was determined, using multiplex protein analysis. The phenotypes of macrophages and stem cells were determined immunohistochemically. The numbers of CD80+ macrophages correlated with the expression levels of IL-1α, IL-1RA, IL-8, IL-17A, and MCP-1, while the PAX7+ and MyoD+ stem cell counts were positively correlated with the expression level of CXCL12α, a recognized chemoattractant for muscle stem cells. Treatment of additional tissue sections with FAs revealed that CD80+ or MARCO+ macrophages- and PAX7+ or MyoD+ stem cells were simultaneously increased by unsaturated long-chain FAs. Taken together, this is the first experimental demonstration of a coordinated activation of macrophages and stem cells in human skeletal muscle tissue.
Collapse
Affiliation(s)
- Xiaoying Chen
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Dandan Hao
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Nils Becker
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.B.); (M.P.); (F.H.)
| | - Aline Müller
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Miguel Pishnamaz
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.B.); (M.P.); (F.H.)
| | - Leo Cornelius Bollheimer
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Frank Hildebrand
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.B.); (M.P.); (F.H.)
| | - Mahtab Nourbakhsh
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| |
Collapse
|
12
|
Johnson AL, Kamal M, Parise G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023; 12:1968. [PMID: 37566047 PMCID: PMC10417507 DOI: 10.3390/cells12151968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Skeletal muscle has a high capacity to repair and remodel in response to damage, largely through the action of resident muscle stem cells, termed satellite cells. Satellite cells are required for the proper repair of skeletal muscle through a process known as myogenesis. Recent investigations have observed relationships between satellite cells and other cell types and structures within the muscle microenvironment. These findings suggest that the crosstalk between inflammatory cells, fibrogenic cells, bone-marrow-derived cells, satellite cells, and the vasculature is essential for the restoration of muscle homeostasis. This review will discuss the influence of the cells and structures within the muscle microenvironment on satellite cell function and muscle repair.
Collapse
Affiliation(s)
| | | | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
13
|
Moss CE, Phipps H, Wilson HL, Kiss-Toth E. Markers of the ageing macrophage: a systematic review and meta-analysis. Front Immunol 2023; 14:1222308. [PMID: 37520567 PMCID: PMC10373068 DOI: 10.3389/fimmu.2023.1222308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Ageing research is establishing macrophages as key immune system regulators that undergo functional decline. Due to heterogeneity between species and tissue populations, a plethora of data exist and the power of scientific conclusions can vary substantially. This meta-analysis by information content (MAIC) and systematic literature review (SLR) aims to determine overall changes in macrophage gene and protein expression, as well as function, with age. Methods PubMed was utilized to collate peer-reviewed literature relating to macrophage ageing. Primary studies comparing macrophages in at least two age groups were included. Data pertaining to gene or protein expression alongside method used were extracted for MAIC analysis. For SLR analysis, data included all macrophage-specific changes with age, as well as species, ontogeny and age of groups assessed. Results A total of 240 studies were included; 122 of which qualified for MAIC. The majority of papers focussed on changes in macrophage count/infiltration as a function of age, followed by gene and protein expression. The MAIC found iNOS and TNF to be the most commonly investigated entities, with 328 genes and 175 proteins showing consistent dysregulation with age across the literature. Overall findings indicate that cytokine secretion and phagocytosis are reduced and reactive oxygen species production is increased in the ageing macrophage. Discussion Collectively, our analysis identifies critical regulators in macrophage ageing that are consistently dysregulated, highlighting a plethora of targets for further investigation. Consistent functional changes with age found here can be used to confirm an ageing macrophage phenotype in specific studies and experimental models.
Collapse
Affiliation(s)
- Charlotte E. Moss
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Hew Phipps
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Heather L. Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Cui CY, Ferrucci L, Gorospe M. Macrophage Involvement in Aging-Associated Skeletal Muscle Regeneration. Cells 2023; 12:1214. [PMID: 37174614 PMCID: PMC10177543 DOI: 10.3390/cells12091214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The skeletal muscle is a dynamic organ composed of contractile muscle fibers, connective tissues, blood vessels and nerve endings. Its main function is to provide motility to the body, but it is also deeply involved in systemic metabolism and thermoregulation. The skeletal muscle frequently encounters microinjury or trauma, which is primarily repaired by the coordinated actions of muscle stem cells (satellite cells, SCs), fibro-adipogenic progenitors (FAPs), and multiple immune cells, particularly macrophages. During aging, however, the capacity of skeletal muscle to repair and regenerate declines, likely contributing to sarcopenia, an age-related condition defined as loss of muscle mass and function. Recent studies have shown that resident macrophages in skeletal muscle are highly heterogeneous, and their phenotypes shift during aging, which may exacerbate skeletal muscle deterioration and inefficient regeneration. In this review, we highlight recent insight into the heterogeneity and functional roles of macrophages in skeletal muscle regeneration, particularly as it declines with aging.
Collapse
Affiliation(s)
- Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|