1
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Scharf P, Sandri S, Rizzetto F, Xavier LF, Grosso D, Correia-Silva RD, Farsky PS, Gil CD, Farsky SHP. GPCRs overexpression and impaired fMLP-induced functions in neutrophils from chronic kidney disease patients. Front Immunol 2024; 15:1387566. [PMID: 39253088 PMCID: PMC11381270 DOI: 10.3389/fimmu.2024.1387566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction G-protein coupled receptors (GPCRs) expressed on neutrophils regulate their mobilization from the bone marrow into the blood, their half-live in the circulation, and their pro- and anti-inflammatory activities during inflammation. Chronic kidney disease (CKD) is associated with systemic inflammatory responses, and neutrophilia is a hallmark of CKD onset and progression. Nonetheless, the role of neutrophils in CKD is currently unclear. Methods Blood and renal tissue were collected from non-dialysis CKD (grade 3 - 5) patients to evaluate GPCR neutrophil expressions and functions in CKD development. Results CKD patients presented a higher blood neutrophil-to-lymphocyte ratio (NLR), which was inversely correlated with the glomerular filtration rate (eGFR). A higher frequency of neutrophils expressing the senescent GPCR receptor (CXCR4) and activation markers (CD18+CD11b+CD62L+) was detected in CKD patients. Moreover, CKD neutrophils expressed higher amounts of GPCR formyl peptide receptors (FPR) 1 and 2, known as neutrophil pro- and anti-inflammatory receptors, respectively. Cytoskeletal organization, migration, and production of reactive oxygen species (ROS) by CKD neutrophils were impaired in response to the FPR1 agonist (fMLP), despite the higher expression of FPR1. In addition, CKD neutrophils presented enhanced intracellular, but reduced membrane expression of the protein Annexin A1 (AnxA1), and an impaired ability to secrete it into the extracellular compartment. Secreted and phosphorylated AnxA1 is a recognized ligand of FPR2, pivotal in anti-inflammatory and efferocytosis effects. CKD renal tissue presented a low number of neutrophils, which were AnxA1+. Conclusion Together, these data highlight that CKD neutrophils overexpress GPCRs, which may contribute to an unbalanced aging process in the circulation, migration into inflamed tissues, and efferocytosis.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Rizzetto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Lagoa Federal Hospital, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro S Farsky
- Dante Pazzanese Institute of Cardiology of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Mora J, Modak S, Kinsey J, Ragsdale CE, Lazarus HM. GM-CSF, G-CSF or no cytokine therapy with anti-GD2 immunotherapy for high-risk neuroblastoma. Int J Cancer 2024; 154:1340-1364. [PMID: 38108214 DOI: 10.1002/ijc.34815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Colony-stimulating factors have been shown to improve anti-disialoganglioside 2 (anti-GD2) monoclonal antibody response in high-risk neuroblastoma by enhancing antibody-dependent cell-mediated cytotoxicity (ADCC). A substantial amount of research has focused on recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant to anti-GD2 monoclonal antibodies. There may be a disparity in care among patients as access to GM-CSF therapy and anti-GD2 monoclonal antibodies is not uniform. Only select countries have approved these agents for use, and even with regulatory approvals, access to these agents can be complex and cost prohibitive. This comprehensive review summarizes clinical data regarding efficacy and safety of GM-CSF, recombinant human granulocyte colony-stimulating factor (G-CSF) or no cytokine in combination with anti-GD2 monoclonal antibodies (ie, dinutuximab, dinutuximab beta or naxitamab) for immunotherapy of patients with high-risk neuroblastoma. A substantial body of clinical data support the immunotherapy combination of anti-GD2 monoclonal antibodies and GM-CSF. In contrast, clinical data supporting the use of G-CSF are limited. No formal comparison between GM-CSF, G-CSF and no cytokine has been identified. The treatment of high-risk neuroblastoma with anti-GD2 therapy plus GM-CSF is well established. Suboptimal efficacy outcomes with G-CSF raise concerns about its suitability as an alternative to GM-CSF as an adjuvant in immunotherapy for patients with high-risk neuroblastoma. While programs exist to facilitate obtaining GM-CSF and anti-GD2 monoclonal antibodies in regions where they are not commercially available, continued work is needed to ensure equitable therapeutic options are available globally.
Collapse
Affiliation(s)
- Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joyce Kinsey
- Partner Therapeutics, Inc, Lexington, Massachusetts, USA
| | | | | |
Collapse
|
4
|
Lazarus HM, Pitts K, Wang T, Lee E, Buchbinder E, Dougan M, Armstrong DG, Paine R, Ragsdale CE, Boyd T, Rock EP, Gale RP. Recombinant GM-CSF for diseases of GM-CSF insufficiency: Correcting dysfunctional mononuclear phagocyte disorders. Front Immunol 2023; 13:1069444. [PMID: 36685591 PMCID: PMC9850113 DOI: 10.3389/fimmu.2022.1069444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Pitts
- Medical Affairs, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth Buchbinder
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David G. Armstrong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, United States
| | | | - Timothy Boyd
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Edwin P. Rock
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Robert Peter Gale
- Hematology Centre, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
5
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
6
|
Silencing CTNND1 Mediates Triple-Negative Breast Cancer Bone Metastasis via Upregulating CXCR4/CXCL12 Axis and Neutrophils Infiltration in Bone. Cancers (Basel) 2021; 13:cancers13225703. [PMID: 34830862 PMCID: PMC8616231 DOI: 10.3390/cancers13225703] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Distant metastasis, especially bone metastasis, is the major cause of death in breast cancer patients. However, breast cancer patients with bone metastasis are frequently complicated by delayed intervention as clinically bone metastasis cannot be detected early enough. Here, we report that CTNND1 is downregulated in both primary tumors and metastatic bone lesions of patients with triple-negative breast cancer (TNBC). Decreased CTNND1 is a crucial intrinsic contributor to homing to the bones and the survival of the breast cancer cells in the bone microenvironment. Thus, CTNND1 may be a novel biomarker for early predicting bone metastasis of triple-negative breast cancer. Abstract Bone metastasis from triple-negative breast cancer (TNBC) frequently results in poorer prognosis than other types of breast cancer due to the delay in diagnosis and intervention, lack of effective treatments and more skeletal-related complications. In the present study, we identified CTNND1 as a most reduced molecule in metastatic bone lesion from TNBC by way of high throughput sequencing of TNBC samples. In vivo experiments revealed that knockdown of CTNND1 enhanced tumor cells metastasis to bones and also increased neutrophils infiltration in bones. In vitro, we demonstrated that knockdown of CTNND1 accelerated epithelial–mesenchymal transformation (EMT) of tumor cells and their recruitment to bones. The involvement by CTNND1 in EMT and bone homing was achieved by upregulating CXCR4 via activating the PI3K/AKT/HIF-1αpathway. Moreover, TNBC cells with reduced expression of CTNND1 elicited cytotoxic T-cells responses through accelerating neutrophils infiltration by secreting more GM-CSF and IL-8. Clinically, patients with triple-negative breast cancer and lower level of CTNND1 had shorter overall survival (OS) and distant metastasis-free survival (DMFS). It was concluded that downregulation of CTNND1 played a critical role in facilitating bone metastasis of TNBC and that CTNND1 might be a potential biomarker for predicting the risk of bone metastases in TNBC.
Collapse
|
7
|
De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest 2018; 48 Suppl 2:e12949. [PMID: 29734477 PMCID: PMC6767022 DOI: 10.1111/eci.12949] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chemokines play a critical role in orchestrating the distribution and trafficking of neutrophils in homeostasis and disease. RESULTS The CXCR4/CXCL12 chemokine axis has been identified as a central regulator of these processes. CONCLUSION In this review, we focus on the role of CXCR4/CXCL12 chemokine axis in regulating neutrophil release from the bone marrow and the trafficking of senescent neutrophils back to the bone marrow for clearance under homeostasis and disease. We also discuss the role of CXCR4 in fine-tuning neutrophil responses in the context of inflammation.
Collapse
Affiliation(s)
- Katia De Filippo
- IRD Section, Respiratory Division, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Sara M Rankin
- IRD Section, Respiratory Division, NHLI, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun 2015. [PMID: 26209532 DOI: 10.1177/1753425915595874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last 40 yr, the majority of research on glucans has focused on β-(1→3)-glucans. Recent studies indicate that β-(1→6)-glucans may be even more potent immune modulators than β-(1→3)-glucans. Mechanisms by which β-(1→6)-glucans are recognized and modulate immunity are unknown. In this study, we examined the interaction of purified water-soluble β-(1→6)-glucans with macrophage cell lines and primary peritoneal macrophages and the cellular and molecular consequences of this interaction. Our results indicate the existence of a specific β-(1→6)-glucan receptor that internalizes the glucan ligand via a clathrin-dependent mechanism. We show that the known β-(1→3)-glucans receptors are not responsible for β-(1→6)-glucan recognition and interaction. The receptor-ligand uptake/interaction has an apparent dissociation constant (KD) of ∼ 4 µM, and was associated with phosphorylation of ERK and JNK but not IκB-α or p38. Our results indicate that macrophage interaction with β-(1→6)-glucans may lead to modulation of genes associated with anti-fungal immunity and recruitment/activation of neutrophils. In summary, we show that macrophages specifically bind and internalize β-(1→6)-glucans followed by activation of intracellular signaling and modulation of anti-fungal immune response-related gene regulation. Thus, we conclude that the interaction between innate immunity and β-(1→6)-glucans may play an important role in shaping the anti-fungal immune response.
Collapse
Affiliation(s)
- Ilka Noss
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Bridget M Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
10
|
Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients 2015; 7:2574-88. [PMID: 25912037 PMCID: PMC4425162 DOI: 10.3390/nu7042574] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022] Open
Abstract
Neutrophils are the body’s primary defenders against invading pathogens. These cells migrate to loci of infection where they engulf micro-organisms and subject them to an array of reactive oxygen species and antimicrobial proteins to effect killing. Spent neutrophils subsequently undergo apoptosis and are cleared by macrophages, thereby resolving the inflammatory episode. Neutrophils contain high concentrations of vitamin C (ascorbate) and this is thought to be essential for their function. This may be one mechanism whereby vitamin C enhances immune function. The aim of our study was to assess the effect of dietary supplementation with vitamin C-rich SunGold kiwifruit on four important functions of neutrophils: chemotaxis, oxidant generation, extracellular trap formation, and apoptosis. Fourteen young men (aged 18–30 years) with suboptimal plasma vitamin C status (<50 μmol/L) were supplemented for four weeks with two SunGold kiwifruit/day. Plasma vitamin C status was monitored weekly and neutrophil vitamin C levels were assessed at baseline and post-intervention. Neutrophil function assays were carried out on cells isolated at baseline and post-intervention. Plasma vitamin C levels increased to >70 μmol/L (p < 0.001) within one week of supplementation and there was a significant increase in neutrophil vitamin C status following four weeks’ intervention (p = 0.016). We observed a significant 20% increase in neutrophil chemotaxis post-intervention (p = 0.041) and also a comparable increase in oxidant generation (p = 0.031). Supplementation did not affect neutrophil extracellular trap formation or spontaneous apoptosis. Our data indicate that supplementation with vitamin C-rich kiwifruit is associated with improvement of important neutrophil functions, which would be expected to translate into enhanced immunity.
Collapse
|
11
|
Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 2015; 3:8224-8249. [DOI: 10.1039/c5tb01370d] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fabrication of biomaterials scaffolds using various methods and techniques is discussed, utilising biocompatible, biodegradable and stimuli-responsive polymers and their composites. This review covers the lithography and printing techniques, self-organisation and self-assembly methods for 3D structural scaffolds generation, and smart hydrogels, for tissue regeneration and medical devices.
Collapse
Affiliation(s)
- Ferdous Khan
- Senior Polymer Chemist
- ECOSE-Biopolymer
- Knauf Insulation Limited
- St. Helens
- UK
| | - Masaru Tanaka
- Biomaterials Science Group
- Department of Biochemical Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
| | - Sheikh Rafi Ahmad
- Centre for Applied Laser Spectroscopy
- CDS
- DEAS
- Cranfield University
- Swindon
| |
Collapse
|
12
|
Zahran N, Sayed A, William I, Mahmoud O, Sabry O, Rafaat M. Neutrophil apoptosis: impact of granulocyte macrophage colony stimulating factor on cell survival and viability in chronic kidney disease and hemodialysis patients. Arch Med Sci 2013; 9:984-9. [PMID: 24482640 PMCID: PMC3902719 DOI: 10.5114/aoms.2013.39789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/29/2011] [Accepted: 10/19/2011] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Altered neutrophil apoptosis might be responsible for recurrent bacterial infections encountered in hemodialysis (HD) and chronic kidney disease (CKD) patients. This work was designed to assess the neutrophil apoptotic activity and the impact of implementation of granulocyte macrophage colony stimulating factor (GM-CSF), as a survival factor, on neutrophil apoptosis among these patients. MATERIAL AND METHODS Twenty-five patients on regular HD along with 34 CKD patients on conservative treatment, as well as 15 healthy controls, were investigated for apoptotic rate via assessment of neutrophil expression of Annexin-V by flow cytometry, before and after 20 h culture in absence and presence of GM-CSF. Neutrophil viability was determined using light microscopy. The preservation of neutrophil activation in these patients was analyzed by flow cytometric CD18 neutrophil expression. Chronic inflammatory state was evaluated by estimating C-reactive protein (CRP) and soluble intercellular adhesion molecule-1 (sICAM-1). Obtained data were statistically analyzed. RESULTS Compared to controls, both HD and CKD groups had a significant increase of Annexin-V and CD18 expression and significant decrease in neutrophil viability. Culture of their neutrophils with GM-CSF showed significant decrease of apoptosis accompanied by improvement of neutrophil viability compared to their cultured cells without GM-CSF. These patients also showed significant elevation of CRP and sICAM-1. CONCLUSIONS Granulocyte macrophage colony stimulating factor demonstrated an evident impact on improving in vitro neutrophil survival and viability in HD and CKD patients. Therefore, this may represent promising preventive and/or therapeutic strategies against infection frequently observed in these patients and causing morbidity and mortality.
Collapse
Affiliation(s)
| | - Azza Sayed
- Theodor Bilharz Research Institute, Imbaba Giza, Egypt
| | - Iman William
- Theodor Bilharz Research Institute, Imbaba Giza, Egypt
| | - Ola Mahmoud
- Theodor Bilharz Research Institute, Imbaba Giza, Egypt
| | - Omar Sabry
- Theodor Bilharz Research Institute, Imbaba Giza, Egypt
| | - Manar Rafaat
- Theodor Bilharz Research Institute, Imbaba Giza, Egypt
| |
Collapse
|
13
|
Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. THE JOURNAL OF IMMUNOLOGY 2013; 190:1746-57. [PMID: 23319733 DOI: 10.4049/jimmunol.1201213] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Advanced age is associated with alterations in innate and adaptive immune responses, which contribute to an increased risk of infection in elderly patients. Coupled with this immune dysfunction, elderly patients demonstrate impaired wound healing with elevated rates of wound dehiscence and chronic wounds. To evaluate how advanced age alters the host immune response to cutaneous wound infection, we developed a murine model of cutaneous Staphylococcus aureus wound infection in young (3-4 mo) and aged (18-20 mo) BALB/c mice. Aged mice exhibit increased bacterial colonization and delayed wound closure over time compared with young mice. These differences were not attributed to alterations in wound neutrophil or macrophage TLR2 or FcγRIII expression, or age-related changes in phagocytic potential and bactericidal activity. To evaluate the role of chemotaxis in our model, we first examined in vivo chemotaxis in the absence of wound injury to KC, a neutrophil chemokine. In response to a s.c. injection of KC, aged mice recruited fewer neutrophils at increasing doses of KC compared with young mice. This paralleled our model of wound infection, where diminished neutrophil and macrophage recruitment was observed in aged mice relative to young mice despite equivalent levels of KC, MIP-2, and MCP-1 chemokine levels at the wound site. This reduced leukocyte accumulation was also associated with lower levels of ICAM-1 in wounds from aged mice at early time points. These age-mediated defects in early neutrophil recruitment may alter the dynamics of the inflammatory phase of wound healing, impacting macrophage recruitment, bacterial clearance, and wound closure.
Collapse
Affiliation(s)
- Aleah L Brubaker
- Burn and Shock Trauma Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
14
|
Dalli J, Jones CP, Cavalcanti DM, Farsky SH, Perretti M, Rankin SM. Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow. FASEB J 2011; 26:387-96. [PMID: 21957127 PMCID: PMC3250241 DOI: 10.1096/fj.11-182089] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under homeostatic conditions, a proportion of senescent CXCR4(hi) neutrophils home from the circulation back to the bone marrow, where they are phagocytosed by bone marrow macrophages. In this study, we have identified an unexpected role for the anti-inflammatory molecule annexin A1 (AnxA1) as a critical regulator of this process. We first observed that AnxA1(-/-) mice have significantly increased neutrophil numbers in their bone marrow while having normal levels of GM and G colony-forming units, monocytes, and macrophages. Although AnxA1(-/-) mice have more neutrophils in the bone marrow, a greater proportion of these cells are senescent, as determined by their higher levels of CXCR4 expression and annexin V binding. Consequently, bone marrow neutrophils from AnxA1(-/-) mice exhibit a reduced migratory capacity in vitro. Studies conducted in vitro also show that expression of AnxA1 is required for bone marrow macrophages, but not peritoneal macrophages, to phagocytose apoptotic neutrophils. Moreover, in vivo experiments indicate a defect in clearance of wild-type neutrophils in the bone marrow of AnxA1(-/-) mice. Thus, we conclude that expression of AnxA1 by resident macrophages is a critical determinant for neutrophil clearance in the bone marrow.
Collapse
Affiliation(s)
- Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
15
|
Richards H, Williams A, Jones E, Hindley J, Godkin A, Simon AK, Gallimore A. Novel role of regulatory T cells in limiting early neutrophil responses in skin. Immunology 2010; 131:583-92. [PMID: 20722759 DOI: 10.1111/j.1365-2567.2010.03333.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is clear that CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells inhibit chronic inflammatory responses as well as adaptive immune responses. Among the CD4(+) T-cell population in the skin, at least one-fifth express Foxp3. As the skin is constantly exposed to antigenic challenge and is a common site of vaccination, understanding the role of these skin-resident Treg cells is important. Although the suppressive effect of Treg cells on T cells is well documented, less is known about the types of innate immune cells influenced by Treg cells and whether the Treg cells suppress acute innate immune responses in vivo. To address this we used a mouse melanoma cell line expressing Fas ligand (B16FasL), which induces an inflammatory response following subcutaneous injection of mice. We demonstrate that Treg cells limit this response by inhibiting neutrophil accumulation and survival within hours of tumour cell inoculation. This effect, which was associated with decreased expression of the neutrophil chemoattractants CXCL1 and CXCL2, promoted survival of the inoculated tumour cells. Overall, these data imply that Treg cells in the skin are rapidly mobilized and that this activity serves to limit the amplification of inflammatory responses at this site.
Collapse
Affiliation(s)
- Hannah Richards
- Infection, Immunity and Biochemistry, School of Medicine, Heath Park, Cardiff , UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
17
|
Changes in gene expression of granulocytes during in vivo granulocyte colony-stimulating factor/dexamethasone mobilization for transfusion purposes. Blood 2009; 113:5979-98. [DOI: 10.1182/blood-2008-10-182147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractThe treatment of healthy donors with granulocyte colony-stimulating factor (G-CSF) and dexamethasone results in sufficient numbers of circulating granulocytes to prepare granulocyte concentrates for clinical purposes. Granulocytes obtained in this way demonstrate relatively normal functional behavior combined with a prolonged life span. To study the influence of mobilizing agents on granulocytes, we used oligonucleotide microarrays to identify genes that are differentially expressed in mobilized granulocytes compared with control granulocytes. More than 1000 genes displayed a differential expression pattern, with at least a 3-fold difference. Among these, a large number of genes was induced that encode proteins involved in inflammation and the immune response, such as C-type lectins and leukocyte immunoglobulin-like receptors. Because mobilized granulocytes have a prolonged life span, we focused on genes involved in the regulation of apoptosis. One of the most prominent among these was CAST, the gene encoding calpastatin. Calpastatins are the endogenous inhibitors of calpains, a family of calcium-dependent cysteine proteases recently shown to be involved in neutrophil apoptosis. Transcriptional activity of the CAST gene was induced by G-CSF/dexamethasone treatment both in vivo and in vitro, whereas the protein expression of CAST was stabilized during culture. These studies provide new insight in the genotypic changes as well as in the regulation of the immunologic functions and viability of mobilized granulocytes used for clinical transfusion purposes.
Collapse
|
18
|
Hartl D, Krauss-Etschmann S, Koller B, Hordijk PL, Kuijpers TW, Hoffmann F, Hector A, Eber E, Marcos V, Bittmann I, Eickelberg O, Griese M, Roos D. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. THE JOURNAL OF IMMUNOLOGY 2008; 181:8053-67. [PMID: 19017998 DOI: 10.4049/jimmunol.181.11.8053] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various inflammatory diseases are characterized by tissue infiltration of neutrophils. Chemokines recruit and activate leukocytes, but neutrophils are traditionally known to be restricted in their chemokine receptor (CR) expression repertoire. Neutrophils undergo phenotypic and functional changes under inflammatory conditions, but the mechanisms regulating CR expression of infiltrated neutrophils at sites of chronic inflammation are poorly defined. Here we show that infiltrated neutrophils from patients with chronic inflammatory lung diseases and rheumatoid arthritis highly express CR on their surface that are absent or only marginally expressed on circulating neutrophils, i.e., CCR1, CCR2, CCR3, CCR5, CXCR3, and CXCR4, as measured by flow cytometry, immunohistochemistry, and confocal microscopy. The induction of CR surface expression on infiltrated neutrophils was functionally relevant, because receptor activation by chemokine ligands ex vivo modulated neutrophil effector functions such as respiratory burst activity and bacterial killing. In vitro studies with isolated neutrophils demonstrated that the surface expression of CR was differentially induced in a cytokine-mediated, protein synthesis-dependent manner (CCR1, CCR3), through Toll-like (CXCR3) or NOD2 (CCR5) receptor engagement, through neutrophil apoptosis (CCR5, CXCR4), and/or via mobilization of intracellular CD63(+) granules (CXCR3). CR activation on infiltrated neutrophils may represent a key mechanism by which the local inflammatory microenvironment fine-tunes neutrophil effector functions in situ. Since the up-regulation of CR was exclusively found on infiltrated neutrophils at inflammatory sites in situ, the targeting of these G protein-coupled receptors may have the potential to site-specifically target neutrophilic inflammation.
Collapse
Affiliation(s)
- Dominik Hartl
- Childrens' Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Espía M, Sebastián C, Mulero M, Giralt M, Mallol J, Celada A, Lloberas J. Granulocyte macrophage--colony-stimulating factor-dependent proliferation is impaired in macrophages from senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 2008; 63:1161-7. [PMID: 19038830 DOI: 10.1093/gerona/63.11.1161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A senescence-accelerated (SAMP8) mouse model was used to determine the effect of aging on the immune system. We produced in vitro bone marrow-derived macrophages from SAMP8 mice and compared them against senescence-resistant, long-lived mice (SAMR1). Although macrophages from both strains of mice proliferated in a similar manner in response to monocyte-colony-stimulating factor (M-CSF), SAMP8 macrophages showed an impaired response to granulocyte macrophage-colony-stimulating factor (GM-CSF). Similar levels of external regulated kinases (ERK)1/2 and signaling transducer and activator of transcription 5 (STAT5) phosphorylation were observed in macrophages from both strains of mice. The lack of proliferation was not caused by the induction of apoptosis. Differentiation of bone marrow cells into dendritic cells was similar in both strains of mice, as was the induction of major histocompatibility complex (MHC) class II molecules by interferon-gamma (IFN-gamma). Finally, we determined the density of Langerhans cells in vivo in the skin of the two mouse strains, but no differences were found.
Collapse
Affiliation(s)
- Marta Espía
- Macroophage Biology Group, Institute for Research in Biomedicine, Barcelona, Barcelona Science Park, C/ Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood 2008; 112:2046-54. [PMID: 18524991 DOI: 10.1182/blood-2008-04-149575] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neutrophils have a very short life span and undergo apoptosis within 24 hours after leaving the bone marrow. Granulocyte colony-stimulating factor (G-CSF) is essential for the recruitment of fresh neutrophils from the bone marrow but also delays apoptosis of mature neutrophils. To determine the mechanism by which G-CSF inhibits neutrophil apoptosis, the kinetics of neutrophil apoptosis during 24 hours in the absence or presence of G-CSF were analyzed in vitro. G-CSF delayed neutrophil apoptosis for approximately 12 hours and inhibited caspase-9 and -3 activation, but had virtually no effect on caspase-8 and little effect on the release of proapoptotic proteins from the mitochondria. However, G-CSF strongly inhibited the activation of calcium-dependent cysteine proteases calpains, upstream of caspase-3, via apparent control of Ca(2+)-influx. Calpain inhibition resulted in the stabilization of the X-linked inhibitor of apoptosis (XIAP) and hence inhibited caspase-9 and -3 in human neutrophils. Thus, neutrophil apoptosis is controlled by G-CSF after initial activation of caspase-8 and mitochondrial permeabilization by the control of postmitochondrial calpain activity.
Collapse
|
21
|
Genetic heterogeneity in severe congenital neutropenia: how many aberrant pathways can kill a neutrophil? Curr Opin Allergy Clin Immunol 2008; 7:481-94. [PMID: 17989524 DOI: 10.1097/aci.0b013e3282f1d690] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Severe congenital neutropenia is a primary immunodeficiency in which lack of neutrophils causes inadequate innate immune host response to bacterial infections. Severe congenital neutropenia occurs with sporadic, autosomal dominant, autosomal recessive and X-linked recessive inheritance, as well as in a variety of multisystem syndromes. A principal stimulus for this review is the identification of novel genetic defects and pathophysiological insights into the role of neutrophil apoptosis. RECENT FINDINGS The recent findings include identification of mutations in HAX1 in autosomal recessive severe congenital neutropenia (Kostmann disease), a large epidemiological study estimating the risk of progression from severe congenital neutropenia to leukemia, a better understanding of how heterozygous mutations in neutrophil elastase (ELA2) cause severe congenital neutropenia, molecular characterization of a novel syndromic form of severe congenital neutropenia called p14 deficiency and new animal models for several syndromic forms of severe congenital neutropenia. SUMMARY We consider the numerous genes mutated in severe congenital neutropenia, the many attempts to make animal models of severe congenital neutropenia, and the results from both human and mouse studies investigating the molecular mechanisms of neutrophil apoptosis. Investigations of how severe congenital neutropenia genes and apoptosis pathways are connected should lead to a better understanding of the pathogenesis of neutropenia and apoptosis pathways relevant to many cell types.
Collapse
|