1
|
Gutiérrez-García B, Cáceres CM, Núñez-Marín F, Molero J, Prats L, Mestre N, Martínez S, Teixidor P, Comas S, Balañà C, Villà S. Early region-specific impact of adjuvant radiation therapy on cognition and quality of life in adult patients with primary brain tumors. Clin Transl Oncol 2024:10.1007/s12094-024-03740-w. [PMID: 39367900 DOI: 10.1007/s12094-024-03740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment. METHODS/PATIENTS Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response. RESULTS The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation. CONCLUSIONS There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-García
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - Cynthia M Cáceres
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Jaume Molero
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Lluis Prats
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Neus Mestre
- Biostatistics, Centro de Regulación Genómica, Barcelona, Spain
| | - Silvia Martínez
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pilar Teixidor
- Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carme Balañà
- Medical Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Salvador Villà
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
2
|
Al-Rubaiey S, Senger C, Bukatz J, Krantchev K, Janas A, Eitner C, Nieminen-Kelhä M, Brandenburg S, Zips D, Vajkoczy P, Acker G. Determinants of cerebral radionecrosis in animal models: A systematic review. Radiother Oncol 2024; 199:110444. [PMID: 39067705 DOI: 10.1016/j.radonc.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development. METHODS We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases. The complete search strategy can be found as a preregistered protocol on PROSPERO (CRD42023361662). RESULTS We included 83 studies, most involving healthy animals (n = 72, 86.75 %). High doses of hemispherical irradiation of 30 Gy in rats and 50 Gy in mice led repeatedly to radionecrosis among different studies and set-ups. Higher dose and larger irradiated volume were associated with earlier onset. Fractionated schedules showed limited effectiveness in the prevention of radionecrosis. Distinct anatomical brain structures respond to irradiation in various ways. White matter appears to be more vulnerable than gray matter. Younger age, more evolved animal species, and genetic background were also significant factors, whereas sex was irrelevant. Only 13.25 % of the studies were performed on primary brain tumor bearing animals, no studies on brain metastases are currently available. CONCLUSION This systematic review identified various factors that significantly affect the induction of radionecrosis. The current state of research neglects the utilization of animal models of brain tumors, even though patients with brain malignancies constitute the largest group receiving brain irradiation. This latter aspect should be primarily addressed when developing an experimental radionecrosis model for translational implementation.
Collapse
Affiliation(s)
- Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Carolin Senger
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Jan Bukatz
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Kiril Krantchev
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Anastasia Janas
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Chiara Eitner
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Daniel Zips
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Güliz Acker
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| |
Collapse
|
3
|
Lan J, Ren Y, Liu Y, Chen L, Liu J. A bibliometric analysis of radiation-induced brain injury: a research of the literature from 1998 to 2023. Discov Oncol 2024; 15:364. [PMID: 39172266 PMCID: PMC11341524 DOI: 10.1007/s12672-024-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is a debilitating sequela after cranial radiotherapy. Research on the topic of RIBI has gradually entered the public eye, with more innovations and applications of evidence-based research and biological mechanism research in the field of that. This was the first bibliometric analysis on RIBI, assessing brain injury related to radiation articles that were published during 1998-2023, to provide an emerging theoretical basis for the future development of RIBI. METHODS Literature were obtained from the Web of Science Core Collection (WOSCC) from its inception to December 31, 2023. The column of publications, author details, affiliated institutions and countries, publication year, and keywords were also recorded. RESULTS A total of 2543 journal articles were selected. The annual publications on RIBI fluctuated within a certain range. Journal of Neuro-oncology was the most published journal and Radiation Oncology was the most impactful one. LIMOLI CL was the most prolific author with 37 articles and shared the highest h-index with BARNETT GH. The top one country and institutions were the USA and the University of California System, respectively. Clusters analysis of co-keywords demonstrated that the temporal research trends in this field primarily focused on imaging examination and therapy for RIBI. CONCLUSION This study collects, visualizes, and analyzes the literature within the field of RIBI over the last 25 years to map the development process, research frontiers and hotspots, and cutting-edge directions in clinical practice and mechanisms related to RIBI.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuyang Liu
- Department of Neurosurgery, The 920th Hospital of Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jialin Liu
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
4
|
Tang L, Tian G, Li N. Current dilemma and future directions over prophylactic cranial irradiation in SCLC: a systematic review in MRI and immunotherapy era. Front Oncol 2024; 14:1382220. [PMID: 39139283 PMCID: PMC11319250 DOI: 10.3389/fonc.2024.1382220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Small cell lung cancer (SCLC) is the most malignant pathological type of lung cancer with the highest mortality, and the incidence of brain metastasis (BM) is in high frequency. So far, prophylactic cranial irradiation (PCI) has been suggested as an effective treatment for preventing brain metastasis of SCLC. PCI has long been applied to limited-stage SCLC (LS-SCLC) patients who have achieved complete remission after radiotherapy and chemotherapy as a standard treatment. However, the neurocognitive decline is a major concern surrounding PCI. New therapeutic approaches targeting PCI-induced neurotoxicity, including hippocampal protection or memantine, have been increasingly incorporated into the therapeutic interventions of PCI. Helical tomotherapy, RapidArc, and Volumetric-modulated arc therapy (VMAT) with a head-tilting baseplate are recommended for hippocampal protection. Besides, in the MRI and immunotherapy era, the significance of PCI in SCLC patients is controversial. SCLC patients with PCI should be recruited in clinical trials since this is the only way to improve the existing standard of care. This review summarizes the current therapeutic strategy and dilemma over PCI for SCLC, providing a theoretical basis for clinical decision-making and suggestions for PCI practice in clinical.
Collapse
Affiliation(s)
| | | | - Nan Li
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Riddle A, Srivastava T, Wang K, Tellez E, O'Neill H, Gong X, O'Niel A, Bell JA, Raber J, Lattal M, Maylie J, Back SA. Mild neonatal hypoxia disrupts adult hippocampal learning and memory and is associated with CK2-mediated dysregulation of synaptic calcium-activated potassium channel KCNN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602558. [PMID: 39071376 PMCID: PMC11275740 DOI: 10.1101/2024.07.10.602558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O 2 ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment. Results Neonatal mild hypoxia resulted in clinically relevant oxygen desaturation and tachycardia without bradycardia and was not accompanied by cerebral gray or white matter injury. Neonatal hypoxia exposure was sufficient to cause hippocampal learning and memory deficits and abnormal maturation of CA1 neurons that persisted into adulthood. This was accompanied by reduced hippocampal CA3-CA1 synaptic strength and LTP and reduced synaptic activity of calcium-sensitive SK2 channels, key regulators of spike timing dependent neuroplasticity, including LTP. Structural illumination microscopy revealed reduced synaptic density, but intact SK2 localization at the synapse. Persistent loss of SK2 activity was mediated by altered casein kinase 2 (CK2) signaling. Interpretation Clinically relevant mild hypoxic exposure in the neonatal mouse is sufficient to produce morphometric and functional disturbances in hippocampal neuronal maturation independently of white matter injury. Additionally, we describe a novel persistent mechanism of potassium channel dysregulation after neonatal hypoxia. Collectively our findings suggest an unexplored explanation for the broad spectrum of neurobehavioral, cognitive and learning disabilities that paradoxically persist into adulthood without overt gray matter injury after preterm birth.
Collapse
|
6
|
Impey S, Raber J. Irradiation and Alterations in Hippocampal DNA Methylation. EPIGENOMES 2024; 8:27. [PMID: 39051185 PMCID: PMC11270359 DOI: 10.3390/epigenomes8030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during and following space missions. The mechanisms mediating the effects of irradiation on the hippocampus might be associated with alterations in hippocampal DNA methylation. Changes in cytosine methylation involving the addition of a methyl group to cytosine (5 mC) and especially those involving the addition of a hydroxy group to 5 mC (hydroxymethylcytosine or 5 hmC) play a key role in regulating the expression of genes required for hippocampal function. In this review article, we will discuss the effects of radiation on hippocampal DNA methylation and whether these effects are associated with hippocampus-dependent cognitive measures and molecular measures in the hippocampus involved in cognitive measures. We will also discuss whether the radiation-induced changes in hippocampal DNA methylation show an overlap across different doses of heavy ion irradiation and across irradiation with different ions. We will also discuss whether the DNA methylation changes show a tissue-dependent response.
Collapse
Affiliation(s)
- Soren Impey
- Dow Neurobiology Laboratories, Legacy Research Institute Legacy Health Systems, 1225 NE 2nd Ave, Portland, OR 97232, USA
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
7
|
Lin SY, Chuang CC, Huang YC, Pai PC, Lee CC, Wei KC, Tseng CK, Yang CC. Neuropsychological performances in patients with infiltrative non-GBM gliomas after postoperative adjuvant photon or proton radiotherapy: A prospective and preliminary investigation. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:606-615. [PMID: 35343323 DOI: 10.1080/23279095.2022.2048830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infiltrative non-GBM gliomas are common primary intracranial malignancies, and postoperative adjuvant radiotherapy is recommended for most adult patients diagnosed with this disease to enhance local control and prolong intracranial progression-free survival (PFS). However, RT-related neurocognitive function (NCF) consequences should not be ignored. Early neurocognitive decline principally includes episodic memory, associated significantly with functions of the hippocampus. This prospective study aims to investigate the impact of adjuvant brain irradiation on neurocognitive performances and relevant oncological outcomes.Twenty-five patients with intracranial infiltrative non-GBM gliomas were enrolled when postoperative adjuvant RT was recommended. All recruited patients should receive baseline brain magnetic resonance imaging, and neuropsychological assessments before and 4 months after the RT course. A battery of neuropsychological measures, mainly including executive functions, memory, psychomotor speed and visuoconstructive ability, was used to evaluate NCFs of interest.Analyzing the delta values between post-irradiation and baseline NCF scores, we observed a robust trend reflecting cognitive stabilization rather than deterioration in almost all NCF. Both verbal and visual memory functions exhibited significant differences in the corresponding scaled scores (Z = -2.722, p = .006, regarding verbal memory; Z = -2.246, p = .025, concerning non-verbal memory). Moreover, patients' neuropsychological performances associated with psychomotor speed and executive functions also disclosed a tendency toward stabilization/improvement.This prospective study demonstrated that patients with infiltrative non-GBM exhibited a marked tendency toward neurocognitive stabilization after receiving postoperative adjuvant RT. Clinical trial registration: Trial Registration with ClinicalTrials.gov identifier: NCT03534050.
Collapse
Affiliation(s)
- Shinn-Yn Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chen-Kan Tseng
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Cheng Yang
- Department of Psychology, National ChengChi University, Taipei, Taiwan
| |
Collapse
|
8
|
Kuil L, Seigers R, Loos M, de Gooijer M, Compter A, Boogerd W, van Tellingen O, Smit A, Schagen S. Fractionated brain X-irradiation profoundly reduces hippocampal immature neuron numbers without affecting spontaneous behavior in mice. Heliyon 2024; 10:e29947. [PMID: 38707355 PMCID: PMC11066401 DOI: 10.1016/j.heliyon.2024.e29947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Whole brain radiotherapy (WBRT) is used to improve tumor control in patients with primary brain tumors, or brain metastasis from various primary tumors to improve tumor control. However, WBRT can lead to cognitive decline in patients. We assessed whether fractionated WBRT (fWBRT) affects spontaneous behavior of mice in automated home cages and cognition (spatial memory) using the Barnes maze. Male C57Bl/6j mice received bi-lateral fWBRT at a dosage of 4 Gy/day on 5 consecutive days. In line with previous reports, immunohistochemical analysis of doublecortin positive cells in the dentate gyrus showed a profound reduction in immature neurons 4 weeks after fWBRT. Surprisingly, spontaneous behavior as measured in automated home cages was not affected. Moreover, learning and memory measured with Barnes maze, was also not affected 4-6 weeks after fWBRT. At 10-11 weeks after fWBRT a significant difference in escape latency during the learning phase, but not in the probe test of the Barnes maze was observed. In conclusion, although we confirmed the serious adverse effect of fWBRT on neurogenesis 4 weeks after fWBRT, we did not find similar profound effects on spontaneous behavior in the automated home cage nor on learning abilities as measured by the Barnes maze. The relationship between the neurobiological effects of fWBRT and cognition seems more complex than often assumed and the choice of animal model, cognitive tasks, neurobiological parameters, and experimental set-up might be important factors in these types of experiments.
Collapse
Affiliation(s)
- L.E. Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R. Seigers
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M. Loos
- Sylics (Synaptologics BV), Bilthoven, the Netherlands
| | - M.C. de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A. Compter
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W. Boogerd
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - O. van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A.B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - S.B. Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Ma J, Cao H, Hou D, Wang W, Liu T. Investigation of high-dose radiotherapy's effect on brain structure aggravated cognitive impairment and deteriorated patient psychological status in brain tumor treatment. Sci Rep 2024; 14:10149. [PMID: 38698048 PMCID: PMC11066031 DOI: 10.1038/s41598-024-59694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
This study aims to investigate the potential impact of high-dose radiotherapy (RT) on brain structure, cognitive impairment, and the psychological status of patients undergoing brain tumor treatment. We recruited and grouped 144 RT-treated patients with brain tumors into the Low dose group (N = 72) and the High dose group (N = 72) according to the RT dose applied. Patient data were collected by using the HADS and QLQ-BN20 system for subsequent analysis and comparison. Our analysis showed no significant correlation between the RT doses and the clinicopathological characteristics. We found that a high dose of RT could aggravate cognitive impairment and deteriorate patient role functioning, indicated by a higher MMSE and worsened role functioning in the High dose group. However, the depression status, social functioning, and global health status were comparable between the High dose group and the Low dose group at Month 0 and Month 1, while being worsened in the High dose group at Month 3, indicating the potential long-term deterioration of depression status in brain tumor patients induced by high-dose RT. By comparing patient data at Month 0, Month 1, Month 3, Month 6, and Month 9 after RT, we found that during RT treatment, RT at a high dose could aggravate cognitive impairment in the short term and lead to worsened patient role functioning, and even deteriorate the overall psychological health status of patients in the long term.
Collapse
Affiliation(s)
- Jianpeng Ma
- Department of Magnetic Resonance Imaging, Dingbian County People's Hospital, Dingbian, Yulin, 718600, Shaanxi, China
| | - Hetao Cao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Dongmei Hou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
10
|
Johnson BJ, Barcus RA, Olson JD, Lipford ME, Andrews RN, Dugan GO, Tooze JA, Kim J, Deycmar S, Whitlow CT, Cline JM. Total-Body Irradiation Alters White Matter Volume and Microstructural Integrity in Rhesus Macaques. Int J Radiat Oncol Biol Phys 2024; 119:208-218. [PMID: 37972714 DOI: 10.1016/j.ijrobp.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Long-term survivors of brain irradiation can experience irreversible injury and cognitive impairment. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) are used to evaluate brain volume and white matter (WM) microstructure in neurodevelopmental and neurodegenerative conditions. The goal of this study was to evaluate the long-term effects of single-dose total-body irradiation (TBI) or TBI with 5% partial-body sparing on brain volumetrics and WM integrity in macaques. METHODS AND MATERIALS We used MRI scans from a cohort of male rhesus macaques (age range, 3.6-22.8 years) to compare global and regional brain volumes and WM diffusion in survivors of TBI (T1-weighted, n = 137; diffusion tensor imaging, n = 121; dose range, 3.5-10 Gy) with unirradiated controls (T1-weighted, n = 48; diffusion tensor imaging, n = 38). RESULTS In all regions of interest, radiation affected age-related changes in fractional anisotropy, which tended to increase across age in both groups but to a lesser extent in the irradiated group (interaction P < .01). Depending on the region of interest, mean diffusivity decreased or remained the same across age in unirradiated animals, whereas it increased or did not change in irradiated animals. The increases in mean diffusivity were driven by changes in radial diffusivity, which followed similar trends across age. Axial diffusivity did not differ by irradiation status. Age-related changes in relative volumes in controls reflected normal trends in humans, with increasing WM and decreasing gray matter until middle age. Cerebrospinal fluid (CSF) volume did not differ across age in controls. WM volume was lower and CSF volume was higher in young irradiated macaques. WM volume was similar between groups, and CSF volume lower in older irradiated macaques. Gray matter volume was unaffected by radiation. CONCLUSIONS TBI results in delayed WM expansion and long-term disruption of WM integrity. Diffusion changes suggest that myelin injury in WM is a hallmark of late-delayed radiation-induced brain injury.
Collapse
Affiliation(s)
- Brendan J Johnson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Richard A Barcus
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Megan E Lipford
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rachel N Andrews
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Janet A Tooze
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Simon Deycmar
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
11
|
Peternel M, Jenko A, Peterlin P, Petrovič L, Strojan P, Plavc G. Comparison of conventional and hippocampus-sparing radiotherapy in nasopharyngeal carcinoma: In silico study and systematic review. Clin Transl Radiat Oncol 2024; 46:100751. [PMID: 38425692 PMCID: PMC10900111 DOI: 10.1016/j.ctro.2024.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
Background and purpose Radiation-induced damage to the hippocampi can cause cognitive decline. International recommendations for nasopharyngeal cancer (NPC) radiotherapy (RT) lack specific guidelines for protecting the hippocampi. Our study evaluates if hippocampi-sparing (HS) RT in NPC ensures target coverage and meets recommended dose limits for other at-risk organs. Materials and methods In a systematic literature review, we compared hippocampal D40% in conventional and HS RT plans. In an in silico dosimetric study, conventional and HS-VMAT plans were created for each patient, following international recommendations for OAR delineation, dose prioritization and acceptance criteria. We assessed the impact on neurocognitive function using a previously published normal tissue complication probability (NTCP) model. Results In four previous studies (n = 79), researchers reduced D40% hippocampal radiation doses in HS plans compared to conventional RT on average from 24.9 Gy to 12.6 Gy.Among 12 NPC patients included in this in silico study, statistically significant differences between HS and conventional VMAT plans were observed in hippocampal EQD2 Dmax (23.8 vs. 46.4 Gy), Dmin (3.8 vs. 4.6 Gy), Dmean (8.1 vs. 15.1 Gy), and D40% (8.3 vs. 15.8 Gy). PTV coverage and OAR doses were similar, with less homogeneous PTV coverage in HS plans (p = 0.038). This translated to a lower probability of memory decline in HS plans (interquartile range 15.8-29.6 %) compared to conventional plans (33.8-81.1 %) based on the NTCP model (p = 0.002). Conclusion Sparing the hippocampus in NPC RT is safe and feasible. Given the life expectancy of many NPC patients, their cognitive well-being must be paramount in radiotherapy planning.
Collapse
Affiliation(s)
- Monika Peternel
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Aljaša Jenko
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Primož Peterlin
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Larisa Petrovič
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Primož Strojan
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Gaber Plavc
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| |
Collapse
|
12
|
Yang W, Chen C, Jiang X, Zhao Y, Wang J, Zhang Q, Zhang J, Feng Y, Cui S. CACNA1B protects naked mole-rat hippocampal neuron from apoptosis via altering the subcellular localization of Nrf2 after 60Co irradiation. Cell Biol Int 2024; 48:695-711. [PMID: 38389270 DOI: 10.1002/cbin.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Although radiotherapy is the most effective treatment modality for brain tumors, it always injures the central nervous system, leading to potential sequelae such as cognitive dysfunction. Radiation induces molecular, cellular, and functional changes in neuronal and glial cells. The hippocampus plays a critical role in learning and memory; therefore, concerns about radiation-induced injury are widespread. Multiple studies have focused on this complex problem, but the results have not been fully elucidated. Naked mole rat brains were irradiated with 60Co at a dose of 10 Gy. On 7 days, 14 days, and 28 days after irradiation, hippocampi in the control groups were obtained for next-generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Venn diagrams revealed 580 differentially expressed genes (DEGs) that were common at different times after irradiation. GO and KEGG analyses revealed that the 580 common DEGs were enriched in molecular transducer activity. In particular, CACNA1B mediated regulatory effects after irradiation. CACNA1B expression increased significantly after irradiation. Downregulation of CACNA1B led to a reduction in apoptosis and reactive oxygen species levels in hippocampal neurons. This was due to the interaction between CACNA1B and Nrf2, which disturbed the normal nuclear localization of Nrf2. In addition, CACNA1B downregulation led to a decrease in the cognitive functions of naked mole rats. These findings reveal the pivotal role of CACNA1B in regulating radiation-induced brain injury and will lead to the development of a novel strategy to prevent brain injury after irradiation.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Chao Chen
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yining Zhao
- Clinical Laboratory, Shanghai Yangpu district mental health center, Shanghai University of Medicine and Health Sciences Teaching Hospital, Shanghai, China
| | - Junyang Wang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Qianqian Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Jingyuan Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yan Feng
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Strohm AO, Johnston C, Hernady E, Marples B, O'Banion MK, Majewska AK. Cranial irradiation disrupts homeostatic microglial dynamic behavior. J Neuroinflammation 2024; 21:82. [PMID: 38570852 PMCID: PMC10993621 DOI: 10.1186/s12974-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Cranial irradiation causes cognitive deficits that are in part mediated by microglia, the resident immune cells of the brain. Microglia are highly reactive, exhibiting changes in shape and morphology depending on the function they are performing. Additionally, microglia processes make dynamic, physical contacts with different components of their environment to monitor the functional state of the brain and promote plasticity. Though evidence suggests radiation perturbs homeostatic microglia functions, it is unknown how cranial irradiation impacts the dynamic behavior of microglia over time. Here, we paired in vivo two-photon microscopy with a transgenic mouse model that labels cortical microglia to follow these cells and determine how they change over time in cranial irradiated mice and their control littermates. We show that a single dose of 10 Gy cranial irradiation disrupts homeostatic cortical microglia dynamics during a 1-month time course. We found a lasting loss of microglial cells following cranial irradiation, coupled with a modest dysregulation of microglial soma displacement at earlier timepoints. The homogeneous distribution of microglia was maintained, suggesting microglia rearrange themselves to account for cell loss and maintain territorial organization following cranial irradiation. Furthermore, we found cranial irradiation reduced microglia coverage of the parenchyma and their surveillance capacity, without overtly changing morphology. Our results demonstrate that a single dose of radiation can induce changes in microglial behavior and function that could influence neurological health. These results set the foundation for future work examining how cranial irradiation impacts complex cellular dynamics in the brain which could contribute to the manifestation of cognitive deficits.
Collapse
Affiliation(s)
- Alexandra O Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Carl Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Marino N, Bedeschi M, Vaccari ME, Cambiaghi M, Tesei A. Glitches in the brain: the dangerous relationship between radiotherapy and brain fog. Front Cell Neurosci 2024; 18:1328361. [PMID: 38515789 PMCID: PMC10956129 DOI: 10.3389/fncel.2024.1328361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.
Collapse
Affiliation(s)
- Noemi Marino
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Bedeschi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Melania Elettra Vaccari
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Cambiaghi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Tesei
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
15
|
Corrao G, Bergamaschi L, Eleonora Pierini V, Gaeta A, Volpe S, Pepa M, Zaffaroni M, Vincini MG, Fodor CI, Piperno G, Emiro F, Ferrari A, Gandini S, Cattani F, Orecchia R, Marvaso G, Jereczek-Fossa BA. Hippocampal region avoidance in whole brain radiotherapy in brain metastases: For all or for some? A real-world feasibility report. TUMORI JOURNAL 2024; 110:34-43. [PMID: 38182553 DOI: 10.1177/03008916231206926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
PURPOSE Hippocampal sparing whole-brain radiotherapy (HS-WBRT) showed significantly lower long-term side effects compared to standard WBRT. Aim of this study is to describe a HS-WBRT real-world monoinstitutional experience within a retrospective cohort. METHODS Patients who completed HS-WBRT course, with Karnofsky Performance Status ⩾ 60 and radiological diagnosis of brain metastases (BMs) were enrolled. Treatment was performed using helical Tomotherapy scheduled in 30 Gy in 10 or 12 fractions or 25 Gy in 10 fractions. Oncological outcomes were clinically and radiologically assessed every three months. Toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events 4.3. RESULTS One hundred and nineteen patients from 2016 to 2020 met inclusion criteria; after a median follow-up of 18 months, 29 patients were alive; 6- and 12-months overall survival rates were 66% and 41%, respectively. HS-WBRT response was assessed for 72 patients. Median time to any progression and intracranial failure (IF) was 4.5 and 13.7 months, respectively. The 6- and 12-month IF rates were 85% and 57%. Among 40 patients (34%) who experienced IF, 17 (42%) were oligometastatic, 23 (58%) polymetastatic and 15/40 developed IF within the hippocampi avoidance zone. No grade (G) ⩾ 2 acute toxicities were reported and one G2 (dizziness) late toxicity was described. CONCLUSIONS HS-WBRT is well tolerated, and despite the hippocampal sparing region, the oncological control is satisfying. Further investigation is warranted to find patients who could most benefit from a HS-WBRT approach.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Vanessa Eleonora Pierini
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Aurora Gaeta
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gaia Piperno
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Emiro
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Annamaria Ferrari
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Pospisil P, Hynkova L, Hnidakova L, Maistryszinova J, Slampa P, Kazda T. Unilateral hippocampal sparing during whole brain radiotherapy for multiple brain metastases: narrative and critical review. Front Oncol 2024; 14:1298605. [PMID: 38327742 PMCID: PMC10847587 DOI: 10.3389/fonc.2024.1298605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background The landscape of brain metastases radiotherapy is evolving, with a shift away from whole-brain radiotherapy (WBRT) toward targeted stereotactic approaches aimed at preserving neurocognitive functions and maintaining overall quality of life. For patients with multiple metastases, especially in cases where targeted radiotherapy is no longer feasible due to widespread dissemination, the concept of hippocampal sparing radiotherapy (HA_WBRT) gains prominence. Methods In this narrative review we explore the role of the hippocampi in memory formation and the implications of their postradiotherapy lateral damage. We also consider the potential advantages of selectively sparing one hippocampus during whole-brain radiotherapy (WBRT). Additionally, by systematic evaluation of relevant papers published on PubMed database over last 20 years, we provide a comprehensive overview of the various changes that can occur in the left or right hippocampus as a consequence of radiotherapy. Results While it is important to note that various neurocognitive functions are interconnected throughout the brain, we can discern certain specialized roles of the hippocampi. The left hippocampus appears to play a predominant role in verbal memory, whereas the right hippocampus is associated more with visuospatial memory. Additionally, the anterior part of the hippocampus is more involved in episodic memory and emotional processing, while the posterior part is primarily responsible for spatial memory and pattern separation. Notably, a substantial body of evidence demonstrates a significant correlation between post-radiotherapy changes in the left hippocampus and subsequent cognitive decline in patients. Conclusion In the context of individualized palliative radiotherapy, sparing the unilateral (specifically, the left, which is dominant in most individuals) hippocampus could expand the repertoire of strategies available for adapted WBRT in cases involving multiple brain metastases where stereotactic radiotherapy is not a viable option. Prospective ongoing studies assessing various memory-sparing radiotherapy techniques will define new standard of radiotherapy care of patients with multiple brain metastases.
Collapse
Affiliation(s)
- Petr Pospisil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ludmila Hynkova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Hnidakova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Maistryszinova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Raber J, Holden S, Kessler K, Glaeser B, McQuesten C, Chaudhari M, Stenzel F, Lenarczyk M, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen C, Willey JS, Bobe G, Minnier J, Baker JE. Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats. Front Physiol 2024; 14:1316186. [PMID: 38260101 PMCID: PMC10800373 DOI: 10.3389/fphys.2023.1316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chloe McQuesten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Fiona Stenzel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, The Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, United States
| | - John E. Baker
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Tam LT, Cole B, Stasi SM, Paulson VA, Wright JN, Hoeppner C, Holtzclaw S, Crotty EE, Ellenbogen RG, Lee A, Ermoian RP, Lockwood CM, Leary SES, Ronsley R. Somatic Versus Germline: A Case Series of Three Children With ATM-Mutated Medulloblastoma. JCO Precis Oncol 2024; 8:e2300333. [PMID: 38207225 DOI: 10.1200/po.23.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Somatic versus Germline-A Case Series of Three Children with ATM- mutated Medulloblastoma.
Collapse
Affiliation(s)
- Lydia T Tam
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Shannon M Stasi
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Vera A Paulson
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jason N Wright
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Corrine Hoeppner
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Susan Holtzclaw
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Erin E Crotty
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Richard G Ellenbogen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Amy Lee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Christina M Lockwood
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Sarah E S Leary
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Rebecca Ronsley
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Ru Y, Zhang X, Shen B, Yang C, Yu H, Liu Z, Wu X, Li F, Cui J, Lai C, Wang Y, Gao Y. Delayed Reaction of Radiation on the Central Nervous System and Bone System in C57BL/6J Mice. Int J Mol Sci 2023; 25:337. [PMID: 38203507 PMCID: PMC10779003 DOI: 10.3390/ijms25010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to provide a suitable mouse model of radiation-induced delayed reaction and identify potential targets for drug development related to the prevention and treatment of radiation injury. C57BL/6J mice were subjected to singular (109 cGy/min, 5 Gy*1) and fractional (109 cGy/min, 5 Gy*2) total body irradiation. The behavior and activity of mice were assessed 60 days after ionizing radiation (IR) exposure. After that, the pathological changes and mechanism of the mouse brain and femoral tissues were observed by HE, Nissl, Trap staining micro-CT scanning and RNA sequencing (RNA-Seq), and Western blot. The results show that singular or fractional IR exposure led to a decrease in spatial memory ability and activity in mice, and the cognitive and motor functions gradually recovered after singular 5 Gy IR in a time-dependent manner, while the fractional 10 Gy IR group could not recover. The decrease in bone density due to the increase in osteoclast number may be relative to the down-regulation of RUNX2, sclerostin, and beta-catenin. Meanwhile, the brain injury caused by IR exposure is mainly linked to the down-regulation of BNDF and Tau. IR exposure leads to memory impairment, reduced activity, and self-recovery, which are associated with time and dose. The mechanism of cognitive and activity damage was mainly related to oxidative stress and apoptosis induced by DNA damage. The damage caused by fractional 10 Gy TBI is relatively stable and can be used as a stable multi-organ injury model for radiation mechanism research and anti-radiation medicine screening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.R.); (X.Z.); (B.S.); (C.Y.); (H.Y.); (Z.L.); (X.W.); (F.L.); (J.C.); (C.L.)
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.R.); (X.Z.); (B.S.); (C.Y.); (H.Y.); (Z.L.); (X.W.); (F.L.); (J.C.); (C.L.)
| |
Collapse
|
20
|
Iacono D, Murphy EK, Stimpson CD, Perl DP, Day RM. Low-dose brain radiation: lowering hyperphosphorylated-tau without increasing DNA damage or oncogenic activation. Sci Rep 2023; 13:21142. [PMID: 38036591 PMCID: PMC10689500 DOI: 10.1038/s41598-023-48146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Brain radiation has been medically used to alter the metabolism of cancerous cells and induce their elimination. Rarely, though, brain radiation has been used to interfere with the pathomechanisms of non-cancerous brain disorders, especially neurodegenerative disorders. Data from low-dose radiation (LDR) on swine brains demonstrated reduced levels of phosphorylated-tau (CP13) and amyloid precursor protein (APP) in radiated (RAD) versus sham (SH) animals. Phosphorylated-tau and APP are involved in Alzheimer's disease (AD) pathogenesis. We determined if the expression levels of hyperphosphorylated-tau, 3R-tau, 4R-tau, synaptic, intraneuronal damage, and DNA damage/oncogenic activation markers were altered in RAD versus SH swine brains. Quantitative analyses demonstrated reduced levels of AT8 and 3R-tau in hippocampus (H) and striatum (Str), increased levels of synaptophysin and PSD-95 in frontal cortex (FCtx), and reduced levels of NF-L in cerebellum (CRB) of RAD versus SH swine. DNA damage and oncogene activation markers levels did not differ between RAD and SH animals, except for histone-H3 (increased in FCtx and CRB, decreased in Str), and p53 (reduced in FCtx, Str, H and CRB). These findings confirm the region-based effects of sLDR on proteins normally expressed in larger mammalian brains and support the potential applicability of LDR to beneficially interfere against neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA.
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA.
| | - Erin K Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Cheryl D Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
21
|
Singh R, Yu S, Osman M, Inde Z, Fraser C, Cleveland AH, Almanzar N, Lim CB, Joshi GN, Spetz J, Qin X, Toprani SM, Nagel Z, Hocking MC, Cormack RA, Yock TI, Miller JW, Yuan ZM, Gershon T, Sarosiek KA. Radiotherapy-Induced Neurocognitive Impairment Is Driven by Heightened Apoptotic Priming in Early Life and Prevented by Blocking BAX. Cancer Res 2023; 83:3442-3461. [PMID: 37470810 PMCID: PMC10570680 DOI: 10.1158/0008-5472.can-22-1337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected. Histologic analysis revealed xRT-driven neuronal degeneration and cell death in neurogenic brain regions in young animals but not adults. BH3 profiling showed that neural stem and progenitor cells, neurons, and astrocytes in young mice are highly primed for apoptosis, rendering them hypersensitive to genotoxic damage. Analysis of single-cell RNA sequencing data revealed that neural cell vulnerability stems from heightened expression of proapoptotic genes including BAX, which is associated with developmental and mitogenic signaling by MYC. xRT induced apoptosis in primed neural cells by triggering a p53- and PUMA-initiated, proapoptotic feedback loop requiring cleavage of BID and culminating in BAX oligomerization and caspase activation. Notably, loss of BAX protected against apoptosis induced by proapoptotic signaling in vitro and prevented xRT-induced apoptosis in neural cells in vivo as well as neurocognitive sequelae. On the basis of these findings, preventing xRT-induced apoptosis specifically in immature neural cells by blocking BAX, BIM, or BID via direct or upstream mechanisms is expected to ameliorate NI in pediatric patients with CNS tumor. SIGNIFICANCE Age- and differentiation-dependent apoptotic priming plays a pivotal role in driving radiotherapy-induced neurocognitive impairment and can be targeted for neuroprotection in pediatric patients.
Collapse
Affiliation(s)
- Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stacey Yu
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Marwa Osman
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cameron Fraser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Abigail H. Cleveland
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, North Carolina Cancer Hospital, Chapel Hill, North Carolina
| | - Nicole Almanzar
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Chuan Bian Lim
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gaurav N. Joshi
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sneh M. Toprani
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zachary Nagel
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Matthew C. Hocking
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
- Cancer Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert A. Cormack
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Torunn I. Yock
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Pediatric Radiation Oncology, Francis H. Burr Proton Therapy Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey W. Miller
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhi-Min Yuan
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Timothy Gershon
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, North Carolina Cancer Hospital, Chapel Hill, North Carolina
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
22
|
Mekkawy MH, Karam HM, Mohamed MA, Lotfy DM. Evaluation of Glycogen Synthase Kinase Pathway for Assessing the Antidepressant-like Effect of Glucosamine as a Radioprotector in Rats: Behavioral and Biochemical Studies. Dose Response 2023; 21:15593258231217845. [PMID: 38022903 PMCID: PMC10666705 DOI: 10.1177/15593258231217845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Radiotherapy is a very important tool in the treatment of cancer; nevertheless, its side effects are a hindrance to its use. The present study is designed to evaluate glucosamine effects against radiation-induced brain oxidative stress and depression-like effect in rats. Four groups of female Wister rats were used as control, irradiated (4 × 2 Gy), glucosamine (1 g/kg P.O), and glucosamine + irradiated group. The behavioral responses are estimated. The brain hippocampi of the rats are separated to evaluate oxidative stress biochemical parameters and glycogen synthase kinase pathway in addition to the biogenic amines. Irradiation exposure led to disturbances in the behavioral assessments (forced swimming test, light-dark box, and open field test) and a significant decrease in brain GSH, neurotransmitters (serotonin, norepinephrine, and dopamine), phosphatidylinositol 3 kinase (PI3K), and phosphorylated protein kinase-B (p-AKT) levels. Additionally, MDA and ROS levels increased significantly post-irradiation along with the phosphorylated glycogen synthase kinase (p-GSK3). Glucosamine administration before irradiation caused improvement in the behavioral valuations and the biochemical parameters in the brain as well. Glucosamine might be used as a radioprotector to improve brain function and as an antidepressant drug. It could be promising as a future therapy in managing depression occurring during radiotherapy.
Collapse
Affiliation(s)
- Mai H. Mekkawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba M. Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa A. Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dina M. Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
23
|
Borsini A, Giacobbe J, Mandal G, Boldrini M. Acute and long-term effects of adolescence stress exposure on rodent adult hippocampal neurogenesis, cognition, and behaviour. Mol Psychiatry 2023; 28:4124-4137. [PMID: 37612364 PMCID: PMC10827658 DOI: 10.1038/s41380-023-02229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Adolescence represents a critical period for brain and behavioural health and characterised by the onset of mood, psychotic and anxiety disorders. In rodents, neurogenesis is very active during adolescence, when is particularly vulnerable to stress. Whether stress-related neurogenesis changes influence adolescence onset of psychiatric symptoms remains largely unknown. A systematic review was conducted on studies investigating changes in hippocampal neurogenesis and neuroplasticity, hippocampal-dependent cognitive functions, and behaviour, occurring after adolescence stress exposure in mice both acutely (at post-natal days 21-65) and in adulthood. A total of 37 studies were identified in the literature. Seven studies showed reduced hippocampal cell proliferation, and out of those two reported increased depressive-like behaviours, in adolescent rodents exposed to stress. Three studies reported a reduction in the number of new-born neurons, which however were not associated with changes in cognition or behaviour. Sixteen studies showed acutely reduced hippocampal neuroplasticity, including pre- and post-synaptic plasticity markers, dendritic spine length and density, and long-term potentiation after stress exposure. Cognitive impairments and depressive-like behaviours were reported by 11 of the 16 studies. Among studies who looked at adolescence stress exposure effects into adulthood, seven showed that the negative effects of stress observed during adolescence on either cell proliferation or hippocampal neuroplasticity, cognitive deficits and depressive-like behaviour, had variable impact in adulthood. Treating adolescent mice with antidepressants, glutamate receptor inhibitors, glucocorticoid antagonists, or healthy diet enriched in omega-3 fatty acids and vitamin A, prevented or reversed those detrimental changes. Future research should investigate the translational value of these preclinical findings. Developing novel tools for measuring hippocampal neurogenesis in live humans, would allow assessing neurogenic changes following stress exposure, investigating relationships with psychiatric symptom onset, and identifying effects of therapeutic interventions.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
24
|
Liu X, Liu M, Liu H, Yuan H, Wang Y, Chen X, Li J, Qin X. Comprehensive brain tissue metabolomics and biological network technology to decipher the mechanism of hydrogen-rich water on Radiation-induced cognitive impairment in rats. BMC Mol Cell Biol 2023; 24:30. [PMID: 37752412 PMCID: PMC10523633 DOI: 10.1186/s12860-023-00491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hydrogen-rich water (HRW) has been shown to prevent cognitive impairment caused by ionizing radiation. This study aimed to investigate the pharmacological effects and mechanisms of HRW on ionizing radiation by coupling the brain metabolomics and biological target network methods. METHODS AND RESULTS HRW significantly improves the cognitive impairment in rats exposed to ionizing radiation. Based on metabolomics and biological network results, we identified 54 differential metabolites and 93 target genes. The KEGG pathway indicates that glutathione metabolism, ascorbic acid and aldehyde acid metabolism, pentose and glucuronic acid interconversion, and glycerophospholipid metabolism play important roles in ionizing radiation therapy. CONCLUSION Our study has systematically elucidated the molecular mechanism of HRW against ionizing radiation, which can be mediated by modulating targets, pathways and metabolite levels. This provides a new perspective for identifying the underlying pharmacological mechanism of HRW.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Radiology and Environmental Medicine, China Institute for Radiation Protection, CAEA Center of Excellence on Nuclear Technology Applications for Non-Clinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory for Pharmaceutical Toxicology & Radiation Injury Pharmaceuticals, CNNC Key Laboratory for Radiotoxicology and Preclinical Assessment of Radiopharmaceuticals, Taiyuan, 030006, P. R. China
| | - Mengya Liu
- Department of Radiology and Environmental Medicine, China Institute for Radiation Protection, CAEA Center of Excellence on Nuclear Technology Applications for Non-Clinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory for Pharmaceutical Toxicology & Radiation Injury Pharmaceuticals, CNNC Key Laboratory for Radiotoxicology and Preclinical Assessment of Radiopharmaceuticals, Taiyuan, 030006, P. R. China
| | - Huan Liu
- Department of Radiology and Environmental Medicine, China Institute for Radiation Protection, CAEA Center of Excellence on Nuclear Technology Applications for Non-Clinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory for Pharmaceutical Toxicology & Radiation Injury Pharmaceuticals, CNNC Key Laboratory for Radiotoxicology and Preclinical Assessment of Radiopharmaceuticals, Taiyuan, 030006, P. R. China
| | - Hui Yuan
- Department of Radiology and Environmental Medicine, China Institute for Radiation Protection, CAEA Center of Excellence on Nuclear Technology Applications for Non-Clinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory for Pharmaceutical Toxicology & Radiation Injury Pharmaceuticals, CNNC Key Laboratory for Radiotoxicology and Preclinical Assessment of Radiopharmaceuticals, Taiyuan, 030006, P. R. China
| | - Yong Wang
- School of forensic medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Xiaoman Chen
- School of forensic medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jianguo Li
- Department of Radiology and Environmental Medicine, China Institute for Radiation Protection, CAEA Center of Excellence on Nuclear Technology Applications for Non-Clinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory for Pharmaceutical Toxicology & Radiation Injury Pharmaceuticals, CNNC Key Laboratory for Radiotoxicology and Preclinical Assessment of Radiopharmaceuticals, Taiyuan, 030006, P. R. China
| | - Xiujun Qin
- Department of Radiology and Environmental Medicine, China Institute for Radiation Protection, CAEA Center of Excellence on Nuclear Technology Applications for Non-Clinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory for Pharmaceutical Toxicology & Radiation Injury Pharmaceuticals, CNNC Key Laboratory for Radiotoxicology and Preclinical Assessment of Radiopharmaceuticals, Taiyuan, 030006, P. R. China.
| |
Collapse
|
25
|
Neofytou C, Backlund A, Blomgren K, Hermanson O. Irradiation and lithium treatment alter the global DNA methylation pattern and gene expression underlying a shift from gliogenesis towards neurogenesis in human neural progenitors. Transl Psychiatry 2023; 13:258. [PMID: 37443041 DOI: 10.1038/s41398-023-02560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Central nervous system (CNS) tumors account for almost a third of pediatric cancers and are the largest contributor to cancer-related death in children. Cranial radiation therapy (CRT) is, often in combination with chemotherapy and surgery, effective in the treatment of high-grade childhood brain cancers, but it has been associated with late complications in 50-90% of survivors, such as decline in cognition and mood, decreased social competence, and fatigue. A leading hypothesis to explain the decline in cognition, at least partially, is injury to the neural stem and progenitor cells (NSPCs), which leads to apoptosis and altered fate choice, favoring gliogenesis over neurogenesis. Hence, treatments harnessing neurogenesis are of great relevance in this context. Lithium, a well-known mood stabilizer, has neuroprotective and antitumor effects and has been found to reverse irradiation-induced damage in rodents, at least in part by regulating the expression of the glutamate decarboxylase 2 gene (Gad2) via promoter demethylation in rat NSPCs. Additionally, lithium was shown to rescue irradiation-induced cognitive defects in mice. Here, we show that irradiation (IR) alone or in combination with lithium chloride (LiCl) caused major changes in gene expression and global DNA methylation in iPSC-derived human NSPCs (hNSPCs) compared to untreated cells, as well as LiCl-only-treated cells. The pattern of DNA methylation changes after IR-treatment alone was stochastic and observed across many different gene groups, whereas differences in DNA methylation after LiCl-treatment of irradiated cells were more directed to specific promoters of genes, including genes associated with neurogenesis, for example GAD2. Interestingly, IR and IR + LiCl treatment affected the promoter methylation and expression of several genes encoding factors involved in BMP signaling, including the BMP antagonist gremlin1. We propose that lithium in addition to promoting neuronal differentiation, also represses glial differentiation in hNSPCs with DNA methylation regulation being a key mechanism of action.
Collapse
Affiliation(s)
- Christina Neofytou
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Alexandra Backlund
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, 171 77, Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, 171 64, Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
26
|
Shaaban SG, LeCompte MC, Kleinberg LR, Redmond KJ, Page BR. Recognition and Management of the Long-term Effects of Cranial Radiation. Curr Treat Options Oncol 2023; 24:880-891. [PMID: 37145381 DOI: 10.1007/s11864-023-01078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
OPINION STATEMENT Cranial radiation is ubiquitous in the treatment of primary malignant and benign brain tumors as well as brain metastases. Improvement in radiotherapy targeting and delivery has led to prolongation of survival outcomes. As long-term survivorship improves, we also focus on prevention of permanent side effects of radiation and mitigating the impact when they do occur. Such chronic treatment-related morbidity is a major concern with significant negative impact on patient's and caregiver's respective quality of life. The actual mechanisms responsible for radiation-induced brain injury remain incompletely understood. Multiple interventions have been introduced to potentially prevent, minimize, or reverse the cognitive deterioration. Hippocampal-sparing intensity modulated radiotherapy and memantine represent effective interventions to avoid damage to regions of adult neurogenesis. Radiation necrosis frequently develops in the high radiation dose region encompassing the tumor and surrounding normal tissue. The radiographic findings in addition to the clinical course of the patients' symptoms are taken into consideration to differentiate between tissue necrosis and tumor recurrence. Radiation-induced neuroendocrine dysfunction becomes more pronounced when the hypothalamo-pituitary (HP) axis is included in the radiation treatment field. Baseline and post-treatment evaluation of hormonal profile is warranted. Radiation-induced injury of the cataract and optic system can develop when these structures receive an amount of radiation that exceeds their tolerance. Special attention should always be paid to avoid irradiation of these sensitive structures, if possible, or minimize their dose to the lowest limit.
Collapse
Affiliation(s)
- Sherif G Shaaban
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Michael C LeCompte
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Kristin J Redmond
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Brandi R Page
- Department of Radiation Oncology-National Capitol Region, Johns Hopkins Medicine, 6420 Rockledge Drive Suite 1200, Bethesda, MD, 20817, USA.
| |
Collapse
|
27
|
Britten RA, Limoli CL. New Radiobiological Principles for the CNS Arising from Space Radiation Research. Life (Basel) 2023; 13:1293. [PMID: 37374076 DOI: 10.3390/life13061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, the brain has been regarded as a relatively insensitive late-reacting tissue, with radiologically detectable damage not being reported at doses < 60 Gy. When NASA proposed interplanetary exploration missions, it was required to conduct an intensive health and safety evaluation of cancer, cardiovascular, and cognitive risks associated with exposure to deep space radiation (SR). The SR dose that astronauts on a mission to Mars are predicted to receive is ~300 mGy. Even after correcting for the higher RBE of the SR particles, the biologically effective SR dose (<1 Gy) would still be 60-fold lower than the threshold dose for clinically detectable neurological damage. Unexpectedly, the NASA-funded research program has consistently reported that low (<250 mGy) doses of SR induce deficits in multiple cognitive functions. This review will discuss these findings and the radical paradigm shifts in radiobiological principles for the brain that were required in light of these findings. These included a shift from cell killing to loss of function models, an expansion of the critical brain regions for radiation-induced cognitive impediments, and the concept that the neuron may not be the sole critical target for neurocognitive impairment. The accrued information on how SR exposure impacts neurocognitive performance may provide new opportunities to reduce neurocognitive impairment in brain cancer patients.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Charles L Limoli
- Department Radiation Oncology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
28
|
Wang X, Chen H, Liu Y, Zhao Z, Zang S. Association between depression status in adolescents and cognitive performance over the subsequent six years: A longitudinal study. J Affect Disord 2023; 329:105-112. [PMID: 36806595 DOI: 10.1016/j.jad.2023.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Adolescent depression is a common mental health problem and is sometimes associated with cognitive impairments. However, existing research regarding the association between depression status in adolescents and cognitive performance over the subsequent years is relatively paucity. METHODS The present study used longitudinal data from four waves (2012, 2014, 2016, and 2018) of the China Family Panel Studies (CFPS) to explore the associations between adolescent depression status in 2012 and cognitive performance (measured by immediate word recall, delayed word recall, number series tests, mathematics, and vocabulary) over the subsequent years. A total of 1055 (51.72 %), 1115 (54.66 %), and 879 (43.09 %) of the 2040 adolescents identified in 2012 were followed up in 2014, 2016, and 2018, respectively. RESULTS We found that adolescent depression status consistently showed a negative association with cognitive performance at the measurement points over six years. The associations were retained for most cognitive outcomes after controlling for a variety of confounding factors (adolescents, parental, and family characteristics). CONCLUSIONS The findings of this study provide more evidence of the association between depression status in adolescents and cognitive performance. Additionally, it highlights the importance of focusing on cognitive impairment in patients with depression more broadly, especially during adolescence, a critical period for cognitive development.
Collapse
Affiliation(s)
- Xue Wang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Hefang Chen
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Yu Liu
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Zhe Zhao
- Institute of International Medical Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Shuang Zang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
29
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
30
|
Liu M, Han T, Wu Y, Cheng J, Zhang L, Zhang B, Zuo XN, Zhu W, Qiu S, Geng Z, Zhang X, Cui G, Zhang Q, Yu Y, Zhang H, Gao B, Xu X, Yao Z, Qin W, Liang M, Liu F, Guo L, Xu Q, Fu J, Xu J, Tang J, Liu N, Xue K, Zhang P, Li W, Shi D, Wang C, Gao JH, Lui S, Yan Z, Chen F, Li J, Zhang J, Shen W, Miao Y, Xian J, Yu L, Xu K, Wang M, Ye Z, Liao WH, Wang D, Yu C. The impact of pre-adulthood urbanicity on hippocampal subfield volumes and neurocognitive abilities in young adults. ENVIRONMENT INTERNATIONAL 2023; 174:107905. [PMID: 37019025 DOI: 10.1016/j.envint.2023.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Urbanicity refers to the conditions that are particular to urban areas and is a growing environmental challenge that may affect hippocampus and neurocognition. This study aimed to investigate the effects of the average pre-adulthood urbanicity on hippocampal subfield volumes and neurocognitive abilities as well as the sensitive age windows of the urbanicity effects. PARTICIPANTS AND METHODS We included 5,390 CHIMGEN participants (3,538 females; age: 23.69 ± 2.26 years, range: 18-30 years). Pre-adulthood urbanicity of each participant was defined as the average value of annual night-time light (NL) or built-up% from age 0-18, which were extracted from remote-sensing satellite data based on annual residential coordinates of the participants. The hippocampal subfield volumes were calculated based on structural MRI and eight neurocognitive measures were assessed. The linear regression was applied to investigate the associations of pre-adulthood NL with hippocampal subfield volumes and neurocognitive abilities, mediation models were used to find the underlying pathways among urbanicity, hippocampus and neurocognition, and distributed lag models were used to identify sensitive age windows of urbanicity effect. RESULTS Higher pre-adulthood NL was associated with greater volumes in the left (β = 0.100, 95%CI: [0.075, 0.125]) and right (0.078, [0.052, 0.103]) fimbria and left subiculum body (0.045, [0.020, 0.070]) and better neurocognitive abilities in information processing speed (-0.212, [-0.240, -0.183]), working memory (0.085, [0.057, 0.114]), episodic memory (0.107, [0.080, 0.135]), and immediate (0.094, [0.065, 0.123]) and delayed (0.087, [0.058, 0.116]) visuospatial recall, and hippocampal subfield volumes and visuospatial memory showed bilateral mediations for the urbanicity effects. Urbanicity effects were greatest on the fimbria in preschool and adolescence, on visuospatial memory and information processing from childhood to adolescence and on working memory after 14 years. CONCLUSION These findings improve our understanding of the impact of urbanicity on hippocampus and neurocognitive abilities and will benefit for designing more targeted intervention for neurocognitive improvement.
Collapse
Affiliation(s)
- Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, 300350 Tianjin, China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002 Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, China
| | - Xi-Nian Zuo
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China; Institute of Psychology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Shijun Qiu
- Department of Medical Imaging, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 510405 Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, 230027 Hefei, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, 710038 Xi'an, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, 300162 Tianjin, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, 550004 Guiyang, China; Department of Radiology, Yantai Yuhuangding Hospital, 264000 Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, 310009 Hangzhou, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, 300203 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 450003 Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Su Lui
- Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 570311 Haikou, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, 730030 Lanzhou, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, 730030 Lanzhou, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, 300192 Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116011 Dalian, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Le Yu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, 221006 Xuzhou, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 450003 Zhengzhou, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410008 Changsha, China; Molecular Imaging Research Center of Central South University, 410008 Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, 250012 Jinan, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China.
| |
Collapse
|
31
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
32
|
Baliga S, Adams JA, Bajaj BVM, Van Benthuysen L, Daartz J, Gallotto SL, Lewy JR, DeNunzio N, Weyman EA, Lawell MP, Palmer JD, Yeap BY, Ebb DH, Huang MS, Perry AF, MacDonald SM, Jones RM, Tarbell NJ, Yock TI. Patterns of failure in pediatric medulloblastoma and implications for hippocampal sparing. Cancer 2023; 129:764-770. [PMID: 36504293 PMCID: PMC10107770 DOI: 10.1002/cncr.34574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hippocampal avoidance (HA) has been shown to preserve cognitive function in adult patients with cancer treated with whole-brain radiation therapy for brain metastases. However, the feasibility of HA in pediatric patients with brain tumors has not been explored because of concerns of increased risk of relapse in the peri-hippocampal region. Our aim was to determine patterns of recurrence and incidence of peri-hippocampal relapse in pediatric patients with medulloblastoma (MB). METHODS AND MATERIALS We identified pediatric patients with MB treated with protons between 2002 and 2016 and who had recurrent disease. To estimate the risk of peri-hippocampal recurrence, three hippocampal zones (HZs) were delineated corresponding to ≤5 mm (HZ-1), 6 to 10 mm (HZ-2), and >10 mm (HZ-3) distance of the recurrence from the contoured hippocampi. To determine the feasibility of HA, three standard-risk patients with MB were planned using either volumetric-modulated arc therapy (VMAT) or intensity-modulated proton therapy (IMPT) plans. RESULTS Thirty-eight patients developed a recurrence at a median of 1.6 years. Of the 25 patients who had magnetic resonance imaging of the recurrence, no patients failed within the hippocampus and only two patients failed within HZ-1. The crude incidence of peri-hippocampal failure was 8%. Both HA-VMAT and HA-IMPT plans were associated with significantly reduced mean dose to the hippocampi (p < .05). HA-VMAT and HA-IMPT plans were associated with decreased percentage of the third and lateral ventricles receiving the prescription craniospinal dose of 23.4 Gy. CONCLUSIONS Peri-hippocampal failures are uncommon in pediatric patients with MB. Hippocampal avoidance should be evaluated in a prospective cohort of pediatric patients with MB. PLAIN LANGUAGE SUMMARY In this study, the patterns of disease recurrence in patients with a pediatric brain tumor known as medulloblastoma treated with proton radiotherapy were examined. The majority of failures occur outside of an important structure related to memory formation called the hippocampus. Hippocampal sparing radiation plans using proton radiotherapy were generated and showed that dose to the hippocampus was able to be significantly reduced. The study provides the rationale to explore hippocampal sparing in pediatric medulloblastoma in a prospective clinical trial.
Collapse
Affiliation(s)
- Sujith Baliga
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Judith A Adams
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin V M Bajaj
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Liam Van Benthuysen
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Sara L Gallotto
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline R Lewy
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas DeNunzio
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A Weyman
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Miranda P Lawell
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Beow Y Yeap
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David H Ebb
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mary S Huang
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alisa F Perry
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Robin M Jones
- Department of Pediatric Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
34
|
Li JM, Li X, Chan LWC, Hu R, Yang S. A high fat diet in glutamate 3-/Y mice causes changes in behavior that resemble human intellectual disability. Physiol Behav 2023; 259:114050. [PMID: 36476780 DOI: 10.1016/j.physbeh.2022.114050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment in individuals with intellectual disability (ID) is characterized by developmental delay and deficits in language and memory. Ionotropic AMPA mediate the majority of excitatory synaptic transmission in the central nervous system and are essential for the induction and maintenances of long-term potentiation (LTP) and long-term depression (LTD), two cellular models of learning and memory underlie many the symptoms of ID. Clinical research has found obese male patients with GluA3 interrupted underlie the symptom of ID. We tested GluA3-/Y mice under high fat diet (HFD) stress on a series of behavioral paradigms associated with symptoms of ID: wild type mice showed significant levels of sociability, while GluA3-/Y mice did not. Wild type mice showed significant preference for social novelty, while GluA3-/Y mice did not. Normal scores on relevant control measures confirmed general health and physical abilities in both GluA3-/Y and wild type mice (WT), ruling out artifactual explanations for social deficits. GluA3-/Y mice also showed working spatial memory behavior impairment in Y-maze test and abnormal anxiety in open-field test, compared to wild-type littermate controls. GluA3-/Y mice had a significantly reduced spontaneous activities tested by elevated plus maze, display both low social approach and resistance to change in routine on the T-maze, consistent with an ID-like phenotype. These findings demonstrate that selective gene deletion of GluA3 receptor in male mice under oxidative stress induced phenotypic abnormalities related to ID-like symptoms.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Anatomy, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China; Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410151, China
| | - Xianyu Li
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, 99077, Hong Kong
| | - Lawrence W C Chan
- School of Life Science, Wuchang University of Technology, Wuhan, 430070, China
| | - Ruinian Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Sijun Yang
- Department of Anatomy, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China; Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, 99077, Hong Kong; School of life science, Shaoxing University, Shaoxing, 312000, China; School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China.
| |
Collapse
|
35
|
Alaghband Y, Klein PM, Kramár EA, Cranston MN, Perry BC, Shelerud LM, Kane AE, Doan NL, Ru N, Acharya MM, Wood MA, Sinclair DA, Dickstein DL, Soltesz I, Limoli CL, Baulch JE. Galactic cosmic radiation exposure causes multifaceted neurocognitive impairments. Cell Mol Life Sci 2023; 80:29. [PMID: 36607431 PMCID: PMC9823026 DOI: 10.1007/s00018-022-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, 92697-2695, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-2695, USA
| | - Michael N Cranston
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Bayley C Perry
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Lukas M Shelerud
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA.
| |
Collapse
|
36
|
Blackmore DG, Waters MJ. The multiple roles of GH in neural ageing and injury. Front Neurosci 2023; 17:1082449. [PMID: 36960169 PMCID: PMC10027725 DOI: 10.3389/fnins.2023.1082449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Advanced age is typically associated with a decrease in cognitive function including impairment in the formation and retention of new memories. The hippocampus is critical for learning and memory, especially spatial learning, and is particularly affected by ageing. With advanced age, multiple neural components can be detrimentally affected including a reduction in the number of neural stem and precursor cells, a decrease in the formation of adult born neurons (neurogenesis), and deficits in neural circuitry, all of which ultimately contribute to impaired cognitive function. Importantly, physical exercise has been shown to ameliorate many of these impairments and is able to improve learning and memory. Relevantly, growth hormone (GH) is an important protein hormone that decreases with ageing and increases following physical exercise. Originally described due to its role in longitudinal growth, GH has now been identified to play several additional key roles, especially in relation to the brain. Indeed, the regular decrease in GH levels following puberty is one of the most well documented components of neuroendocrine ageing. Growth hormone deficiency (GHD) has been described to have adverse effects on brain function, which can be ameliorated via GH replacement therapy. Physical exercise has been shown to increase circulating GH levels. Furthermore, we recently demonstrated the increase in exercise-mediated GH is critical for improved cognitive function in the aged mouse. Here we examine the multiple roles that GH plays, particularly in the aged brain and following trauma, irradiation and stroke, and how increasing GH levels can ameliorate deficits in cognition.
Collapse
Affiliation(s)
- Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael J. Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Michael J. Waters,
| |
Collapse
|
37
|
Goel H, Goyal K, Pandey AK, Benjamin M, Khan F, Pandey P, Mittan S, Iqbal D, Alsaweed M, Alturaiki W, Madkhali Y, Kamal MA, Tanwar P, Upadhyay TK. Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:84-97. [PMID: 35352654 DOI: 10.2174/1871527321666220329103610] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Keshav Goyal
- Division of Molecular and Cellular Biology, Faculty of Biology, Ludwig Maximilians Universitat, Munchen, Germany
| | - Avanish Kumar Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, One Gustave L. Levy Place, New York, USA
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham NSW 2770, Novel Global Community Educational Foundation, Australia
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat 391760, India
| |
Collapse
|
38
|
Sorokina SS, Paskevich SI, Zaichkina SI, Malkov AE, Pikalov VA. The Combined Effect of Protective Agents and Accelerated Carbon Ions on the Behavior of Mice. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
39
|
Jain V, de Godoy LL, Mohan S, Chawla S, Learned K, Jain G, Wehrli FW, Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J Neuroimaging 2022; 32:1027-1043. [PMID: 36156829 DOI: 10.1111/jon.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Technological advances in the delivery of radiation and other novel cancer therapies have significantly improved the 5-year survival rates over the last few decades. Although recent developments have helped to better manage the acute effects of radiation, the late effects such as impairment in cognition continue to remain of concern. Accruing data in the literature have implicated derangements in hemodynamic parameters and metabolic activity of the irradiated normal brain as predictive of cognitive impairment. Multiparametric imaging modalities have allowed us to precisely quantify functional and metabolic information, enhancing the anatomic and morphologic data provided by conventional MRI sequences, thereby contributing as noninvasive imaging-based biomarkers of radiation-induced brain injury. In this review, we have elaborated on the mechanisms of radiation-induced brain injury and discussed several novel imaging modalities, including MR spectroscopy, MR perfusion imaging, functional MR, SPECT, and PET that provide pathophysiological and functional insights into the postradiation brain, and its correlation with radiation dose as well as clinical neurocognitive outcomes. Additionally, we explored some innovative imaging modalities, such as quantitative blood oxygenation level-dependent imaging, susceptibility-based oxygenation measurement, and T2-based oxygenation measurement, that hold promise in delineating the potential mechanisms underlying deleterious neurocognitive changes seen in the postradiation setting. We aim that this comprehensive review of a range of imaging modalities will help elucidate the hemodynamic and metabolic injury mechanisms underlying cognitive impairment in the irradiated normal brain in order to optimize treatment regimens and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Learned
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Jain
- Department of Neurological Surgery, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Hippocampus sparing volumetric modulated arc therapy in patients with loco-regionally advanced oropharyngeal cancer. Phys Imaging Radiat Oncol 2022; 24:71-75. [PMID: 36217428 PMCID: PMC9547285 DOI: 10.1016/j.phro.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
|
41
|
Miao BB, Gao D, Hao JP, Li YL, Li L, Wang JB, Xiao XH, Yang CC, Zhang L. Tetrahydroxy stilbene glucoside alters neurogenesis and neuroinflammation to ameliorate radiation-associated cognitive disability via AMPK/Tet2. Int Immunopharmacol 2022; 110:108928. [DOI: 10.1016/j.intimp.2022.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
|
42
|
Simmons P, Corley C, Allen AR. Fractionated Proton Irradiation Does Not Impair Hippocampal-Dependent Short-Term or Spatial Memory in Female Mice. TOXICS 2022; 10:toxics10090507. [PMID: 36136472 PMCID: PMC9503909 DOI: 10.3390/toxics10090507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/14/2023]
Abstract
The environment outside the Earth's protective magnetosphere is a much more threatening and complex space environment. The dominant causes for radiation exposure, solar particle events and galactic cosmic rays, contain high-energy protons. In space, astronauts need healthy and highly functioning cognitive abilities, of which the hippocampus plays a key role. Therefore, understanding the effects of 1H exposure on hippocampal-dependent cognition is vital for developing mitigative strategies and protective countermeasures for future missions. To investigate these effects, we subjected 6-month-old female CD1 mice to 0.75 Gy fractionated 1H (250 MeV) whole-body irradiation at the NASA Space Radiation Laboratory. The cognitive performance of the mice was tested 3 months after irradiation using Y-maze and Morris water maze tests. Both sham-irradiated and 1H-irradiated mice significantly preferred exploration of the novel arm compared to the familiar and start arms, indicating intact spatial and short-term memory. Both groups statistically spent more time in the target quadrant, indicating spatial memory retention. There were no significant differences in neurogenic and gliogenic cell counts after irradiation. In addition, proteomic analysis revealed no significant upregulation or downregulation of proteins related to behavior, neurological disease, or neural morphology. Our data suggests 1H exposure does not impair hippocampal-dependent spatial or short-term memory in female mice.
Collapse
Affiliation(s)
- Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Little Rock, AR 72205, USA
| | - Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-686-7553
| |
Collapse
|
43
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
44
|
Dinkel JG, Lahmer G, Mennecke A, Hock SW, Richter-Schmidinger T, Fietkau R, Distel L, Putz F, Dörfler A, Schmidt MA. Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure-A Diffusion Tensor Imaging Analysis. Brain Sci 2022; 12:brainsci12070879. [PMID: 35884686 PMCID: PMC9312994 DOI: 10.3390/brainsci12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hippocampal-sparing radiotherapy (HSR) is a promising approach to alleviate cognitive side effects following cranial radiotherapy. Microstructural brain changes after irradiation have been demonstrated using Diffusion Tensor Imaging (DTI). However, evidence is conflicting for certain parameters and anatomic structures. This study examines the effects of radiation on white matter and hippocampal microstructure using DTI and evaluates whether these may be mitigated using HSR. A total of 35 tumor patients undergoing a prospective randomized controlled trial receiving either conventional or HSR underwent DTI before as well as 6, 12, 18, 24, and 30 (±3) months after radiotherapy. Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) were measured in the hippocampus (CA), temporal, and frontal lobe white matter (TL, FL), and corpus callosum (CC). Longitudinal analysis was performed using linear mixed models. Analysis of the entire patient collective demonstrated an overall FACC decrease and RDCC increase compared to baseline in all follow-ups; ADCC decreased after 6 months, and MDCC increased after 12 months (p ≤ 0.001, 0.001, 0.007, 0.018). ADTL decreased after 24 and 30 months (p ≤ 0.004, 0.009). Hippocampal FA increased after 6 and 12 months, driven by a distinct increase in ADCA and MDCA, with RDCA not increasing until 30 months after radiotherapy (p ≤ 0.011, 0.039, 0.005, 0.040, 0.019). Mean radiation dose correlated positively with hippocampal FA (p < 0.001). These findings may indicate complex pathophysiological changes in cerebral microstructures after radiation, insufficiently explained by conventional DTI models. Hippocampal microstructure differed between patients undergoing HSR and conventional cranial radiotherapy after 6 months with a higher ADCA in the HSR subgroup (p ≤ 0.034).
Collapse
Affiliation(s)
- Johannes G. Dinkel
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Godehard Lahmer
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Angelika Mennecke
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Stefan W. Hock
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Tanja Richter-Schmidinger
- Psychiatrische und Psychotherapeutische Klinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Luitpold Distel
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Florian Putz
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Arnd Dörfler
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Manuel A. Schmidt
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
- Correspondence:
| |
Collapse
|
45
|
Iqubal A, Iqubal MK, Sharma S, Wasim M, Alfaleh MA, Md S, Baboota S, Ali J, Haque SE. Pathogenic mechanisms and therapeutic promise of phytochemicals and nanocarriers based drug delivery against radiotherapy-induced neurotoxic manifestations. Drug Deliv 2022; 29:1492-1511. [PMID: 35543534 PMCID: PMC9103628 DOI: 10.1080/10717544.2022.2064562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-β, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
46
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
47
|
Lee RX, Tang FR. Radiation-induced neuropathological changes in the oligodendrocyte lineage with relevant clinical manifestations and therapeutic strategies. Int J Radiat Biol 2022; 98:1519-1531. [PMID: 35311621 DOI: 10.1080/09553002.2022.2055804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE With technological advancements in radiation therapy for tumors of the central nervous system (CNS), high doses of ionizing radiation can be delivered to the tumors with improved accuracy. Despite the reduction of ionizing radiation-induced toxicity to surrounding tissues of the CNS, a wide array of side effects still occurs, particularly late-delayed changes. These alterations, such as white matter damages and neurocognitive impairments, are often debilitative and untreatable, significantly affecting the quality of life of these patients, especially children. Oligodendrocytes, a major class of glial cells, have been identified to be one of the targets of radiation toxicity and are recognized be involved in late-delayed radiation-induced neuropathological changes. These cells are responsible for forming the myelin sheaths that surround and insulate axons within the CNS. Here, the effects of ionizing radiation on the oligodendrocyte lineage as well as the common clinical manifestations resulting from radiation-induced damage to oligodendrocytes will be discussed. Potential prophylactic and therapeutic strategies against radiation-induced oligodendrocyte damage will also be considered. CONCLUSION Oligodendrocytes and oligodendrocyte progenitor cells (OPCs) are radiosensitive cells of the CNS. Here, general responses of these cells to radiation exposure have been outlined. However, several findings have not been consistent across various studies. For instance, cognitive decline in irradiated animals was observed to be accompanied by obvious demyelination or white matter changes in several studies but not in others. Hence, further studies have to be conducted to elucidate the level of contribution of the oligodendrocyte lineage to the development of late-delayed effects of radiation exposure, as well as to classify the dose and brain region-specific responses of the oligodendrocyte lineage to radiation. Several potential therapeutic approaches against late-delayed changes have been discussed, such as the transplantation of OPCs into irradiated regions and implementation of exercise. Many of these approaches show promising results. Further elucidation of the mechanisms involved in radiation-induced death of oligodendrocytes and OPCs would certainly aid in the development of novel protective and therapeutic strategies against the late-delayed effects of radiation.
Collapse
Affiliation(s)
- Rui Xue Lee
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Liu LY, Qin TZ, Guo L, Rong-Rong H, Jing YT, Lai PP, Xue YZ, Ding GR. The Preventive and Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation on Radiation-Induced Brain Injury in Mice. Int J Radiat Biol 2022; 98:1316-1329. [PMID: 35130116 DOI: 10.1080/09553002.2022.2038806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To clarify the preventive and therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on brain injury induced by X-ray cranial irradiation, preliminarily identify the mechanism and provide a novel clinical approach for the prevention and treatment of radiation-induced brain injury (RBI). MATERIALS AND METHODS Male C57BL/6 mice were randomly divided into the sham group, large fractionated dose (5 Gy ×4 d) group, large fractionated dose + rTMS (5 Gy ×4 d + rTMS) group, conventional fractionated dose (2 Gy ×10 d) group and conventional fractionated dose + rTMS (2 Gy ×10 d + rTMS) group. After cranial irradiation and rTMS, behavioral experiments, morphological staining and molecular biology experiments were performed. We further determined the mechanism of rTMS on the prevention and treatment of RBI, including changes in hippocampal neuronal apoptosis, neural stem cell (NSC) proliferation and differentiation, and neuronal synaptic plasticity. RESULTS rTMS alleviated the negative effects of cranial radiation on the general health of mice and promoted their recovery. rTMS ameliorated the impairment of spatial learning and memory induced by cranial radiation, and this beneficial effect was more robust in the conventional fractionated dose group than the large fractionated dose group. Moreover, rTMS alleviated the alterations in hippocampal structure and neuronal death and had preventive and therapeutic effects against RBI. In addition, rTMS reduced hippocampal cell apoptosis, promoted NSC proliferation and differentiation in the hippocampus after cranial irradiation, and enhanced neuronal synaptic plasticity in the hippocampus. Subsequent studies showed that rTMS upregulated the expression of learning- and memory-related proteins. CONCLUSION rTMS could alleviate learning and memory impairment caused by RBI, and the preventive and therapeutic effects of rTMS were better for the conventional fraction radiation paradigms.
Collapse
Affiliation(s)
- Li-Yuan Liu
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Huang Rong-Rong
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China.,School of Public Health, Shandong First Medical University, Tai'an, Shandong, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Lin SY, Tsan DL, Chuang CC, Yang CC, Pai PC, Wang CL, Wu YM, Lee CC, Lin CH, Wei KC, Chou WC. Oncological Outcomes After Hippocampus-Sparing Whole-Brain Radiotherapy in Cancer Patients With Newly Diagnosed Brain Oligometastases: A Single-Arm Prospective Observational Cohort Study in Taiwan. Front Oncol 2022; 11:784635. [PMID: 35096584 PMCID: PMC8790705 DOI: 10.3389/fonc.2021.784635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background Promisingly, the technique of hippocampus sparing during WBRT (HS-WBRT) might preserve NCFs. In this research, we examined oncological outcomes, with emphasis on neurologic/non-neurologic causes of death, CNS progression, and leptomeningeal disease (LMD) recurrence in cancer patients who underwent HS-WBRT. Methods One hundred and fourteen cancer patients with newly diagnosed brain oligometastases underwent HS-WBRT were consecutively enrolled. The cumulative incidence of cancer-specific deaths (neurologic or non-neurologic), LMD recurrence, and the composite endpoint of CNS progression (CNS-CE) as the first event were computed with a competing-risks approach to characterize the oncological outcomes after HS-WBRT. Results Patients with intact brain metastases had a significantly increased likelihood of dying from non-neurologic causes of death associated with early manifestation of progressive systemic disease (hazard ratio for non-neurologic death, 1.78; 95% CI, 1.08–2.95; p = 0.025; competing-risks Fine–Gray regression), which reciprocally rendered them unlikely to encounter LMD recurrence or any pattern of CNS progression (HR for CNS-CE as the first event, 0.13; 95% CI, 0.02–0.97; p = 0.047; competing-risks Fine–Gray regression). By contrast, patients with resection cavities post-craniotomy had reciprocally increased likelihood of CNS progression which might be associated with neurologic death eventually. Conclusions Patterns of oncological endpoints including neurologic/non-neurologic death and cumulative incidence of CNS progression manifesting as LMD recurrence are clearly clarified and contrasted between patients with intact BMs and those with resection cavities, indicating they are clinically distinct subgroups. Trial Registration ClinicalTrials.gov, Identifier: NCT02504788, NCT03223675.
Collapse
Affiliation(s)
- Shinn-Yn Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Din-Li Tsan
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Cheng Yang
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ming Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsin Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chi Chou
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Deparment of Hematology-Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
50
|
Wang H, Abel GM, Storm DR, Xia Z. Adolescent cadmium exposure impairs cognition and hippocampal neurogenesis in C57BL/6 mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:335-348. [PMID: 34741586 PMCID: PMC10942748 DOI: 10.1002/tox.23402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal and a significant public health concern. Epidemiological studies suggest that Cd is a potential neurotoxicant, and its exposure is associated with cognitive deficits in children, adults, and seniors. Our previous study has found that adulthood-only Cd exposure can impair cognition in mice. However, few studies have addressed the effects of Cd exposure during adolescence on cognitive behavior in animals later in life. In the present study, we exposed 4-week-old male C57BL/6 mice to 3 mg/L Cd via drinking water for 28 weeks and assessed their hippocampus-dependent learning and memory. Cd did not affect anxiety or locomotor activity in the open field test. However, Cd exposure impaired short-term spatial memory and contextual fear memory in mice. A separate cohort of 4-week-old mice was similarly exposed to Cd for 13 weeks to investigate the potential mechanism of Cd neurotoxicity on cognition. We observed that Cd-treated mice had fewer adult-born cells, adult-born neurons, and a reduced proportion of adult-born cells that differentiated into mature neurons in the subgranular zone of the dentate gyrus. These results suggest that Cd exposure from adolescence to adulthood is sufficient to cause cognitive deficits and impair key processes of hippocampal neurogenesis in mice.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Glen M. Abel
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|