1
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
2
|
Chen J, Ren C, Yao C, Baruscotti M, Wang Y, Zhao L. Identification of the natural chalcone glycoside hydroxysafflor yellow A as a suppressor of P53 overactivation-associated hematopoietic defects. MedComm (Beijing) 2023; 4:e352. [PMID: 37638339 PMCID: PMC10449056 DOI: 10.1002/mco2.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Enhanced P53 signaling may lead to hematopoietic disorders, yet an effective therapeutic strategy is still lacking. Our study, along with previous research, suggests that P53 overactivation and hematopoietic defects are major consequences of zinc deficiency. However, the relationship between these two pathological processes remains unclear. In this study, we observed a severe reduction in the number of hematopoietic stem cells (HSCs) and multi-lineage progenitor cells in zebrafish treated with the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and showed the indispensable role of P53 signaling in the process. Next, we took advantage of HSCs-labeled transgenic zebrafish and conducted a highly efficient phenotypic screening for small molecules against P53-dependent hematopoietic disorders. Hydroxysafflor yellow A (HSYA), a natural chalcone glycoside, exhibited potent protection against hematopoietic failure in zinc-deficient zebrafish and strongly inhibited the P53 pathway. We confirmed the protective effect of HSYA in zinc-deficient mice bone marrow nucleated cells, which showed a significant suppression of P53 signaling and oxidative stress. Furthermore, the hematopoietic-protective activity of HSYA was validated using a mice model of myelotoxicity induced by 5-FU. In summary, our work provides an effective phenotypic screening strategy for identifying hematopoietic-protective agents and reveals the novel role of HSYA as a promising lead compound in rescuing hematopoietic disorders associated with P53 overactivation.
Collapse
Affiliation(s)
- Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Can Ren
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Chong Yao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | | | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhouChina
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
4
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
5
|
Kosti J, Mervak T, Terebelo H. Extramedullary Myeloid Leukemia in the Setting of a Myeloproliferative Neoplasm. J Med Cases 2022; 13:561-568. [PMID: 36506761 PMCID: PMC9728152 DOI: 10.14740/jmc3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
Extramedullary acute myeloid leukemia (EML), also known as myeloid sarcoma (MS), is an extramedullary solid mass derived from the proliferation of myeloblasts outside of the bone marrow. EML can present independently or concurrently with intramedullary acute myeloid leukemia (iAML). It can happen de novo or secondary to iAML, myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), or myelodysplastic syndrome (MDS). We present a 57-year-old female with a history of Janus kinase 2 (JAK-2)-positive essential thrombocythemia (ET) evolving into EML in the setting of a persistent TP53 mutation. We discuss the essential diagnostic studies including tissue biopsy and fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) imaging. We also investigate the significance of cytogenetics and next-generation sequencing (NGS) along with the unique pathogenesis, treatment and prognostic implications.
Collapse
Affiliation(s)
- Jorgena Kosti
- Department of Hematology and Oncology, Ascension Providence Hospital, Southfield, Michigan and Michigan State University, East Lansing, MI, USA,Corresponding Author: Jorgena Kosti, Department of Hematology and Oncology, Michigan State University, Ascension Providence, 22301 Foster Winter Drive, Southfield, Michigan, 48075, USA.
| | - Timothy Mervak
- Department of Pathology, Ascension Providence Hospital, Southfield, MI, USA
| | - Howard Terebelo
- Department of Hematology and Oncology, Ascension Providence Hospital, Southfield, Michigan and Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY. Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell 2022; 29:882-904. [PMID: 35659875 PMCID: PMC9202417 DOI: 10.1016/j.stem.2022.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes a widespread expansion of genetically variant hematopoietic cells that increases exponentially with age and is associated with increased risks of cancers, cardiovascular disease, and other maladies. Here, we discuss how environmental contexts associated with CHIP, such as old age, infections, chemotherapy, or cigarette smoking, alter tissue microenvironments to facilitate the selection and expansion of specific CHIP mutant clones. Further, we consider major remaining gaps in knowledge, including intrinsic effects, clone size thresholds, and factors affecting clonal competition, that will determine future application of this field in transplant and preventive medicine.
Collapse
Affiliation(s)
- Marcus A Florez
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Brandon T Tran
- Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Trisha K Wathan
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Y King
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Omer-Javed A, Pedrazzani G, Albano L, Ghaus S, Latroche C, Manzi M, Ferrari S, Fiumara M, Jacob A, Vavassori V, Nonis A, Canarutto D, Naldini L. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell 2022; 185:2248-2264.e21. [PMID: 35617958 PMCID: PMC9240327 DOI: 10.1016/j.cell.2022.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT. HSPC mobilizers create an opportunity to engraft exogenous cells in depleted niches Ex vivo culture endows HSPCs with migration advantage by rescuing CXCR4 expression Cultured HSPCs outcompete mobilized HSPCs for engraftment in depleted BM niches Transient engraftment enhancers coupled with gene editing confer a competitive advantage
Collapse
Affiliation(s)
- Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sherash Ghaus
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claire Latroche
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maura Manzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Nonis
- CUSSB-University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
8
|
Ginsenoside Rg1 as a Potential Regulator of Hematopoietic Stem/Progenitor Cells. Stem Cells Int 2022; 2021:4633270. [PMID: 35003268 PMCID: PMC8741398 DOI: 10.1155/2021/4633270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/24/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ginsenoside Rg1 (Rg1), a purified, active component of the root or stem of ginseng, exerts positive effects on mesenchymal stem cells (MSCs). Many recent studies have found that hematopoietic stem cells (HSCs), which can develop into hematopoietic progenitor cells (HPCs) and mature blood cells, are another class of heterogeneous adult stem cells that can be regulated by Rg1. Rg1 can affect HSC proliferation and migration, regulate HSC/HPC differentiation, and alleviate HSC aging, and these findings potentially provide new strategies to improve the HSC homing rate in HSC transplantation and for the treatment of graft-versus-host disease (GVHD) or other HSC/HPC dysplasia-induced diseases. In this review, we used bioinformatics methods, molecular docking verification, and a literature review to systematically explore the possible molecular pharmacological activities of Rg1 through which it regulates HSCs/HPCs.
Collapse
|
9
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
10
|
Kandasamy K, Tan LG, B Johana N, Tan YW, Foo W, Yeo JSL, Ravikumar V, Ginhoux F, Choolani M, Chan JKY, Mattar CNZ. Maternal microchimerism and cell-mediated immune-modulation enhance engraftment following semi-allogenic intrauterine transplantation. FASEB J 2021; 35:e21413. [PMID: 33570785 DOI: 10.1096/fj.202002185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Nuryanti B Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Wanling Foo
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julie S L Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Vikashini Ravikumar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
11
|
Albayrak E, Uslu M, Akgol S, Tuysuz EC, Kocabas F. Small molecule-mediated modulation of ubiquitination and neddylation improves HSC function ex vivo. J Cell Physiol 2021; 236:8122-8136. [PMID: 34101829 DOI: 10.1002/jcp.30466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 11/07/2022]
Abstract
Hematopoietic stem cells (HSCs) are particularly characterized by their quiescence and self-renewal. Cell cycle regulators tightly control quiescence and self-renewal capacity. Studies suggest that modulation of ubiquitination and neddylation could contribute to HSC function via cyclin-dependent kinase inhibitors (CDKIs). S-phase kinase-associated protein 2 (SKP2) is responsible for ubiquitin-mediated proteolysis of CDKIs. Here, we modulated overall neddylation and SKP2-associated ubiquitination in HSCs by using SKP2-C25, an SKP2 inhibitor, and MLN4924 (Pevonedistat) as an inhibitor of the NEDD8 system. Treatments of SKP2-C25 and MLN4924 increased both murine and human stem and progenitor cell (HSPC) compartments. This is associated with the improved quiescence of murine HSC by upregulation of p27 and p57 CDKIs. A colony-forming unit assay showed an enhanced in vitro self-renewal potential post inhibition of ubiquitination and neddylation. In addition, MLN4924 triggered the mobilization of bone marrow HSPCs to peripheral blood. Intriguingly, MLN4924 treatment could decrease the proliferation of murine bone marrow mesenchymal stem cells or endothelial cells. These findings shed light on the contribution of SKP2, and associated ubiquitination and neddylation in HSC maintenance, self-renewal, and expansion.
Collapse
Affiliation(s)
- Esra Albayrak
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Merve Uslu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sezer Akgol
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
12
|
Resistance of bone marrow stroma to genotoxic preconditioning is determined by p53. Cell Death Dis 2021; 12:545. [PMID: 34039962 PMCID: PMC8154997 DOI: 10.1038/s41419-021-03824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
Transplantation of bone marrow (BM) is made possible by the differential sensitivity of its stromal and hematopoietic components to preconditioning by radiation and/or chemotherapeutic drugs. These genotoxic treatments eliminate host hematopoietic precursors by inducing p53-mediated apoptosis but keep the stromal niche sufficiently intact for the engraftment of donor hematopoietic cells. We found that p53-null mice cannot be rescued by BM transplantation (BMT) from even the lowest lethal dose of total body irradiation (TBI). We compared structural changes in BM stroma of mice differing in their p53 status to understand why donor BM failed to engraft in the irradiated p53-null mice. Irradiation did not affect the general structural integrity of BM stroma and induced massive expression of alpha-smooth muscle actin in mesenchymal cells followed by increased adiposity in p53 wild-type mice. In contrast, none of these events were found in p53-null mice, whose BM stroma underwent global structural damage following TBI. Similar differences in response to radiation were observed in in vitro-grown bone-adherent mesenchymal cells (BAMC): p53-null cells underwent mitotic catastrophe while p53 wild-type cells stayed arrested but viable. Supplementation with intact BAMC of either genotype enabled donor BM engraftment and significantly extended longevity of irradiated p53-null mice. Thus, successful preconditioning depends on the p53-mediated protection of cells critical for the functionality of BM stroma. Overall, this study reveals a dual positive role of p53 in BMT: it drives apoptotic death of hematopoietic cells and protects BM stromal cells essential for its functionality.
Collapse
|
13
|
Li L, Zhang S, Ge C, Ji L, Lv Y, Zhao C, Xu L, Zhang J, Song C, Chen J, Wei W, Fang Y, Yuan N, Wang J. HSCs transdifferentiate primarily to pneumonocytes in radiation-induced lung damage repair. Aging (Albany NY) 2021; 13:8335-8354. [PMID: 33686967 PMCID: PMC8034935 DOI: 10.18632/aging.202644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Accumulative radiation exposure leads to hematopoietic or tissue aging. Whether hematopoietic stem cells (HSCs) are involved in lung damage repair in response to radiation remains controversial. The aim of this study is to identify if HSC can transdifferentiate to pneumonocytes for radiation-induced damage repair. To this end, HSCs from male RosamT/mG mice were isolated by fluorescence-activated cell sorting (FACS) and transplanted into lethally irradiated female CD45.1 mice. 4 months after transplantation, transplanted HSC was shown to repair the radiation-induced tissue damage, and donor-derived tdTomato (phycoerythrin, PE) red fluorescence cells and Ddx3y representing Y chromosome were detected exclusively in female recipient lung epithelial and endothelial cells. Co-localization of donor-derived cells and recipient lung tissue cells were observed by laser confocal microscopy and image flow cytometry. Furthermore, the results showed HSC transplantation replenished radiation-induced lung HSC depletion and the PE positive repaired lung epithelial cells were identified as donor HSC origin. The above data suggest that donor HSC may migrate to the injured lung of the recipient and some of them can be transdifferentiated to pneumonocytes to repair the injury caused by radiation.
Collapse
Affiliation(s)
- Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Ji
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yaqi Lv
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Zhao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Jingyi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chenglin Song
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jianing Chen
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| |
Collapse
|
14
|
Nita A, Muto Y, Katayama Y, Matsumoto A, Nishiyama M, Nakayama KI. The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Rep 2021; 34:108688. [PMID: 33535054 DOI: 10.1016/j.celrep.2021.108688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin-remodeling factor that is encoded by the most frequently mutated gene in individuals with autism spectrum disorder. CHD8 is expressed not only in neural tissues but also in many other organs; however, its functions are largely unknown. Here, we show that CHD8 is highly expressed in and maintains the stemness of hematopoietic stem cells (HSCs). Conditional deletion of Chd8 specifically in mouse bone marrow induces cell cycle arrest, apoptosis, and a differentiation block in HSCs in association with upregulation of the expression of p53 target genes. A colony formation assay and bone marrow transplantation reveal that CHD8 deficiency also compromises the stemness of HSCs. Furthermore, additional ablation of p53 rescues the impaired stem cell function and differentiation block of CHD8-deficient HSCs. Our results thus suggest that the CHD8-p53 axis plays a key role in regulation of the stemness and differentiation of HSCs.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshiharu Muto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
15
|
Charruyer A, Weisenberger T, Li H, Khalifa A, Schroeder AW, Belzer A, Ghadially R. Decreased p53 is associated with a decline in asymmetric stem cell self-renewal in aged human epidermis. Aging Cell 2021; 20:e13310. [PMID: 33524216 PMCID: PMC7884041 DOI: 10.1111/acel.13310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
With age, the epidermis becomes hypoplastic and hypoproliferative. Hypoproliferation due to aging has been associated with decreased stem cell (SC) self‐renewal in multiple murine tissues. The fate of SC self‐renewal divisions can be asymmetric (one SC, one committed progenitor) or symmetric (two SCs). Increased asymmetric SC self‐renewal has been observed in inflammatory‐mediated hyperproliferation, while increased symmetric SC self‐renewal has been observed in cancers. We analyzed SC self‐renewal divisions in aging human epidermis to better understand the role of SCs in the hypoproliferation of aging. In human subjects, neonatal to 78 years, there was an age‐dependent decrease in epidermal basal layer divisions. The balance of SC self‐renewal shifted toward symmetric SC self‐renewal, with a decline in asymmetric SC self‐renewal. Asymmetric SC divisions maintain epidermal stratification, and this decrease may contribute to the hypoplasia of aging skin. P53 decreases in multiple tissues with age, and p53 has been shown to promote asymmetric SC self‐renewal. Fewer aged than adult ALDH+CD44+ keratinocyte SCs exhibited p53 expression and activity and Nutlin‐3 (a p53 activator) returned p53 activity as well as asymmetric SC self‐renewal divisions to adult levels. Nutlin‐3 increased Notch signaling (NICD, Hes1) and DAPT inhibition of Notch activation prevented Nutlin‐3 (p53)‐induced asymmetric SC self‐renewal divisions in aged keratinocytes. These studies indicate a role for p53 in the decreased asymmetric SC divisions with age and suggest that in aged keratinocytes, Notch is required for p53‐induced asymmetric SC divisions.
Collapse
Affiliation(s)
- Alexandra Charruyer
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Tracy Weisenberger
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Hang Li
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Ayman Khalifa
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
- Faculty of science Zagazig University Zagazig Egypt
| | | | - Annika Belzer
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
- Yale School of Medicine New Haven Connecticut USA
| | - Ruby Ghadially
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| |
Collapse
|
16
|
Berg JL, Perfler B, Hatzl S, Mayer MC, Wurm S, Uhl B, Reinisch A, Klymiuk I, Tierling S, Pregartner G, Bachmaier G, Berghold A, Geissler K, Pichler M, Hoefler G, Strobl H, Wölfler A, Sill H, Zebisch A. Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia. Clin Epigenetics 2021; 13:1. [PMID: 33407852 PMCID: PMC7789782 DOI: 10.1186/s13148-020-00979-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is an aggressive hematopoietic malignancy that arises from hematopoietic stem and progenitor cells (HSPCs). Patients with CMML are frequently treated with epigenetic therapeutic approaches, in particular the hypomethylating agents (HMAs), azacitidine (Aza) and decitabine (Dec). Although HMAs are believed to mediate their efficacy via re-expression of hypermethylated tumor suppressors, knowledge about relevant HMA targets is scarce. As silencing of tumor-suppressive micro-RNAs (miRs) by promoter hypermethylation is a crucial step in malignant transformation, we asked for a role of miRs in HMA efficacy in CMML. RESULTS Initially, we performed genome-wide miR-expression profiling in a KrasG12D-induced CMML mouse model. Selected candidates with prominently decreased expression were validated by qPCR in CMML mice and human CMML patients. These experiments revealed the consistent decrease in miR-125a, a miR with previously described tumor-suppressive function in myeloid neoplasias. Furthermore, we show that miR-125a downregulation is caused by hypermethylation of its upstream region and can be reversed by HMA treatment. By employing both lentiviral and CRISPR/Cas9-based miR-125a modification, we demonstrate that HMA-induced miR-125a upregulation indeed contributes to mediating the anti-leukemic effects of these drugs. These data were validated in a clinical context, as miR-125a expression increased after HMA treatment in CMML patients, a phenomenon that was particularly pronounced in cases showing clinical response to these drugs. CONCLUSIONS Taken together, we report decreased expression of miR-125a in CMML and delineate its relevance as mediator of HMA efficacy within this neoplasia.
Collapse
Affiliation(s)
- Johannes Lorenz Berg
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Marie-Christina Mayer
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Medical University of Graz, Graz, Austria
| | - Sascha Tierling
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Klaus Geissler
- 5th Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Centre, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
- Otto-Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
| |
Collapse
|
17
|
Wang T, Xia C, Weng Q, Wang K, Dong Y, Hao S, Dong F, Liu X, Liu L, Geng Y, Guan Y, Du J, Cheng T, Cheng H, Wang J. Loss of <i>Nupr1</i> promotes engraftment by tuning the quiescence threshold of hematopoietic stem cell repository via regulating p53-checkpoint pathway. Haematologica 2020; 107:154-166. [PMID: 33299232 PMCID: PMC8719103 DOI: 10.3324/haematol.2019.239186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) are dominantly quiescent under homeostasis, which is a key mechanism of maintaining the HSC pool for life-long hematopoiesis. Dormant HSC are poised to be immediately activated in certain conditions and can return to quiescence after homeostasis has been regained. At present, the molecular networks of regulating the threshold of HSC dormancy, if existing, remain largely unknown. Here, we show that deletion of Nupr1, a gene preferentially expressed in HSC, activated quiescent HSC under homeostasis, which conferred a competitive engraftment advantage for these HSC without compromising their stemness or multi-lineage differentiation capacity in serial transplantation settings. Following an expansion protocol, the Nupr1-/- HSC proliferated more robustly than their wild-type counterparts in vitro. Nupr1 inhibits the expression of p53 and rescue of this inhibition offsets the engraftment advantage. Our data reveal a new role for Nupr1 as a regulator of HSC quiescence, which provides insights for accelerating the engraftment efficacy of HSC transplantation by targeting the HSC quiescence-controlling network.
Collapse
Affiliation(s)
- Tongjie Wang
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Chengxiang Xia
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Qitong Weng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Kaitao Wang
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Yong Dong
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Sha Hao
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Fang Dong
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Xiaofei Liu
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Lijuan Liu
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Yang Geng
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Yuxian Guan
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Juan Du
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin.
| | - Jinyong Wang
- State Key Laboratory of Experimental Hematology, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou.
| |
Collapse
|
18
|
Santoro A, Vlachou T, Luzi L, Melloni G, Mazzarella L, D'Elia E, Aobuli X, Pasi CE, Reavie L, Bonetti P, Punzi S, Casoli L, Sabò A, Moroni MC, Dellino GI, Amati B, Nicassio F, Lanfrancone L, Pelicci PG. p53 Loss in Breast Cancer Leads to Myc Activation, Increased Cell Plasticity, and Expression of a Mitotic Signature with Prognostic Value. Cell Rep 2020; 26:624-638.e8. [PMID: 30650356 PMCID: PMC6334229 DOI: 10.1016/j.celrep.2018.12.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/26/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
Loss of p53 function is invariably associated with cancer. Its role in tumor growth was recently linked to its effects on cancer stem cells (CSCs), although the underlying molecular mechanisms remain unknown. Here, we show that c-myc is a transcriptional target of p53 in mammary stem cells (MaSCs) and is activated in breast tumors as a consequence of p53 loss. Constitutive Myc expression in normal mammary cells leads to increased frequency of MaSC symmetric divisions, extended MaSC replicative-potential, and MaSC-reprogramming of progenitors, whereas Myc activation in breast cancer is necessary and sufficient to maintain the expanding pool of CSCs. Concomitant p53 loss and Myc activation trigger the expression of 189 mitotic genes, which identify patients at high risk of mortality and relapse, independently of other risk factors. Altogether, deregulation of the p53:Myc axis in mammary tumors increases CSC content and plasticity and is a critical determinant of tumor growth and clinical aggressiveness. Myc is overexpressed and deregulated in breast tumors because of p53 signaling attenuation Myc activation favors SC symmetric divisions and SC reprogramming of progenitors Myc activation is necessary and sufficient to sustain the cancer SC phenotype Expression of 189 mitotic p53:Myc targets identifies high-risk breast cancer patients
Collapse
Affiliation(s)
- Angela Santoro
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Thalia Vlachou
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lucilla Luzi
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giorgio Melloni
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy; Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA 02115, USA
| | - Luca Mazzarella
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Errico D'Elia
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Xieraili Aobuli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cristina Elisabetta Pasi
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Linsey Reavie
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; BioPharma Excellence, Agnes-Pockels-Bogen 1, 80922 Munich, Germany
| | - Paola Bonetti
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | - Simona Punzi
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lucia Casoli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | - Arianna Sabò
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | - Maria Cristina Moroni
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Gaetano Ivan Dellino
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142 Milan, Italy
| | - Bruno Amati
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | - Luisa Lanfrancone
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142 Milan, Italy.
| |
Collapse
|
19
|
Rabe JL, Hernandez G, Chavez JS, Mills TS, Nerlov C, Pietras EM. CD34 and EPCR coordinately enrich functional murine hematopoietic stem cells under normal and inflammatory conditions. Exp Hematol 2019; 81:1-15.e6. [PMID: 31863798 DOI: 10.1016/j.exphem.2019.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is dynamically regulated to maintain blood system function under nonhomeostatic conditions such as inflammation and injury. However, common surface marker and hematopoietic stem cell (HSC) reporter systems used for prospective enrichment of HSCs have been less rigorously tested in these contexts. Here, we use two surface markers, EPCR/CD201 and CD34, to re-analyze dynamic changes in the HSC-enriched phenotypic SLAM compartment in a mouse model of chronic interleukin (IL)-1 exposure. EPCR and CD34 coordinately identify four functionally and molecularly distinct compartments within the SLAM fraction, including an EPCR+/CD34- fraction whose long-term serial repopulating activity is only modestly impacted by chronic IL-1 exposure, relative to unfractionated SLAM cells. Notably, the other three fractions expand in frequency following IL-1 treatment and represent actively proliferating, lineage-primed cell states with limited long-term repopulating potential. Importantly, we find that the Fgd5-ZSGreen HSC reporter mouse enriches for molecularly and functionally intact HSCs regardless of IL-1 exposure. Together, our findings provide further evidence of dynamic heterogeneity within a commonly used HSC-enriched phenotypic compartment under stress conditions. Importantly, they also indicate that stringency of prospective isolation approaches can enhance interpretation of findings related to HSC function when studying models of hematopoietic stress.
Collapse
Affiliation(s)
- Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
20
|
Scapin G, Goulard MC, Dharampuriya PR, Cillis JL, Shah DI. Analysis of Hematopoietic Stem Progenitor Cell Metabolism. J Vis Exp 2019. [PMID: 31762453 DOI: 10.3791/60234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) have distinct metabolic plasticity, which allows them to transition from their quiescent state to a differentiation state to sustain demands of the blood formation. However, it has been difficult to analyze the metabolic status (mitochondrial respiration and glycolysis) of HSPCs due to their limited numbers and lack of optimized protocols for non-adherent, fragile HSPCs. Here, we provide a set of clear, step-by-step instructions to measure metabolic respiration (oxygen consumption rate; OCR) and glycolysis (extracellular acidification rate; ECAR) of murine bone marrow-LineagenegSca1+c-Kit+ (LSK) HSPCs. This protocol provides a higher amount of LSK HSPCs from murine bone marrow, improves the viability of HSPCs during incubation, facilitates extracellular flux analyses of non-adherent HSPCs, and provides optimized injection protocols (concentration and time) for drugs targeting oxidative phosphorylation and glycolytic pathways. This method enables the prediction of the metabolic status and the health of HSPCs during blood development and diseases.
Collapse
Affiliation(s)
- Giorgia Scapin
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Marie C Goulard
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Priyanka R Dharampuriya
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Jennifer L Cillis
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Dhvanit I Shah
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center;
| |
Collapse
|
21
|
Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Adv 2019; 2:2766-2779. [PMID: 30348672 DOI: 10.1182/bloodadvances.2018024273] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/02/2023] Open
Abstract
The limited number of hematopoietic stem cells (HSCs) in umbilical cord blood (UCB) units restricts their use for stem cell transplantation. Ex vivo treatment of UCB-CD34+ cells with valproic acid (VPA) increases the number of transplantable HSCs. In this study, we demonstrate that HSC expansion is not merely a result of proliferation of the existing stem cells but, rather, a result of a rapid reprogramming of CD34+CD90- cells into CD34+CD90+ cells, which is accompanied by limited numbers of cell divisions. Beyond this phenotypic switch, the treated cells acquire and retain a transcriptomic and mitochondrial profile, reminiscent of primary HSCs. Single and bulk RNA-seq revealed a signature highly enriched for transcripts characteristic of primary HSCs. The acquisition of this HSC signature is linked to mitochondrial remodeling accompanied by a reduced activity and enhanced glycolytic potential. These events act in concert with a modest upregulation of p53 activity to limit the levels of reactive oxygen species (ROS). Inhibition of either glycolysis or p53 activity impairs HSC expansion. This study indicates that a complex interplay of events is required for effective ex vivo expansion of UCB-HSCs.
Collapse
|
22
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Sha Li
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Peter D. Adams
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| |
Collapse
|
23
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
24
|
Asrij/OCIAD1 suppresses CSN5-mediated p53 degradation and maintains mouse hematopoietic stem cell quiescence. Blood 2019; 133:2385-2400. [PMID: 30952670 DOI: 10.1182/blood.2019000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Inactivation of the tumor suppressor p53 is essential for unrestrained growth of cancers. However, only 11% of hematological malignancies have mutant p53. Mechanisms that cause wild-type p53 dysfunction and promote leukemia are inadequately deciphered. The stem cell protein Asrij/OCIAD1 is misexpressed in several human hematological malignancies and implicated in the p53 pathway and DNA damage response. However, Asrij function in vertebrate hematopoiesis remains unknown. We generated the first asrij null (knockout [KO]) mice and show that they are viable and fertile with no gross abnormalities. However, by 6 months, they exhibit increased peripheral blood cell counts, splenomegaly, and an expansion of bone marrow hematopoietic stem cells (HSCs) with higher myeloid output. HSCs lacking Asrij are less quiescent and more proliferative with higher repopulation potential as observed from serial transplantation studies. However, stressing KO mice with sublethal γ irradiation or multiple injections of 5-fluorouracil results in reduced survival and rapid depletion of hematopoietic stem/progenitor cells (HSPCs) by driving them into proliferative exhaustion. Molecular and biochemical analyses revealed increased polyubiquitinated protein levels, Akt/STAT5 activation and COP9 signalosome subunit 5 (CSN5)-mediated p53 ubiquitination, and degradation in KO HSPCs. Further, we show that Asrij sequesters CSN5 via its conserved OCIA domain, thereby preventing p53 degradation. In agreement, Nutlin-3 treatment of KO mice restored p53 levels and reduced high HSPC frequencies. Thus, we provide a new mouse model resembling myeloproliferative disease and identify a posttranslational regulator of wild-type p53 essential for maintaining HSC quiescence that could be a potential target for pharmacological intervention.
Collapse
|
25
|
Deyhle RT, Wong CP, Martin SA, McDougall MQ, Olson DA, Branscum AJ, Menn SA, Iwaniec UT, Hamby DM, Turner RT. Maintenance of Near Normal Bone Mass and Architecture in Lethally Irradiated Female Mice following Adoptive Transfer with as few as 750 Purified Hematopoietic Stem Cells. Radiat Res 2019; 191:413-427. [PMID: 30870097 DOI: 10.1667/rr15164.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Total-body irradiation (TBI) followed by transfer of bone marrow cells from donors is routinely performed in immunology research and can be used to manipulate differentiation and/or function of bone cells. However, exposure to high-dose radiation can result in irreversible osteopenia, and transfer of heterogeneous cell populations can complicate interpretation of results. The goal of this research was to establish an approach for reconstituting bone marrow using small numbers of purified donor-derived hematopoietic stem cells (HSCs) without negatively affecting bone metabolism. Gamma-irradiated (9 Gy) WBB6F1 mice were engrafted with bone marrow cells (5 × 106 cells) or purified HSCs (3,000 cells) obtained from GFP transgenic mice. In vivo analysis and in vitro differentiation assays performed two months later established that both methods were effective in reconstituting the hematopoietic compartment with donor-derived cells. We confirmed these findings by engrafting C57Bl/6 (B6) mice with bone marrow cells or purified HSCs from CD45.1 B6 congenic mice. We next performed adoptive transfer of purified HSCs (750 cells) into WBB6F1 and radiosensitive KitW/W-v mice and evaluated the skeleton two months later. Minimal differences were observed between controls and WBB6F1-engrafted mice that received fractionated doses of 2 × 5 Gy. Kitw/wv mice lost weight and became osteopenic after 2 × 5 Gy irradiations but these abnormalities were negligible after 5 Gy irradiation. Importantly, adoptive transfer of wild-type cells into Kitw/wv mice restored normal Kit expression in bone marrow. Together, these findings provide strong evidence for efficient engraftment with purified HSCs after lethal TBI with minimal collateral damage to bone. This approach will be useful for investigating mechanisms by which hematopoietic lineage cells regulate bone metabolism.
Collapse
Affiliation(s)
- Richard T Deyhle
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,c Nuclear Science and Engineering, Oregon State University, Corvallis, Oregon 97331.,f Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, BE-2400 Mol, Belgium
| | - Carmen P Wong
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Stephen A Martin
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Melissa Q McDougall
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Dawn A Olson
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Adam J Branscum
- b Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Scott A Menn
- d Radiation Center, Oregon State University, Corvallis, Oregon 97331
| | - Urszula T Iwaniec
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,e Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon 97331
| | - David M Hamby
- c Nuclear Science and Engineering, Oregon State University, Corvallis, Oregon 97331
| | - Russell T Turner
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,e Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
26
|
Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells. Stem Cells Int 2019; 2019:4067162. [PMID: 30881461 PMCID: PMC6381553 DOI: 10.1155/2019/4067162] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
Quiescent and self-renewing hematopoietic stem cells (HSCs) rely on glycolysis rather than on mitochondrial oxidative phosphorylation (OxPHOS) for energy production. HSC reliance on glycolysis is considered an adaptation to the hypoxic environment of the bone marrow (BM) and reflects the low energetic demands of HSCs. Metabolic rewiring from glycolysis to mitochondrial-based energy generation accompanies HSC differentiation and lineage commitment. Recent evidence, however, highlights that alterations in mitochondrial metabolism and activity are not simply passive consequences but active drivers of HSC fate decisions. Modulation of mitochondrial activity and metabolism is therefore critical for maintaining the self-renewal potential of primitive HSCs and might be beneficial for ex vivo expansion of transplantable HSCs. In this review, we emphasize recent advances in the emerging role of mitochondria in hematopoiesis, cellular reprograming, and HSC fate decisions.
Collapse
|
27
|
Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 2018; 9:2202. [PMID: 29875383 PMCID: PMC5989201 DOI: 10.1038/s41467-018-04441-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
We previously identified CD34-negative (CD34-) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34- HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34- HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34- HSCs. We find that the purified CD34- HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34- HSCs. Based on these data, we propose a revised road map for the commitment of human CD34- HSCs in cord blood.
Collapse
Affiliation(s)
- Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
- Department of Orthopedic Surgery, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Kyoto, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Hiroshima, Japan
- Japanese Red Cross Osaka Blood Center, Osaka, 536-0025, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan.
| |
Collapse
|
28
|
Bello AB, Park H, Lee SH. Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater 2018; 72:1-15. [PMID: 29578087 DOI: 10.1016/j.actbio.2018.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitor cells that can differentiate and replenish blood and immune cells. While there is a growing demand for autologous and allogeneic HSC transplantation owing to the increasing incidence of hereditary and hematologic diseases, the low population of HSCs in cord-blood and bone marrow (the main source of HSCs) hinders their medical applicability. Several cytokine and growth factor-based methods have been developed to expand the HSCs in vitro; however, the expansion rate is low, or the expanded cells fail to survive upon engraftment. This is at least in part because the overly simplistic polystyrene culture substrates fail to fully replicate the microenvironments or niches where these stem cells live. Bone marrow niches are multi-dimensional, complex systems that involve both biochemical (cells, growth factors, and cytokines) and physiochemical (stiffness, O2 concentration, and extracellular matrix presentation) factors that regulate the quiescence, proliferation, activation, and differentiation of the HSCs. Although several studies have been conducted on in vitro HSC expansion via 2D and 3D biomaterial-based platforms, additional work is required to engineer an effective biomaterial platform that mimics bone marrow niches. In this study, the factors that regulate the HSC in vivo were explained and their applications in the engineering of a bone marrow biomaterial-based platform were discussed. In addition, current approaches, challenges, and the future direction of a biomaterial-based culture and expansion of the HSC were examined. STATEMENT OF SIGNIFICANCE Hematopoietic stem cells (HSC) are multipotent cells that can differentiate and replace the blood and immune cells of the body. However, in vivo, there is a low population of these cells, and thus their use in biotherapeutic and medical applications is limited (i.e., bone marrow transplantation). In this review, the biochemical factors (growth factors, cytokines, co-existing cells, ECM, gas concentrations, and differential gene expression) that may regulate the over-all fate of HSC, in vivo, were summarized and discussed. Moreover, different conventional and recent biomaterial platforms were reviewed, and their potential in generating a biomaterial-based, BM niche-mimicking platform for the efficient growth and expansion of clinically relevant HSCs in-vitro, was discussed.
Collapse
Affiliation(s)
- Alvin Bacero Bello
- School of Integrative Engineering, Chung-Ang University, Seoul 06911, Republic of Korea; Department of Biomedical Science, CHA University, Seongnam-Si 13488, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06911, Republic of Korea.
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-Si 13488, Republic of Korea.
| |
Collapse
|
29
|
The Fanconi anemia pathway controls oncogenic response in hematopoietic stem and progenitor cells by regulating PRMT5-mediated p53 arginine methylation. Oncotarget 2018; 7:60005-60020. [PMID: 27507053 PMCID: PMC5312365 DOI: 10.18632/oncotarget.11088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/26/2016] [Indexed: 01/26/2023] Open
Abstract
The Fanconi anemia (FA) pathway is involved in DNA damage and other cellular stress responses. We have investigated the role of the FA pathway in oncogenic stress response by employing an in vivo stress-response model expressing the Gadd45β-luciferase transgene. Using two inducible models of oncogenic activation (LSL-K-rasG12D and MycER), we show that hematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA core complex components Fanca or Fancc exhibit aberrant short-lived response to oncogenic insults. Mechanistic studies reveal that FA deficiency in HSPCs impairs oncogenic stress-induced G1 cell-cycle checkpoint, resulting from a compromised K-rasG12D-induced arginine methylation of p53 mediated by the protein arginine methyltransferase 5 (PRMT5). Furthermore, forced expression of PRMT5 in HSPCs from LSL-K-rasG12D/CreER-Fanca−/− mice prolongs oncogenic response and delays leukemia development in recipient mice. Our study defines an arginine methylation-dependent FA-p53 interplay that controls oncogenic stress response.
Collapse
|
30
|
Wong TN, Miller CA, Jotte MRM, Bagegni N, Baty JD, Schmidt AP, Cashen AF, Duncavage EJ, Helton NM, Fiala M, Fulton RS, Heath SE, Janke M, Luber K, Westervelt P, Vij R, DiPersio JF, Welch JS, Graubert TA, Walter MJ, Ley TJ, Link DC. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun 2018; 9:455. [PMID: 29386642 PMCID: PMC5792556 DOI: 10.1038/s41467-018-02858-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic clones harboring specific mutations may expand over time. However, it remains unclear how different cellular stressors influence this expansion. Here we characterize clonal hematopoiesis after two different cellular stressors: cytotoxic therapy and hematopoietic transplantation. Cytotoxic therapy results in the expansion of clones carrying mutations in DNA damage response genes, including TP53 and PPM1D. Analyses of sorted populations show that these clones are typically multilineage and myeloid-biased. Following autologous transplantation, most clones persist with stable chimerism. However, DNMT3A mutant clones often expand, while PPM1D mutant clones often decrease in size. To assess the leukemic potential of these expanded clones, we genotyped 134 t-AML/t-MDS samples. Mutations in non-TP53 DNA damage response genes are infrequent in t-AML/t-MDS despite several being commonly identified after cytotoxic therapy. These data suggest that different hematopoietic stressors promote the expansion of distinct long-lived clones, carrying specific mutations, whose leukemic potential depends partially on the mutations they harbor.
Collapse
Affiliation(s)
- Terrence N Wong
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher A Miller
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew R M Jotte
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nusayba Bagegni
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jack D Baty
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Amy P Schmidt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda F Cashen
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Nichole M Helton
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark Fiala
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sharon E Heath
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Megan Janke
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kierstin Luber
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peter Westervelt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Ravi Vij
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - John S Welch
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | | | - Matthew J Walter
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Timothy J Ley
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Daniel C Link
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. Eur J Cell Biol 2018; 97:32-43. [DOI: 10.1016/j.ejcb.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
|
32
|
Chromatin dynamics during the differentiation of long-term hematopoietic stem cells to multipotent progenitors. Blood Adv 2017; 1:887-898. [PMID: 29296732 DOI: 10.1182/bloodadvances.2016003384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
ATAC-seq provides genome-wide chromatin state in 3 cell types of hematopoietic stem/progenitor cells.Transcription factor cohorts are associated with dynamic changes of open chromatin during the differentiation of LT/ST-HSCs to MPPs.
Collapse
|
33
|
Biechonski S, Yassin M, Milyavsky M. DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis 2017; 38:367-377. [PMID: 28334174 DOI: 10.1093/carcin/bgx002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Self-renewing and multipotent hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis. Their enormous regenerative potential coupled with lifetime persistence in the body, in contrast with the Progenitors, demand tight control of HSCs genome stability. Indeed, failure to accurately repair DNA damage in HSCs is associated with bone marrow failure and accelerated leukemogenesis. Recent observations exposed remarkable differences in several DNA-damage response (DDR) aspects between HSCs and Progenitors, especially in their DNA-repair capacities and susceptibility to apoptosis. Human HSCs in comparison with Progenitors exhibit delayed DNA double-strand break rejoining, persistent DDR signaling activation, higher sensitivity to the cytotoxic effects of ionizing radiation and attenuated expression of DNA-repair genes. Importantly, the distinct DDR of HSCs was also documented in mouse models. Nevertheless, physiological significance and the molecular basis of the HSCs-specific DDR features are only partially understood. Taking radiation-induced DDR as a paradigm, this review will focus on the current advances in understanding the role of cell-intrinsic DDR regulators and the cellular microenvironment in balancing stemness with genome stability. Pre-leukemia HSCs and clonal hematopoiesis evolvement will be discussed as an evolutionary compromise between the need for lifelong blood regeneration and DDR. Uniquely for this review, we outline the differences in HSCs-related DDR as highlighted by various experimental systems and attempt to provide their critical analysis.
Collapse
Affiliation(s)
- Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
34
|
Bone Marrow Adipose Tissue Deficiency Increases Disuse-Induced Bone Loss in Male Mice. Sci Rep 2017; 7:46325. [PMID: 28402337 PMCID: PMC5389344 DOI: 10.1038/srep46325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Bone marrow adipose tissue (MAT) is negatively associated with bone mass. Since osteoblasts and adipocytes are derived from the same precursor cells, adipocyte differentiation may occur at the expense of osteoblast differentiation. We used MAT-deficient KitW/W−v (MAT-) mice to determine if absence of MAT reduced bone loss in hindlimb-unloaded (HU) mice. Male MAT- and wild-type (WT) mice were randomly assigned to a baseline, control or HU group (n = 10 mice/group) within each genotype and HU groups unloaded for 2 weeks. Femurs were evaluated using micro-computed tomography, histomorphometry and targeted gene profiling. MAT- mice had a greater reduction in bone volume fraction after HU than did WT mice. HU MAT- mice had elevated cancellous bone formation and resorption compared to other treatment groups as well as a unique profile of differentially expressed genes. Adoptive transfer of WT bone marrow-derived hematopoietic stem cells reconstituted c-kit but not MAT in KitW/W−v mice. The MAT- WT → KitW/W−v mice lost cancellous bone following 2 weeks of HU. In summary, results from this study suggest that MAT deficiency was not protective, and was associated with exaggerated disuse-induced cancellous bone loss.
Collapse
|
35
|
Tsuruta-Kishino T, Koya J, Kataoka K, Narukawa K, Sumitomo Y, Kobayashi H, Sato T, Kurokawa M. Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera. Oncogene 2017; 36:3300-3311. [PMID: 28068330 DOI: 10.1038/onc.2016.478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
As leukemic transformation of myeloproliferative neoplasms (MPNs) worsens the clinical outcome, reducing the inherent risk of the critical event in MPN cases could be beneficial. Among genetic alterations concerning the transformation, the frequent one is TP53 mutation. Here we show that retroviral overexpression of Jak2 V617F mutant into wild-type p53 murine bone marrow cells induced polycythemia vera (PV) in the recipient mice, whereas Jak2 V617F-transduced p53-null mice developed lethal leukemia after the preceding PV phase. The leukemic mice had severe anemia, hepatosplenomegaly, pulmonary hemorrhage and expansion of dysplastic erythroid progenitors. Primitive leukemia cells (c-kit+Sca1+Lin- (KSL) and CD34-CD16/32-c-kit+Sca1-Lin- (megakaryocyte-erythroid progenitor; MEP)) and erythroid progenitors (CD71+) from Jak2 V617F-transduced p53-null leukemic mice had leukemia-initiating capacity, however, myeloid differentiated populations (Mac-1+) could not recapitulate the disease. Interestingly, recipients transplanted with CD71+ cells rapidly developed erythroid leukemia, which was in sharp contrast to leukemic KSL cells to cause lethal leukemia after the polycythemic state. The leukemic CD71+ cells were more sensitive to INCB18424, a potent JAK inhibitor, than KSL cells. p53 restoration could ameliorate Jak2 V617F-transduced p53-null erythroleukemia. Taken together, our results show that p53 loss is sufficient for inducing leukemic transformation in Jak2 V617F-positive MPN.
Collapse
Affiliation(s)
- T Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - J Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Y Sumitomo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Oncology Research Laboratories, Kyowa Hakko Kirin Co., Machida, Tokyo, Japan
| | - H Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - M Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
36
|
Kumar S, Filippi MD. An Alternative Approach for Sample Preparation with Low Cell Number for TEM Analysis. J Vis Exp 2016. [PMID: 27768053 DOI: 10.3791/54724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transmission electron microscopy (TEM) provides details of the cellular organization and ultrastructure. However, TEM analysis of rare cell populations, especially cells in suspension such as hematopoietic stem cells (HSCs), remains limited due to the requirement of a high cell number during sample preparation. There are a few cytospin or monolayer approaches for TEM analysis from scarce samples, but these approaches fail to get significant quantitative data from the limited number of cells. Here, an alternative and novel approach for sample preparation in TEM studies is described for rare cell populations that enables quantitative analysis. A relatively low cell number, i.e., 10,000 HSCs, was successfully used for TEM analysis compared to the millions of cells typically used for TEM studies. In particular, Evans blue staining was performed after paraformaldehyde-glutaraldehyde (PFA-GA) fixation to visualize the tiny cell pellet, which facilitated embedding in agarose. Clusters of numerous cells were observed in ultra-thin sections. The cells had a well preserved morphology, and the ultra-structural details of the Golgi complex and several mitochondria were visible. This efficient, easy and reproducible protocol allows sample preparation from a low cell number and can be used for qualitative and quantitative TEM analysis on rare cell populations from limited biological samples.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation;
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation;
| |
Collapse
|
37
|
Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J 2016; 283:2779-810. [DOI: 10.1111/febs.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
- Faculty of Biology; University of Freiburg; Germany
| | - Alexandra Müller
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research; 3rd Medical Department for Hematology; Paracelsus Private Medical University Hospital; Salzburg Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| |
Collapse
|
38
|
Tian C, Zhang Y. Purification of hematopoietic stem cells from bone marrow. Ann Hematol 2016; 95:543-7. [DOI: 10.1007/s00277-016-2608-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/31/2016] [Indexed: 12/22/2022]
|
39
|
Du W, Amarachintha S, Wilson AF, Pang Q. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells. Stem Cells 2015; 34:960-71. [PMID: 26676373 DOI: 10.1002/stem.2260] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/30/2015] [Accepted: 11/20/2015] [Indexed: 11/10/2022]
Abstract
Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA.
Collapse
Affiliation(s)
- Wei Du
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Divisions of Radiation Health, College of Pharmacy, UAMS, Little Rock, Arkansas, USA
| | - Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew F Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
40
|
Chen J, Feng X, Desierto MJ, Keyvanfar K, Young NS. IFN-γ-mediated hematopoietic cell destruction in murine models of immune-mediated bone marrow failure. Blood 2015; 126:2621-31. [PMID: 26491068 PMCID: PMC4671109 DOI: 10.1182/blood-2015-06-652453] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Interferon gamma (IFN-γ) has been reported to have both negative and positive activity on hematopoietic cells, adding complexity to the interpretation of its pleiotropic functions. We examined the effects of IFN-γ on murine hematopoietic stem cells (HSCs) and progenitors in vitro and in vivo by using mouse models. IFN-γ treatment expanded bone marrow (BM) c-Kit(+)Sca1(+)Lin(-) (KSL) cell number but reduced BM KLCD150(+) and KLCD150(+)CD48(-) cells. IFN-γ-expanded KSL cells engrafted poorly when tested by competitive repopulation in vivo. KSL, KLCD150(+), and KLCD150(+)CD48(-) cells from IFN-γ-treated animals all showed significant upregulation in Fas expression. When cocultured with activated T cells in vitro, KSL and KLCD150(+) cells from IFN-γ-treated donors showed increased apoptosis relative to those from untreated animals, and infusion of activated CD8 T cells into IFN-γ-injected animals in vivo led to partial elimination of KSL cells. Exposure of BM cells or KSL cells to IFN-γ increased expression of Fas, caspases, and related proapoptotic genes and decreased expression of Ets-1 and other hematopoietic genes. In mouse models of BM failure, mice genetically deficient in IFN-γ receptor expression showed attenuation of immune-mediated marrow destruction, whereas effector lymphocytes from IFN-γ-deficient donors were much less potent in initiating BM damage. We conclude that the activity of IFN-γ on murine hematopoiesis is context dependent. IFN-γ-augmented apoptotic gene expression facilitates destruction of HSCs and progenitors in the presence of activated cytotoxic T cells, as occurs in human BM failure.
Collapse
MESH Headings
- Anemia, Aplastic
- Animals
- Apoptosis/drug effects
- Bone Marrow Diseases
- Bone Marrow Failure Disorders
- Bone Marrow Transplantation
- Cells, Cultured
- Coculture Techniques
- Colony-Forming Units Assay
- Disease Models, Animal
- Fas Ligand Protein/physiology
- Gene Expression Regulation/drug effects
- Hematopoiesis/drug effects
- Hematopoietic Stem Cells/drug effects
- Hemoglobinuria, Paroxysmal/immunology
- Hemoglobinuria, Paroxysmal/physiopathology
- Interferon-gamma/pharmacology
- Interferon-gamma/physiology
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Receptors, Interferon/deficiency
- Receptors, Interferon/physiology
- T-Lymphocytes, Cytotoxic/immunology
- fas Receptor/biosynthesis
- fas Receptor/genetics
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Marie J Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Vlaski-Lafarge M, Ivanovic Z. Reliability of ROS and RNS detection in hematopoietic stem cells − potential issues with probes and target cell population. J Cell Sci 2015; 128:3849-60. [DOI: 10.1242/jcs.171496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Many studies have provided evidence for the crucial role of the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the regulation of differentiation and/or self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). Several metabolic regulators have been implicated in the maintenance of HSC redox homeostasis; however, the mechanisms that are regulated by ROS and RNS, as well as their downstream signaling are still elusive. This is partially owing to a lack of suitable methods that allow unequivocal and specific detection of ROS and RNS. In this Opinion, we first discuss the limitations of the commonly used techniques for detection of ROS and RNS, and the problem of heterogeneity of the cell population used in redox studies, which, together, can result in inaccurate conclusions regarding the redox biology of HSCs. We then propose approaches that are based on single-cell analysis followed by a functional test to examine ROS and RNS levels specifically in HSCs, as well as methods that might be used in vivo to overcome these drawbacks, and provide a better understanding of ROS and RNS function in stem cells.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| |
Collapse
|
42
|
Abstract
Cancer is a disease of aging as older adults are much more likely to develop cancer compared with their younger counterparts. Understanding the biology of cancer and aging remains complex, and numerous theories regarding the relationship between the two have been proposed. Cancer treatment decisions in older patients are particularly challenging, because the evidence is scarce and the risk of toxicity increases with age. Determination of biologic age is essential due to heterogeneity of functional status, comorbidity, and physiologic reserves between patients of the same chronologic age.
Collapse
Affiliation(s)
- Daneng Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Nienke A de Glas
- Department of Internal Medicine, Tergooi Hospitals, Van Riebeeckweg 212, Hilversum 1213XZ, The Netherlands
| | - Arti Hurria
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Baśkiewicz-Hałasa M, Rogińska D, Piecyk K, Hałasa M, Lejkowska R, Pius-Sadowska E, Machaliński B. Mixed chimerism and transplant tolerance are not effectively induced in C3a-deficient mice. Exp Hematol 2014; 43:14-22. [PMID: 25308956 DOI: 10.1016/j.exphem.2014.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/05/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023]
Abstract
Mixed chimerism, a phenomenon involved in the development of specific alloantigen tolerance, could be achieved through the transplantation of hematopoietic stem cells into properly prepared recipients. Because the C3a complement component modulates hematopoietic cell trafficking after transplantation, in the present study, we investigated the influence of the C3a deficiency on mixed chimerism and alloantigen tolerance induction. To induce mixed chimerism, C57BL/6J (wild-type strain; H-2K(b); I-E(-)) and B6.129S4-C3(tm1Crr)/J (C3a-deficient) mice were exposed to 3 G total body irradiation (day -1). Subsequently, these mice were treated with CD8-blocking (day -2) and CD40L-blocking (days 0 and 4) antibodies, followed by transplantation with 20 × 10(6) Balb/c (H-2K(d); I-E(+)) bone marrow cells (day 0). The degree of mixed chimerism in peripheral blood leukocytes was measured several times during the 20-week experiment. The tolerance to Balb/c mouse antigens was assessed based on the number of lymphocytes expressing Vβ5 and Vβ11 T-cell receptor and on skin-graft (day 0) acceptance. Applying our experimental model, mixed chimerism and alloantigen tolerance were effectively induced in C57BL/6J (wild-type) mice, but not in C3a(-/-) animals. The present study is, to our knowledge, the first to demonstrate that C3a is vital for achieving stable mixed chimerism and related to this induction of transplant tolerance.
Collapse
Affiliation(s)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Piecyk
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Hałasa
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Renata Lejkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
44
|
Falandry C, Bonnefoy M, Freyer G, Gilson E. Biology of Cancer and Aging: A Complex Association With Cellular Senescence. J Clin Oncol 2014; 32:2604-10. [DOI: 10.1200/jco.2014.55.1432] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the last 50 years, major improvements have been made in our understanding of the driving forces, both parallel and opposing, that lead to aging and cancer. Many theories on aging first proposed in the 1950s, including those associated with telomere biology, senescence, and adult stem-cell regulation, have since gained support from cumulative experimental evidence. These views suggest that the accumulation of mutations might be a common driver of both aging and cancer. Moreover, some tumor suppressor pathways lead to aging in line with the theory of antagonist pleiotropy. According to the evolutionary-selected disposable soma theory, aging should affect primarily somatic cells. At the cellular level, both intrinsic and extrinsic pathways regulate aging and senescence. However, increasing lines of evidence support the hypothesis that these driving forces might be regulated by evolutionary-conserved pathways that modulate energy balance. According to the hyperfunction theory, aging is a quasi-program favoring both age-related diseases and cancer that could be inhibited by the regulation of longevity pathways. This review summarizes these hypotheses, as well as the experimental data that have accumulated over the last 60 years linking aging and cancer.
Collapse
Affiliation(s)
- Claire Falandry
- Claire Falandry, Marc Bonnefoy, and Gilles Freyer, Hospices Civils de Lyon and Lyon University, Lyon; and Eric Gilson, Centre Hospitalier Universitaire of Nice and Nice University Sophia Antipolis, Nice, France
| | - Marc Bonnefoy
- Claire Falandry, Marc Bonnefoy, and Gilles Freyer, Hospices Civils de Lyon and Lyon University, Lyon; and Eric Gilson, Centre Hospitalier Universitaire of Nice and Nice University Sophia Antipolis, Nice, France
| | - Gilles Freyer
- Claire Falandry, Marc Bonnefoy, and Gilles Freyer, Hospices Civils de Lyon and Lyon University, Lyon; and Eric Gilson, Centre Hospitalier Universitaire of Nice and Nice University Sophia Antipolis, Nice, France
| | - Eric Gilson
- Claire Falandry, Marc Bonnefoy, and Gilles Freyer, Hospices Civils de Lyon and Lyon University, Lyon; and Eric Gilson, Centre Hospitalier Universitaire of Nice and Nice University Sophia Antipolis, Nice, France
| |
Collapse
|
45
|
Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation. Mol Cell Biol 2014; 34:3244-58. [PMID: 24958101 DOI: 10.1128/mcb.01528-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Fbw7 ubiquitin ligase critically regulates hematopoietic stem cell (HSC) function, though the precise contribution of individual substrate ubiquitination pathways to HSC homeostasis is unknown. In the work reported here, we used a mouse model in which we introduced two knock-in mutations (T74A and T393A [changes of T to A at positions 74 and 393]) to disrupt Fbw7-dependent regulation of cyclin E, its prototypic substrate, and to examine the consequences of cyclin E dysregulation for HSC function. Serial transplantation revealed that cyclin E(T74A T393A) HSCs self-renewed normally; however, we identified defects in their multilineage reconstituting capacity. By inducing hematologic stress, we exposed an impaired self-renewal phenotype in cyclin E knock-in HSCs that was associated with defective cell cycle exit and the emergence of chromosome instability (CIN). Importantly, p53 deletion induced both defects in self-renewal and multilineage reconstitution in cyclin E knock-in HSCs with serial transplantation and CIN in hematopoietic stem and progenitor cells. Moreover, CIN was a feature of fatal T-cell malignancies that ultimately developed in recipients of cyclin E(T74A T393A); p53-null HSCs. Together, our findings demonstrate the importance of Fbw7-dependent cyclin E control to the hematopoietic system and highlight CIN as a characteristic feature of HSC dysfunction and malignancy induced by deregulated cyclin E.
Collapse
|
46
|
Hoggatt J, Tate TA, Pelus LM. Hematopoietic stem and progenitor cell mobilization in mice. Methods Mol Biol 2014; 1185:43-64. [PMID: 25062621 DOI: 10.1007/978-1-4939-1133-2_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) can be performed with hematopoietic stem and progenitor cells (HSPC) acquired directly from bone marrow, from umbilical cord blood or placental tissue, or from the peripheral blood after treatment of the donor with agents that enhance egress of HSPC into the circulation, a process known as "mobilization." Mobilized peripheral blood stem cells (PBSC) have become the predominate hematopoietic graft for HSCT, particularly for autologous transplants. Despite the success of PBSC transplant, many patients and donors do not achieve optimal levels of mobilization. Thus, accurate animal models and basic laboratory investigations are needed to further investigate the mechanisms that lead to PBSC mobilization and define improved or new mobilizing agents and/or strategies to enhance PBSC mobilization and transplant. This chapter outlines assays and techniques for exploration of hematopoietic mobilization using mice as a model organism.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Sherman Fairchild Room 201, Cambridge, MA, 02138, USA,
| | | | | |
Collapse
|
47
|
Kyryk VM. PHENOTYPING AND SORTING OF MURINE BONE MARROW HAEMATOPOIETIC STEM CELLS USING FLOW CYTOMETRY. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Developing a Systems-Based Understanding of Hematopoietic Stem Cell Cycle Control. A SYSTEMS BIOLOGY APPROACH TO BLOOD 2014; 844:189-200. [DOI: 10.1007/978-1-4939-2095-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Kumar S, Ciraolo G, Hinge A, Filippi MD. An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations. J Immunol Methods 2013; 404:87-90. [PMID: 24291346 DOI: 10.1016/j.jim.2013.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
Abstract
Transmission electron microscopy (TEM) provides ultra-structural details of cells at the sub-organelle level. However, details of the cellular ultrastructure, and the cellular organization and content of various organelles in rare populations, particularly in the suspension, like hematopoietic stem cells (HSCs) remained elusive. This is mainly due to the requirement of millions of cells for TEM studies. Thus, there is a vital requirement of a method that will allow TEM studies with low cell numbers of such rare populations. We describe an alternative and novel approach for TEM studies for rare cell populations. Here we performed a TEM study from 10,000 HSC cells with relative ease. In particular, tiny cell pellets were identified by Evans blue staining after PFA-GA fixation. The cell pellet was pre-embedded in agarose in a small microcentrifuge tube and processed for dehydration, infiltration and embedding. Semi-thin and ultra-thin sections identified clusters of numerous cells per sections with well preserved morphology and ultrastructural details of golgi complex and mitochondria. Together, this method provides an efficient, easy and reproducible process to perform qualitative and quantitative TEM analysis from limited biological samples including cells in suspension.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Georgianne Ciraolo
- Electron microscopy Unit, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Pathology Department, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
50
|
Le Bouteiller M, Souilhol C, Beck-Cormier S, Stedman A, Burlen-Defranoux O, Vandormael-Pournin S, Bernex F, Cumano A, Cohen-Tannoudji M. Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. ACTA ACUST UNITED AC 2013; 210:2351-69. [PMID: 24062412 PMCID: PMC3804936 DOI: 10.1084/jem.20122019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conditional deletion of Notchless leads to rapid deletion and exhaustion of HSCs and early progenitor cells, whereas committed progenitor cells survive as a result of differences in ribosomal biogenesis. Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs. In contrast, Nle is dispensable for cycling-restricted progenitors and differentiated cells. In yeast, Nle/Rsa4 is essential for ribosome biogenesis, and we show that its role in pre-60S subunit maturation has been conserved in the mouse. Despite its implication in this basal cellular process, Nle deletion affects ribosome biogenesis only in HSCs and immature progenitors. Ribosome biogenesis defects are accompanied by p53 activation, which causes their rapid exhaustion. Collectively, our findings establish an essential role for Nle in HSC and immature progenitor functions and uncover previously unsuspected differences in ribosome biogenesis that distinguish stem cells from restricted progenitor populations.
Collapse
Affiliation(s)
- Marie Le Bouteiller
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, F-75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|