1
|
Khalaf A, de Beauchamp L, Kalkman E, Rattigan K, Himonas E, Jones J, James D, Shokry ESA, Scott MT, Dunn K, Tardito S, Copland M, Sumpton D, Shanks E, Helgason GV. Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia. Sci Transl Med 2024; 16:eadi5336. [PMID: 38865484 DOI: 10.1126/scitranslmed.adi5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.
Collapse
MESH Headings
- Drug Repositioning
- Humans
- Mitochondria/metabolism
- Mitochondria/drug effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Animals
- Cell Line, Tumor
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Mice
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Calcium/metabolism
- Oxidative Phosphorylation/drug effects
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
Collapse
Affiliation(s)
- Ahmed Khalaf
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Eric Kalkman
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Joe Jones
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniel James
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | | | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Emma Shanks
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
2
|
Scott MT, Liu W, Mitchell R, Clarke CJ, Kinstrie R, Warren F, Almasoudi H, Stevens T, Dunn K, Pritchard J, Drotar ME, Michie AM, Jørgensen HG, Higgins B, Copland M, Vetrie D. Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease. Nat Commun 2024; 15:651. [PMID: 38246924 PMCID: PMC10800356 DOI: 10.1038/s41467-024-44771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.
Collapse
Affiliation(s)
- Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wei Liu
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ross Kinstrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Felix Warren
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hassan Almasoudi
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Thomas Stevens
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark E Drotar
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Heather G Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Rattigan KM, Zarou MM, Brabcova Z, Prasad B, Zerbst D, Sarnello D, Kalkman ER, Ianniciello A, Scott MT, Dunn K, Shokry E, Sumpton D, Copland M, Tardito S, Vande Voorde J, Mussai F, Cheng P, Helgason GV. Arginine dependency is a therapeutically exploitable vulnerability in chronic myeloid leukaemic stem cells. EMBO Rep 2023; 24:e56279. [PMID: 37489735 PMCID: PMC10561355 DOI: 10.15252/embr.202256279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.
Collapse
Affiliation(s)
- Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Zuzana Brabcova
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Bodhayan Prasad
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Désirée Zerbst
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Eric R Kalkman
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Engy Shokry
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Francis Mussai
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Cheng
- Bio‐cancer Treatment International Ltd, Hong Kong Science ParkShatinNew TerritoriesHong Kong
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Rattigan KM, Brabcova Z, Sarnello D, Zarou MM, Roy K, Kwan R, de Beauchamp L, Dawson A, Ianniciello A, Khalaf A, Kalkman ER, Scott MT, Dunn K, Sumpton D, Michie AM, Copland M, Tardito S, Gottlieb E, Vignir Helgason G. Pyruvate anaplerosis is a targetable vulnerability in persistent leukaemic stem cells. Nat Commun 2023; 14:4634. [PMID: 37591854 PMCID: PMC10435520 DOI: 10.1038/s41467-023-40222-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Deregulated oxidative metabolism is a hallmark of leukaemia. While tyrosine kinase inhibitors (TKIs) such as imatinib have increased survival of chronic myeloid leukaemia (CML) patients, they fail to eradicate disease-initiating leukemic stem cells (LSCs). Whether TKI-treated CML LSCs remain metabolically deregulated is unknown. Using clinically and physiologically relevant assays, we generate multi-omics datasets that offer unique insight into metabolic adaptation and nutrient fate in patient-derived CML LSCs. We demonstrate that LSCs have increased pyruvate anaplerosis, mediated by increased mitochondrial pyruvate carrier 1/2 (MPC1/2) levels and pyruvate carboxylase (PC) activity, in comparison to normal counterparts. While imatinib reverses BCR::ABL1-mediated LSC metabolic reprogramming, stable isotope-assisted metabolomics reveals that deregulated pyruvate anaplerosis is not affected by imatinib. Encouragingly, genetic ablation of pyruvate anaplerosis sensitises CML cells to imatinib. Finally, we demonstrate that MSDC-0160, a clinical orally-available MPC1/2 inhibitor, inhibits pyruvate anaplerosis and targets imatinib-resistant CML LSCs in robust pre-clinical CML models. Collectively these results highlight pyruvate anaplerosis as a persistent and therapeutically targetable vulnerability in imatinib-treated CML patient-derived samples.
Collapse
Affiliation(s)
- Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Zuzana Brabcova
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Martha M Zarou
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kiron Roy
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ryan Kwan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ahmed Khalaf
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Eric R Kalkman
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Mary T Scott
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
5
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Ianniciello A, Zarou MM, Rattigan KM, Scott M, Dawson A, Dunn K, Brabcova Z, Kalkman ER, Nixon C, Michie AM, Copland M, Vetrie D, Ambler M, Saxty B, Helgason GV. ULK1 inhibition promotes oxidative stress-induced differentiation and sensitizes leukemic stem cells to targeted therapy. Sci Transl Med 2021; 13:eabd5016. [PMID: 34586834 PMCID: PMC7612079 DOI: 10.1126/scitranslmed.abd5016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inhibition of autophagy has been proposed as a potential therapy for individuals with cancer. However, current lysosomotropic autophagy inhibitors have demonstrated limited efficacy in clinical trials. Therefore, validation of novel specific autophagy inhibitors using robust preclinical models is critical. In chronic myeloid leukemia (CML), minimal residual disease is maintained by persistent leukemic stem cells (LSCs), which drive tyrosine kinase inhibitor (TKI) resistance and patient relapse. Here, we show that deletion of autophagy-inducing kinase ULK1 (unc-51–like autophagy activating kinase 1) reduces growth of cell line and patient-derived xenografted CML cells in mouse models. Using primitive cells, isolated from individuals with CML, we demonstrate that pharmacological inhibition of ULK1 selectively targets CML LSCs ex vivo and in vivo, when combined with TKI treatment. The enhanced TKI sensitivity after ULK1-mediated autophagy inhibition is driven by increased mitochondrial respiration and loss of quiescence and points to oxidative stress–induced differentiation of CML LSCs, proposing an alternative strategy for treating patients with CML.
Collapse
Affiliation(s)
- Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Martha M. Zarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kevin M. Rattigan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Mary Scott
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Karen Dunn
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - Zuzana Brabcova
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Eric R. Kalkman
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Martin Ambler
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Barbara Saxty
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
7
|
Genetic in vivo engineering of human T lymphocytes in mouse models. Nat Protoc 2021; 16:3210-3240. [PMID: 33846629 DOI: 10.1038/s41596-021-00510-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Receptor targeting of vector particles is a key technology to enable cell type-specific in vivo gene delivery. For example, T cells in humanized mouse models can be modified by lentiviral vectors (LVs) targeted to human T-cell markers to enable them to express chimeric antigen receptors (CARs). Here, we provide detailed protocols for the generation of CD4- and CD8-targeted LVs (which takes ~9 d in total). We also describe how to humanize immunodeficient mice with hematopoietic stem cells (which takes 12-16 weeks) and precondition (over 5 d) and administer the vector stocks. Conversion of the targeted cell type is monitored by PCR and flow cytometry of blood samples. A few weeks after administration, ~10% of the targeted T-cell subtype can be expected to have converted to CAR T cells. By closely following the protocol, sufficient vector stock for the genetic manipulation of 10-15 humanized mice is obtained. We also discuss how the protocol can be easily adapted to use LVs targeted to other types of receptors and/or for delivery of other genes of interest.
Collapse
|
8
|
Adigbli G, Hua P, Uchiyama M, Roberts I, Hester J, Watt SM, Issa F. Development of LT-HSC-Reconstituted Non-Irradiated NBSGW Mice for the Study of Human Hematopoiesis In Vivo. Front Immunol 2021; 12:642198. [PMID: 33868276 PMCID: PMC8044770 DOI: 10.3389/fimmu.2021.642198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Humanized immune system (HIS) mouse models are useful tools for the in vivo investigation of human hematopoiesis. However, the majority of HIS models currently in use are biased towards lymphocyte development and fail to support long-term multilineage leucocytes and erythrocytes. Those that achieve successful multilineage reconstitution often require preconditioning steps which are expensive, cause animal morbidity, are technically demanding, and poorly reproducible. In this study, we address this challenge by using HSPC-NBSGW mice, in which NOD,B6.SCID IL-2rγ-/-KitW41/W41 (NBSGW) mice are engrafted with human CD133+ hematopoietic stem and progenitor cells (HSPCs) without the need for preconditioning by sublethal irradiation. These HSPCs are enriched in long-term hematopoietic stem cells (LT-HSCs), while NBSGW mice are permissive to human hematopoietic stem cell (HSC) engraftment, thus reducing the cell number required for successful HIS development. B cells reconstitute with the greatest efficiency, including mature B cells capable of class-switching following allogeneic stimulation and, within lymphoid organs and peripheral blood, T cells at a spectrum of stages of maturation. In the thymus, human thymocytes are identified at all major stages of development. Phenotypically distinct subsets of myeloid cells, including dendritic cells and mature monocytes, engraft to a variable degree in the bone marrow and spleen, and circulate in peripheral blood. Finally, we observe human erythrocytes which persist in the periphery at high levels following macrophage clearance. The HSPC-NBSGW model therefore provides a useful platform for the study of human hematological and immunological processes and pathologies.
Collapse
Affiliation(s)
- George Adigbli
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peng Hua
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Masateru Uchiyama
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, Children’s Hospital, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Suzanne M. Watt
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, and Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Fadi Issa
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 2021; 136:596-609. [PMID: 32270193 DOI: 10.1182/blood.2019003636] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. To investigate the role of microRNAs (miRNAs) in regulating drug resistance and leukemic stem cell (LSC) fate, we performed global transcriptome profiling in treatment-naive chronic myeloid leukemia (CML) stem/progenitor cells and identified that miR-185 levels anticipate their response to ABL tyrosine kinase inhibitors (TKIs). miR-185 functions as a tumor suppressor: its restored expression impaired survival of drug-resistant cells, sensitized them to TKIs in vitro, and markedly eliminated long-term repopulating LSCs and infiltrating blast cells, conferring a survival advantage in preclinical xenotransplantation models. Integrative analysis with mRNA profiles uncovered PAK6 as a crucial target of miR-185, and pharmacological inhibition of PAK6 perturbed the RAS/MAPK pathway and mitochondrial activity, sensitizing therapy-resistant cells to TKIs. Thus, miR-185 presents as a potential predictive biomarker, and dual targeting of miR-185-mediated PAK6 activity and BCR-ABL1 may provide a valuable strategy for overcoming drug resistance in patients.
Collapse
|
10
|
Guil-Luna S, Sedlik C, Piaggio E. Humanized Mouse Models to Evaluate Cancer Immunotherapeutics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-050520-100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy is at the forefront of cancer treatment. The advent of numerous novel approaches to cancer immunotherapy, including immune checkpoint antibodies, adoptive transfer of CAR (chimeric antigen receptor) T cells and TCR (T cell receptor) T cells, NK (natural killer) cells, T cell engagers, oncolytic viruses, and vaccines, is revolutionizing the treatment for different tumor types. Some are already in the clinic, and many others are underway. However, not all patients respond, resistance develops, and as available therapies multiply there is a need to further understand how they work, how to prioritize their clinical evaluation, and how to combine them. For this, animal models have been highly instrumental, and humanized mice models (i.e., immunodeficient mice engrafted with human immune and cancer cells) represent a step forward, although they have several limitations. Here, we review the different humanized models available today, the approaches to overcome their flaws, their use for the evaluation of cancer immunotherapies, and their anticipated evolution as tools to help personalized clinical decision-making.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Christine Sedlik
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| | - Eliane Piaggio
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| |
Collapse
|
11
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
12
|
Vascular adhesion protein-1 defines a unique subpopulation of human hematopoietic stem cells and regulates their proliferation. Cell Mol Life Sci 2021; 78:7851-7872. [PMID: 34719737 PMCID: PMC8629906 DOI: 10.1007/s00018-021-03977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022]
Abstract
Although the development of hematopoietic stem cells (HSC) has been studied in great detail, their heterogeneity and relationships to different cell lineages remain incompletely understood. Moreover, the role of Vascular Adhesion Protein-1 in bone marrow hematopoiesis has remained unknown. Here we show that VAP-1, an adhesin and a primary amine oxidase producing hydrogen peroxide, is expressed on a subset of human HSC and bone marrow vasculature forming a hematogenic niche. Bulk and single-cell RNAseq analyses reveal that VAP-1+ HSC represent a transcriptionally unique small subset of differentiated and proliferating HSC, while VAP-1- HSC are the most primitive HSC. VAP-1 generated hydrogen peroxide acts via the p53 signaling pathway to regulate HSC proliferation. HSC expansion and differentiation into colony-forming units are enhanced by inhibition of VAP-1. Contribution of VAP-1 to HSC proliferation was confirmed with mice deficient of VAP-1, mice expressing mutated VAP-1 and using an enzyme inhibitor. In conclusion, VAP-1 expression allows the characterization and prospective isolation of a new subset of human HSC. Since VAP-1 serves as a check point-like inhibitor in HSC differentiation, the use of VAP-1 inhibitors enables the expansion of HSC.
Collapse
|
13
|
Bulaeva E, Pellacani D, Nakamichi N, Hammond CA, Beer PA, Lorzadeh A, Moksa M, Carles A, Bilenky M, Lefort S, Shu J, Wilhelm BT, Weng AP, Hirst M, Eaves CJ. MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood 2020; 136:2764-2773. [PMID: 33301029 DOI: 10.1182/blood.2020006374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Sylvain Lefort
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jeremy Shu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Brian T Wilhelm
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; and
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Rothe K, Babaian A, Nakamichi N, Chen M, Chafe SC, Watanabe A, Forrest DL, Mager DL, Eaves CJ, Dedhar S, Jiang X. Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell 2020; 27:110-124.e9. [DOI: 10.1016/j.stem.2020.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
|
15
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
16
|
Bhat K, Saki M, Vlashi E, Cheng F, Duhachek-Muggy S, Alli C, Yu G, Medina P, He L, Damoiseaux R, Pellegrini M, Zemke NR, Nghiemphu PL, Cloughesy TF, Liau LM, Kornblum HI, Pajonk F. The dopamine receptor antagonist trifluoperazine prevents phenotype conversion and improves survival in mouse models of glioblastoma. Proc Natl Acad Sci U S A 2020; 117:11085-11096. [PMID: 32358191 PMCID: PMC7245100 DOI: 10.1073/pnas.1920154117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the deadliest adult brain cancer, and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 mo over surgery alone, but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype, and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP causes loss of radiation-induced Nanog mRNA expression, and activation of GSK3 with consecutive posttranslational reduction in p-Akt, Sox2, and β-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that the combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment-resistant, induced GICs (iGICs).
Collapse
Affiliation(s)
- Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Mohammad Saki
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Fei Cheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Sara Duhachek-Muggy
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Claudia Alli
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Garrett Yu
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Paul Medina
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ling He
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
- Molecular Screening Shared Resource, University of California, Los Angeles, CA 90095
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Nathan R Zemke
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Phioanh Leia Nghiemphu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
- Department of Neurology, University of California, Los Angeles, CA 90095
| | - Timothy F Cloughesy
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
- Department of Neurology, University of California, Los Angeles, CA 90095
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
- Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Harley I Kornblum
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
- Neuropsychiatric Institute-Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, CA 90095
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
17
|
Jahan S, Adam MK, Manesia JK, Doxtator E, Ben RN, Pineault N. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment. Transfusion 2020; 60:769-778. [PMID: 32187691 DOI: 10.1111/trf.15759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet engraftment following cord blood (CB) transplantation remains a significant hurdle to this day. The uncontrolled growth of ice, a process referred to as ice recrystallization, is one of several mechanisms that lead to cell loss and decreased potency during freezing and thawing. We hypothesized that reducing cell damage induced by ice recrystallization in CB units (CBUs) would reduce losses of stem and progenitor cells and therefore improve engraftment. We previously demonstrated that the ice recrystallization inhibitor (IRI) N-(2-fluorophenyl)-D-gluconamide (IRI 2) increases the postthaw recovery of CB progenitors. Herein, we set out to ascertain whether IRI 2 can enhance platelet and bone marrow engraftment activity of hematopoietic stem cells (HSCs) in cryopreserved CBUs using a serial transplantation model. STUDY DESIGN AND METHODS CBUs were processed following standard volume/red blood cell reduction procedure and portions frozen with dimethyl sulfoxide (DMSO) supplemented or not with IRI 2. Thawed CB samples were serially transplanted into immunodeficient mice. RESULTS Our results show that supplementation of DMSO with IRI 2 had several beneficial effects. Specifically, higher levels of human platelets were observed in the peripheral blood (p < 0.05; n = 4) upon transplant of CBUs preserved with the IRIs. In addition, human BM chimerism and the number of human CFU progenitors in the bone marrow were superior in IRI 2 recipients compared to DMSO recipients. Moreover, IRI 2 had no negative impact on the multilineage differentiation and self-renewal activities of HSCs. DISCUSSION Taken together, these results demonstrate that supplementation of a hematopoietic graft with IRI can improve the postthaw engraftment activities of HSCs.
Collapse
Affiliation(s)
- Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Madeleine K Adam
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Emily Doxtator
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Robert N Ben
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 2020; 20:158-173. [PMID: 31907378 DOI: 10.1038/s41568-019-0230-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Abstract
For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR-ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles' heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Disease Management
- Disease Susceptibility
- Drug Development
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Research/history
- Research/trends
Collapse
Affiliation(s)
- David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Saki M, Bhat K, Sodhi SS, Nguyen NT, Kornblum HI, Pajonk F. Effects of Brain Irradiation in Immune-Competent and Immune-Compromised Mouse Models. Radiat Res 2019; 193:186-194. [PMID: 31774721 DOI: 10.1667/rr15373.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patient-derived orthotopic xenografts (PDOXs) closely recapitulate primary human glioblastoma (GBM) tumors in terms of histology and genotype. Compared to other mouse strains, NOD-scid IL2Rgammanull (NSG) mice show excellent tumor take rates, which makes them an ideal host for PDOXs. However, NSG mice harbor a mutation in the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), which renders them relatively radiosensitive. This has been a frequently voiced concern in studies involving ionizing radiation. In this study, we assessed brain toxicity in NSG mice compared to three other different mouse strains frequently used in radiation studies at radiation doses commonly used in experimental combination therapy studies. C3H/Sed/Kam, C57Bl/6, nude and NOD-scid IL2Rgammanull mice received a single dose of 4 Gy to the right brain hemispheres using an image-guided small animal irradiator. Brains were stained using H&E, luxol fast blue, and antibodies against IBA1 and GFAP one, two, four or six months postirradiation. Additional animals of all four strains were exposed to five daily fractions of 2 Gy (5 × 2 Gy), and tissue sections were stained 72 h later against gH2AX, NeuN, GFAP and IBA1. None of the mouse strains displayed radiation-induced toxicity at any of the time points tested. Radiation doses relevant for testing combination therapies can be safely applied to the brains of NSG mice without the occurrence of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
- Mohammad Saki
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Kruttika Bhat
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Sirajbir S Sodhi
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Nhan T Nguyen
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Harley I Kornblum
- Departments of Molecular and Medical Pharmacology.,Departments of Neurology.,Departments of Psychiatry and Biobehavioral Sciences.,Departments of NPI-The Jane and Terry Semel Institute for Neuroscience and Human Behavior.,Departments of Molecular Biology Institute.,Departments of Jonsson Comprehensive Cancer Center at UCLA, University of California, Los Angeles, Los Angeles, California.,Departments of Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California
| | - Frank Pajonk
- Departments of Radiation Oncology, David Geffen School of Medicine.,Departments of Jonsson Comprehensive Cancer Center at UCLA, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
20
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
21
|
Song Y, Rongvaux A, Taylor A, Jiang T, Tebaldi T, Balasubramanian K, Bagale A, Terzi YK, Gbyli R, Wang X, Fu X, Gao Y, Zhao J, Podoltsev N, Xu M, Neparidze N, Wong E, Torres R, Bruscia EM, Kluger Y, Manz MG, Flavell RA, Halene S. A highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nat Commun 2019; 10:366. [PMID: 30664659 PMCID: PMC6341122 DOI: 10.1038/s41467-018-08166-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Comprehensive preclinical studies of Myelodysplastic Syndromes (MDS) have been elusive due to limited ability of MDS stem cells to engraft current immunodeficient murine hosts. Here we report a MDS patient-derived xenotransplantation model in cytokine-humanized immunodeficient “MISTRG” mice that provides efficient and faithful disease representation across all MDS subtypes. MISTRG MDS patient-derived xenografts (PDX) reproduce patients’ dysplastic morphology with multi-lineage representation, including erythro- and megakaryopoiesis. MISTRG MDS-PDX replicate the original sample’s genetic complexity and can be propagated via serial transplantation. MISTRG MDS-PDX demonstrate the cytotoxic and differentiation potential of targeted therapeutics providing superior readouts of drug mechanism of action and therapeutic efficacy. Physiologic humanization of the hematopoietic stem cell niche proves critical to MDS stem cell propagation and function in vivo. The MISTRG MDS-PDX model opens novel avenues of research and long-awaited opportunities in MDS research. Myelodyplastic hematopoietic stem cells (MDS HSC) have eluded in vivo modeling. Here the authors present a highly efficient MDS patient-derived xenotransplantation model in cytokine-humanized mice with replication of the donors’ genetic complexity and myeloid, erythroid, and megakaryocytic lineage dysplasia.
Collapse
Affiliation(s)
- Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony Rongvaux
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Fred Hutchinson Cancer Research Center, Program in Immunology, Clinical Research Division, and Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ashley Taylor
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Tingting Jiang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Kunthavai Balasubramanian
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Arun Bagale
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,University of New Haven, New Haven, CT, USA
| | - Yunus Kasim Terzi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Genetics, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jun Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikolai Podoltsev
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mina Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Natalia Neparidze
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ellice Wong
- Section of Hematology/Oncology, VA Medical Center, West Haven, CT, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Program of Applied Mathematics, Yale University, New Haven, CT, USA
| | - Markus G Manz
- Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne) 2019; 10:204. [PMID: 31001203 PMCID: PMC6454151 DOI: 10.3389/fendo.2019.00204] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized.
Collapse
|
23
|
Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential. Nat Cell Biol 2018; 20:710-720. [PMID: 29802403 DOI: 10.1038/s41556-018-0104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33+CD34+CD38-CD45RA-CD90+CD49f+ phenotype with serially transplantable, but diverse, cell output profiles. Single-cell measurements of the mitogenic response, and the transcriptional, DNA methylation and 40-protein content of this and closely related phenotypes revealed subtle but consistent differences both within and between each subset. These results suggest that multiple regulatory mechanisms combine to maintain different cell output activities of human blood cell precursors with high regenerative potential.
Collapse
|
24
|
Reinisch A, Hernandez DC, Schallmoser K, Majeti R. Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nat Protoc 2017; 12:2169-2188. [PMID: 28933777 PMCID: PMC5898606 DOI: 10.1038/nprot.2017.088] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Xenotransplantation is frequently used to study normal and malignant hematopoiesis of human cells. However, conventional mouse xenotransplantation models lack essential human-specific bone-marrow (BM)-microenvironment-derived survival, proliferation, and self-renewal signals for engraftment of normal and malignant blood cells. As a consequence, many human leukemias and other hematologic disorders do not robustly engraft in these conventional models. Here, we describe a complete workflow for the generation of humanized ossicles with an accessible BM microenvironment that faithfully recapitulates normal BM niche morphology and function. The ossicles, therefore, allow for accelerated and superior engraftment of primary patient-derived acute myeloid leukemia (AML) and other hematologic malignancies such as myelofibrosis (MF) in mice. The humanized ossicles are formed by in situ differentiation of BM-derived mesenchymal stromal cells (MSCs). Human hematopoietic cells can subsequently be transplanted directly into the ossicle marrow space or by intravenous injection. Using this method, a humanized engraftable BM microenvironment can be formed within 6-10 weeks. Engraftment of human hematopoietic cells can be evaluated by flow cytometry 8-16 weeks after transplantation. This protocol describes a robust and reproducible in vivo methodology for the study of normal and malignant human hematopoiesis in a more physiologic setting.
Collapse
Affiliation(s)
- Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - David Cruz Hernandez
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Katharina Schallmoser
- Department of Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
25
|
Fiorini C, Abdulhay NJ, McFarland SK, Munschauer M, Ulirsch JC, Chiarle R, Sankaran VG. Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice. Am J Hematol 2017; 92:E513-E519. [PMID: 28568895 DOI: 10.1002/ajh.24805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis from various human developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Fiorini
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Nour J. Abdulhay
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Sean K. McFarland
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | | | - Jacob C. Ulirsch
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Roberto Chiarle
- Department of Pathology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| | - Vijay G. Sankaran
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| |
Collapse
|
26
|
EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 2017; 129:3344-3351. [DOI: 10.1182/blood-2016-11-750729] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Publisher's Note: There is an Inside Blood Commentary on this article in this issue.
Collapse
|
27
|
Sasaki T, Rivera-Mulia JC, Vera D, Zimmerman J, Das S, Padget M, Nakamichi N, Chang BH, Tyner J, Druker BJ, Weng AP, Civin CI, Eaves CJ, Gilbert DM. Stability of patient-specific features of altered DNA replication timing in xenografts of primary human acute lymphoblastic leukemia. Exp Hematol 2017; 51:71-82.e3. [PMID: 28433605 DOI: 10.1016/j.exphem.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/25/2017] [Accepted: 04/08/2017] [Indexed: 01/10/2023]
Abstract
Genome-wide DNA replication timing (RT) profiles reflect the global three-dimensional chromosome architecture of cells. They also provide a comprehensive and unique megabase-scale picture of cellular epigenetic state. Thus, normal differentiation involves reproducible changes in RT, and transformation generally perturbs these, although the potential effects of altered RT on the properties of transformed cells remain largely unknown. A major challenge to interrogating these issues in human acute lymphoid leukemia (ALL) is the low proliferative activity of most of the cells, which may be further reduced in cryopreserved samples and difficult to overcome in vitro. In contrast, the ability of many human ALL cell populations to expand when transplanted into highly immunodeficient mice is well documented. To examine the stability of DNA RT profiles of serially passaged xenografts of primary human B- and T-ALL cells, we first devised a method that circumvents the need for bromodeoxyuridine incorporation to distinguish early versus late S-phase cells. Using this and more standard protocols, we found consistently strong retention in xenografts of the original patient-specific RT features. Moreover, in a case in which genomic analyses indicated changing subclonal dynamics in serial passages, the RT profiles tracked concordantly. These results indicate that DNA RT is a relatively stable feature of human ALLs propagated in immunodeficient mice. In addition, they suggest the power of this approach for future interrogation of the origin and consequences of altered DNA RT in ALL.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Daniel Vera
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL
| | - Jared Zimmerman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Sunny Das
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Michelle Padget
- Departments of Pediatrics and Physiology, Center for Stem Cell Biology & Regenerative Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Bill H Chang
- Division of Hematology and Oncology, Departments of Pediatrics and Medicine, and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Jeff Tyner
- Department of Cell, Development, and Cancer Biology, and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Brian J Druker
- Department of Cell, Development, and Cancer Biology, and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Curt I Civin
- Departments of Pediatrics and Physiology, Center for Stem Cell Biology & Regenerative Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL.
| |
Collapse
|