1
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
2
|
Saito MK, Osawa M, Tsuchida N, Shiraishi K, Niwa A, Woltjen K, Asaka I, Ogata K, Ito S, Kobayashi S, Yamanaka S. A disease-specific iPS cell resource for studying rare and intractable diseases. Inflamm Regen 2023; 43:43. [PMID: 37684663 PMCID: PMC10485998 DOI: 10.1186/s41232-023-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Disease-specific induced pluripotent stem cells (iPSCs) are useful tools for pathological analysis and diagnosis of rare diseases. Given the limited available resources, banking such disease-derived iPSCs and promoting their widespread use would be a promising approach for untangling the mysteries of rare diseases. Herein, we comprehensively established iPSCs from patients with designated intractable diseases in Japan and evaluated their properties to enrich rare disease iPSC resources. METHODS Patients with designated intractable diseases were recruited for the study and blood samples were collected after written informed consent was obtained from the patients or their guardians. From the obtained samples, iPSCs were established using the episomal method. The established iPSCs were deposited in a cell bank. RESULTS We established 1,532 iPSC clones from 259 patients with 139 designated intractable diseases. The efficiency of iPSC establishment did not vary based on age and sex. Most iPSC clones originated from non-T and non-B hematopoietic cells. All iPSC clones expressed key transcription factors, OCT3/4 (range 0.27-1.51; mean 0.79) and NANOG (range 0.15-3.03; mean 1.00), relative to the reference 201B7 iPSC clone. CONCLUSIONS These newly established iPSCs are readily available to the researchers and can prove to be a useful resource for research on rare intractable diseases.
Collapse
Affiliation(s)
- Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan.
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan
| | - Nao Tsuchida
- Clinical Research Center, National Hospital Organization Headquarters, Tokyo, 1528621, Japan
| | - Kotaro Shiraishi
- Information Security Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan
| | - Katsuhisa Ogata
- National Hospital Organization Higashisaitama National Hospital, Hasuda, 3490196, Japan
| | - Suminobu Ito
- Clinical Research Center, National Hospital Organization Headquarters, Tokyo, 1528621, Japan
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, 2478533, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 6068507, Japan
- CiRA Foundation, Kyoto, 6068397, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| |
Collapse
|
3
|
Oh S, Niwa A, Nagahashi A, Asaka I, Nakahata T, Saito MK. iPS cells from Chediak-Higashi syndrome patients recapitulate the giant granules in myeloid cells. Pediatr Int 2022; 64:e15390. [PMID: 36259166 DOI: 10.1111/ped.15390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chediak-Higashi syndrome (CHS) is a congenital disease characterized by immunodeficiency, hemophagocytic lymphohistiocytosis, oculocutaneous albinism, and neurological symptoms. The presence of giant granules in peripheral blood leukocytes is an important hallmark of CHS. Here we prepared induced pluripotent stem cells (iPSCs) from CHS patients (CHS-iPSCs) and differentiated them into hematopoietic cells to model the disease phenotypes. METHODS Fibroblasts were obtained from two CHS patients and then reprogrammed into iPSCs. The iPSCs were differentiated into myeloid cells; the size of the cytosolic granules was quantified by May-Grunwald Giemsa staining and myeloperoxidase staining. RESULTS Two clones of iPSCs were established from each patient. The differentiation efficiency to CD33+ CD45+ myeloid cells was not significantly different in CHS-iPSCs compared with control iPSCs, but significantly larger granules were observed. CONCLUSIONS We succeeded in reproducing a characteristic cellular phenotype, giant granules in myeloid cells, using CHS-iPSCs, demonstrating that iPSCs can be used to model the pathogenesis of CHS patients.
Collapse
Affiliation(s)
- Shigeharu Oh
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ayako Nagahashi
- Department of Fundamental Cell Technologies, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technologies, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Fundamental Cell Technologies, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Matsuo S, Nishinaka-Arai Y, Kazuki Y, Oshimura M, Nakahata T, Niwa A, Saito MK. Pluripotent stem cell model of early hematopoiesis in Down syndrome reveals quantitative effects of short-form GATA1 protein on lineage specification. PLoS One 2021; 16:e0247595. [PMID: 33780474 PMCID: PMC8007000 DOI: 10.1371/journal.pone.0247595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are susceptible to two blood disorders, transient abnormal myelopoiesis (TAM) and Down syndrome-associated acute megakaryocytic leukemia (DS-AMKL). Mutations in GATA binding protein 1 (GATA1) have been identified as the cause of these diseases, and the expression levels of the resulting protein, short-form GATA1 (GATA1s), are known to correlate with the severity of TAM. On the other hand, despite the presence of GATA1 mutations in almost all cases of DS-AMKL, the incidence of DS-AMKL in TAM patients is inversely correlated with the expression of GATA1s. This discovery has required the need to clarify the role of GATA1s in generating the cells of origin linked to the risk of both diseases. Focusing on this point, we examined the characteristics of GATA1 mutant trisomy-21 pluripotent stem cells transfected with a doxycycline (Dox)-inducible GATA1s expression cassette in a stepwise hematopoietic differentiation protocol. We found that higher GATA1s expression significantly reduced commitment into the megakaryocytic lineage at the early hematopoietic progenitor cell (HPC) stage, but once committed, the effect was reversed in progenitor cells and acted to maintain the progenitors. These differentiation stage-dependent reversal effects were in contrast to the results of myeloid lineage, where GATA1s simply sustained and increased the number of immature myeloid cells. These results suggest that although GATA1 mutant cells cause the increase in myeloid and megakaryocytic progenitors regardless of the intensity of GATA1s expression, the pathways vary with the expression level. This study provides experimental support for the paradoxical clinical features of GATA1 mutations in the two diseases.
Collapse
Affiliation(s)
- Shiori Matsuo
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoko Nishinaka-Arai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail: (YNA); (AN); (MKS)
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail: (YNA); (AN); (MKS)
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail: (YNA); (AN); (MKS)
| |
Collapse
|
5
|
Saito MK. Elucidation of the Pathogenesis of Autoinflammatory Diseases Using iPS Cells. CHILDREN-BASEL 2021; 8:children8020094. [PMID: 33535645 PMCID: PMC7912798 DOI: 10.3390/children8020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
Autoinflammatory diseases are a disease entity caused by the dysregulation of innate immune cells. Typical autoinflammatory diseases are monogenic disorders and often very rare. As a result, there is a relative lack of understanding of the pathogenesis, poor diagnosis and little available treatment. Induced pluripotent stem (iPS) cells are a new technology being applied to in vitro disease modeling. These models are especially useful for the analysis of rare and intractable diseases including autoinflammatory diseases. In this review, I will provide a general overview of iPS cell models for autoinflammatory diseases and a brief description of the results obtained from individual reports.
Collapse
Affiliation(s)
- Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
6
|
Eguizabal C, Herrera L, Inglés-Ferrándiz M, Izpisua Belmonte JC. Treating primary immunodeficiencies with defects in NK cells: from stem cell therapy to gene editing. Stem Cell Res Ther 2020; 11:453. [PMID: 33109263 PMCID: PMC7590703 DOI: 10.1186/s13287-020-01964-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are rare diseases that are characterized by genetic mutations that damage immunological function, defense, or both. Some of these rare diseases are caused by aberrations in the normal development of natural killer cells (NKs) or affect their lytic synapse. The pathogenesis of these types of diseases as well as the processes underlying target recognition by human NK cells is not well understood. Utilizing induced pluripotent stem cells (iPSCs) will aid in the study of human disorders, especially in the PIDs with defects in NK cells for PID disease modeling. This, together with genome editing technology, makes it possible for us to facilitate the discovery of future therapeutics and/or cell therapy treatments for these patients, because, to date, the only curative treatment available in the most severe cases is hematopoietic stem cell transplantation (HSCT). Recent progress in gene editing technology using CRISPR/Cas9 has significantly increased our capability to precisely modify target sites in the human genome. Among the many tools available for us to study human PIDs, disease- and patient-specific iPSCs together with gene editing offer unique and exceptional methodologies to gain deeper and more thorough understanding of these diseases as well as develop possible alternative treatment strategies. In this review, we will discuss some immunodeficiency disorders affecting NK cell function, such as classical NK deficiencies (CNKD), functional NK deficiencies (FNKD), and PIDs with involving NK cells as well as strategies to model and correct these diseases for further study and possible avenues for future therapies.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain.
| | - L Herrera
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - M Inglés-Ferrándiz
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - J C Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 93027, USA
| |
Collapse
|
7
|
Thom CS, Chou ST, French DL. Mechanistic and Translational Advances Using iPSC-Derived Blood Cells. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:36-44. [PMID: 33768218 PMCID: PMC7990314 DOI: 10.33696/pathology.1.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-based model systems can be used to produce blood cells for the study of both hematologic and non-hematologic disorders. This commentary discusses recent advances that have utilized iPSC-derived red blood cells, megakaryocytes, myeloid cells, and lymphoid cells to model hematopoietic disorders. In addition, we review recent studies that have defined how microglial cells differentiated from iPSC-derived monocytes impact neurodegenerative disease. Related translational insights highlight the utility of iPSC models for studying pathologic anemia, bleeding, thrombosis, autoimmunity, immunodeficiency, blood cancers, and neurodegenerative disease such as Alzheimer's.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
8
|
Wilkinson AC, Ryan DJ, Kucinski I, Wang W, Yang J, Nestorowa S, Diamanti E, Tsang JCH, Wang J, Campos LS, Yang F, Fu B, Wilson N, Liu P, Gottgens B. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Exp Hematol 2019; 76:1-12.e5. [PMID: 31326613 PMCID: PMC6859476 DOI: 10.1016/j.exphem.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Pluripotent stem cell (PSC) differentiation in vitro represents a powerful and tractable model to study mammalian development and an unlimited source of cells for regenerative medicine. Within hematology, in vitro PSC hematopoiesis affords novel insights into blood formation and represents an exciting potential approach to generate hematopoietic and immune cell types for transplantation and transfusion. Most studies to date have focused on in vitro hematopoiesis from mouse PSCs and human PSCs. However, differences in mouse and human PSC culture protocols have complicated the translation of discoveries between these systems. We recently developed a novel chemical media formulation, expanded potential stem cell medium (EPSCM), that maintains mouse PSCs in a unique cellular state and extraembryonic differentiation capacity. Herein, we describe how EPSCM can be directly used to stably maintain human PSCs. We further demonstrate that human PSCs maintained in EPSCM can spontaneously form embryoid bodies and undergo in vitro hematopoiesis using a simple differentiation protocol, similar to mouse PSC differentiation. EPSCM-maintained human PSCs generated at least two hematopoietic cell populations, which displayed distinct transcriptional profiles by RNA-sequencing (RNA-seq) analysis. EPSCM also supports gene targeting using homologous recombination, affording generation of an SPI1 (PU.1) reporter PSC line to study and track in vitro hematopoiesis. EPSCM therefore provides a useful tool not only to study pluripotency but also hematopoietic cell specification and developmental-lineage commitment.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - David J Ryan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Iwo Kucinski
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Wei Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Sonia Nestorowa
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Juexuan Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Lia S Campos
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Nicola Wilson
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, University of Hong Kong, Hong Kong, China
| | - Berthold Gottgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
9
|
Crooks GM, Eaves C. Introduction. Exp Hematol 2019; 71:1-2. [PMID: 30769021 DOI: 10.1016/j.exphem.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA; Broad Stem Cell Research Center, University of California, Los Angeles, CA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA.
| | - Connie Eaves
- British Columbia Cancer Research Centre, Vancouver, BC
| |
Collapse
|