1
|
Zhao LJ, Wang ZT, Ma YH, Zhang W, Dong Q, Yu JT, Tan L. Associations of the cerebrospinal fluid hepatocyte growth factor with Alzheimer's disease pathology and cognitive function. BMC Neurol 2021; 21:387. [PMID: 34615471 PMCID: PMC8493684 DOI: 10.1186/s12883-021-02356-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocyte growth factor (HGF) plays a role in neuronal survival and development, and has been implicated in neurodegenerative diseases. We sought to examine the associations of the CSF HGF with Alzheimer’s disease (AD) pathology and cognitive function. Methods A total of 238 participants (including 90 cognitively normal (CN) and 148 mild cognitive impairment (MCI)) who had measurements of CSF HGF were included from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Multiple linear regression models were utilized to explore the cross-sectional associations of CSF HGF with AD biomarkers (including Aβ42, pTau, and tTau proteins) in non-demented participants. Moreover, linear mixed-effects regression models were utilized to explore the longitudinal associations of HGF subgroups with cognitive function. Mediation analyses were utilized to explore the mediation effects of AD markers. Results MCI individuals had significantly increased CSF HGF compared with the CN individuals. Results of multiple linear regressions showed significant correlations of CSF HGF with CSF Aβ42, pTau, and tTau in non-demented participants. Higher level of baseline CSF HGF was associated with faster cognitive decline. Influences of the baseline CSF HGF on cognition were partially mediated by Aβ42, pTau, and tTau pathologies. Conclusions High concentrations of HGF in CSF may be related to faster cognitive decline. The cognitive consequences of higher CSF HGF partly stem from AD pathology, which suggests that the CSF HGF may be an attractive biomarker candidate to track AD progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02356-9.
Collapse
Affiliation(s)
- Li-Jing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Zuo-Teng Wang
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | | |
Collapse
|
2
|
Chen Q, You Y, Zhang Y, Zhang H, Bai L. Hepatocyte growth factor mediates a novel form of hepatic stem/progenitor cell-induced tolerance in a rat xenogeneic liver rejection model. Int Immunopharmacol 2021; 90:107180. [PMID: 33221167 DOI: 10.1016/j.intimp.2020.107180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
We have previously identified novel neural/glial antigen 2-expressing hepatic stem/progenitor cells (NG2+ HSPs) that are beneficial for tissue repair by inhibiting the immune cell response. In this in vivo study, we investigated the use of hepatocyte growth factor (HGF)-secreting NG2+ HSPs as a tolerogen in the well-established Syrian golden hamster (SGH) to Lewis (LEW) xenogeneic rat acute liver rejection (ARJ) model. Liver and blood cells were collected for histology and functional analyses using immunofluorescence staining, western blot, ELISA, and TUNEL assays. All recipient rats were randomly divided into 5 groups (n = 14 rats/group) and treated with: (1) ARJ + PBS: (2) ARJ + NG2: tail vein injection of NG2+ HSPs; (3) ARJ + tacrolimus (FK506, oral administration); (4) ARJ + an anti-cMet functional blocking antibody (a-cMet-Ab, I.V) 24 h before the injection of NG2+ HSPs; (5) ARJ + cHGF (clinically used HGF). LEW to LEW syngeneic rats were considered "normal" (n = 14, namely Syn). Significantly prolonged mean survival times (MSTs) and improved graft functions were observed after NG2+ HSP transplantation. An anti-cMet Ab significantly blocked the effect of NG2+ HSPs, suggesting that the effects were likely associated with HGF secreted from NG2+ HSPs. Notably, when intravenously injected into the xenogeneic rat model, the injected cHGF not only prolonged the MST of recipient rats but also increased the number of TUNEL-expressing xenoreactive cytotoxic T lymphocytes (CD8+ T cells). Based on these results, HGF-secreting NG2+ HSPs may specifically target recipient CD8+ T cells by inducing their apoptosis.
Collapse
Affiliation(s)
- Quanyu Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yu You
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China.
| | - Lianhua Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China.
| |
Collapse
|
3
|
Jia Y, Cao N, Zhai J, Zeng Q, Zheng P, Su R, Liao T, Liu J, Pei H, Fan Z, Zhou J, Xi J, He L, Chen L, Nan X, Yue W, Pei X. HGF Mediates Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells Improved Functional Recovery in a Senescence-Accelerated Mouse Model of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903809. [PMID: 32995116 PMCID: PMC7507104 DOI: 10.1002/advs.201903809] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/04/2020] [Indexed: 05/27/2023]
Abstract
Stem cells have emerged as a potential therapy for a range of neural insults, but their application in Alzheimer's disease (AD) is still limited and the mechanisms underlying the cognitive benefits of stem cells remain to be elucidated. Here, the effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on the recovery of cognitive ability in SAMP8 mice, a senescence-accelerated mouse model of AD is explored. A functional assay identifies that the core functional factor hepatocyte growth factor (HGF) secreted from hUC-MSCs plays critical roles in hUC-MSC-modulated recovery of damaged neural cells by down-regulating hyperphosphorylated tau, reversing spine loss, and promoting synaptic plasticity in an AD cell model. Mechanistically, structural and functional recovery, as well as cognitive enhancements elicited by exposure to hUC-MSCs, are at least partially mediated by HGF in the AD hippocampus through the activation of the cMet-AKT-GSK3β signaling pathway. Taken together, these data strongly implicate HGF in mediating hUC-MSC-induced improvements in functional recovery in AD models.
Collapse
Affiliation(s)
- Yali Jia
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Ning Cao
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- 920th Hospital of Joint Logistics Support ForceKunming650032China
| | - Jinglei Zhai
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Pei Zheng
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
| | - Ruyu Su
- South China Institute of BiomedicineGuangzhou510005China
| | - Tuling Liao
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
| | - Jiajing Liu
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
| | - Haiyun Pei
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijing100850China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Junnian Zhou
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Lijuan He
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Lin Chen
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Xue Nan
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Wen Yue
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijing100850China
- South China Institute of BiomedicineGuangzhou510005China
| |
Collapse
|
4
|
Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Int J Mol Sci 2019; 20:ijms20051054. [PMID: 30823442 PMCID: PMC6429374 DOI: 10.3390/ijms20051054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor (HGF) was first identified as a potent mitogen for mature hepatocytes, and has also gained attention as a strong neurotrophic factor in the central nervous system. We found that during the acute phase of spinal cord injury (SCI) in rats, c-Met, the specific receptor for HGF, increases sharply, while the endogenous HGF up-regulation is relatively weak. Introducing exogenous HGF into the spinal cord by injecting an HGF-expressing viral vector significantly increased the neuron and oligodendrocyte survival, angiogenesis, and axonal regeneration, to reduce the area of damage and to promote functional recovery in rats after SCI. Other recent studies in rodents have shown that exogenously administered HGF during the acute phase of SCI reduces astrocyte activation to decrease glial scar formation, and exerts anti-inflammatory effects to reduce leukocyte infiltration. We also reported that the intrathecal infusion of recombinant human HGF (intrathecal rhHGF) improves neurological hand function after cervical contusive SCI in the common marmoset, a non-human primate. Based on these collective results, we conducted a phase I/II clinical trial of intrathecal rhHGF for patients with acute cervical SCI who showed a modified Frankel grade of A/B1/B2 72 h after injury onset, from June 2014 to May 2018.
Collapse
|
5
|
Intravenous injection of umbilical cord-derived mesenchymal stromal cells attenuates reactive gliosis and hypomyelination in a neonatal intraventricular hemorrhage model. Neuroscience 2017; 355:175-187. [PMID: 28504197 DOI: 10.1016/j.neuroscience.2017.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Intraventricular hemorrhage (IVH) is a frequent complication of preterm newborns, resulting in cerebral palsy and cognitive handicap as well as hypoxic ischemic encephalopathy and periventricular leukomalacia. In this study, we investigated the restorative effect on neonatal IVH by umbilical cord-derived mesenchymal stromal cells (UC-MSCs) cultured in serum-free medium (RM medium) for clinical application. UC-MSCs were cultured with αMEM medium supplemented with FBS or RM. A neonatal IVH mouse model at postnatal day 5 was generated by intraventricular injection of autologous blood, and mice were intravenously administered 1×105 UC-MSCs two days after IVH. Brain magnetic resonance imaging was performed at postnatal day 15, 22 and neurological behavioral measurements were performed at postnatal day 23, accompanied by histopathological analysis and cytokine bead assays in serum after IVH with or without UC-MSCs. Both UC-MSCs cultured with αMEM and RM met the criteria of MSCs and improved behavioral outcome of IVH mice. Moreover the RM group exhibited significant behavioral improvement compared to the control group. Histopathological analysis revealed UC-MSCs cultured with RM significantly attenuated periventricular reactive gliosis, hypomyelination, and periventricular cell death observed after IVH. Furthermore, human brain-derived neurotrophic factor and hepatocyte growth factor were elevated in the serum, cerebrospinal fluid and brain tissue of neonatal IVH model mice 24h after UC-MSCs administration. These results suggest UC-MSCs attenuate neonatal IVH by protecting gliosis and apoptosis of the injured brain, and intravenous injection of UC-MSCs cultured in RM may be feasible for neonatal IVH in clinic.
Collapse
|
6
|
Chaparro RE, Izutsu M, Sasaki T, Sheng H, Zheng Y, Sadeghian H, Qin T, von Bornstadt D, Herisson F, Duan B, Li JS, Jiang K, Pearlstein M, Pearlstein RD, Smith DE, Goldberg ID, Ayata C, Warner DS. Sustained functional improvement by hepatocyte growth factor-like small molecule BB3 after focal cerebral ischemia in rats and mice. J Cereb Blood Flow Metab 2015; 35:1044-53. [PMID: 25712497 PMCID: PMC4640251 DOI: 10.1038/jcbfm.2015.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/08/2022]
Abstract
Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small molecule with HGF-like activity that crosses the blood-brain barrier in rodent focal ischemic stroke using Stroke Therapy Academic Industry Roundtable (STAIR) and Good Laboratory Practice guidelines. In rats, BB3, begun 6 hours after temporary middle cerebral artery occlusion (tMCAO) reperfusion, or permanent middle cerebral artery occlusion (pMCAO) onset, and continued for 14 days consistently improved long-term neurologic function independent of sex, age, or laboratory. BB3 had little effect on cerebral infarct size and no effect on blood pressure. BB3 increased HGF receptor c-Met phosphorylation and synaptophysin expression in penumbral tissue consistent with a neurorestorative mechanism from HGF-like activity. In mouse tMCAO, BB3 starting 10 minutes after reperfusion and continued for 14 days improved neurologic function that persisted for 8 weeks in some, but not all measures. Study in animals with comorbidities and those exposed to common stroke drugs are the next steps to complete preclinical assessment. These data, generated in independent, masked, and rigorously controlled settings, are the first to suggest that the HGF pathway can potentially be harnessed by BB3 for neurologic benefit after ischemic stroke.
Collapse
Affiliation(s)
- Rafael E Chaparro
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | - Miwa Izutsu
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | - Toshihiro Sasaki
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | - Huaxin Sheng
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi Zheng
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel von Bornstadt
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Fanny Herisson
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bin Duan
- Angion Biomedica Corporation, Uniondale, New York, USA
| | - Jing-Song Li
- Angion Biomedica Corporation, Uniondale, New York, USA
| | - Kai Jiang
- Angion Biomedica Corporation, Uniondale, New York, USA
| | - Molly Pearlstein
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert D Pearlstein
- Department of Surgery, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | - David E Smith
- Angion Biomedica Corporation, Uniondale, New York, USA
| | | | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - David S Warner
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Lee T. Stem cell therapy independent of stemness. World J Stem Cells 2012; 4:120-124. [PMID: 23516128 PMCID: PMC3600562 DOI: 10.4252/wjsc.v4.i12.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is entering a new era shifting the focus from initial feasibility study to optimization of therapeutic efficacy. However, how MSC therapy facilitates tissue regeneration remains incompletely characterized. Consistent with the emerging notion that secretion of multiple growth factors/cytokines (trophic factors) by MSC provides the underlying tissue regenerative mechanism, the recent study by Bai et al demonstrated a critical therapeutic role of MSC-derived hepatocyte growth factor (HGF) in two animal models of multiple sclerosis (MS), which is a progressive autoimmune disorder caused by damage to the myelin sheath and loss of oligodendrocytes. Although current MS therapies are directed toward attenuation of the immune response, robust repair of myelin sheath likely requires a regenerative approach focusing on long-term replacement of the lost oligodendrocytes. This approach appears feasible because adult organs contain various populations of multipotent resident stem/progenitor cells that may be activated by MSC trophic factors as demonstrated by Bai et al This commentary highlights and discusses the major findings of their studies, emphasizing the anti-inflammatory function and trophic cross-talk mechanisms mediated by HGF and other MSC-derived trophic factors in sustaining the treatment benefits. Identification of multiple functionally synergistic trophic factors, such as HGF and vascular endothelial growth factor, can eventually lead to the development of efficacious cell-free therapeutic regimens targeting a broad spectrum of degenerative conditions.
Collapse
|
8
|
Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15:862-70. [PMID: 22610068 PMCID: PMC3427471 DOI: 10.1038/nn.3109] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells have emerged as a potential therapy for a range of neural insults. In animal models of multiple sclerosis, an autoimmune disease that targets oligodendrocytes and myelin, treatment with human MSCs results in functional improvement that reflects both modulation of the immune response and myelin repair. Here we demonstrate that conditioned medium (CM) from human MSCs reduces functional deficits in mouse MOG35–55-induced EAE and promotes the development of oligodendrocytes and neurons. Functional assays identify a critical role for Hepatocyte Growth Factor (HGF) and its primary receptor cMet in MSCs stimulated recovery in EAE, neural cell development and remyelination. Active MSC-CM contains HGF and exogenously supplied HGF promotes recovery in EAE while cMet and anti-HGF antibodies block the functional recovery mediated by HGF and MSC-CM. Systemic treatment with HGF dramatically accelerated remyelination in lysolecithin-induced rat dorsal spinal cord lesions and in slice cultures. Together these data strongly implicate HGF in mediating MSC-stimulated functional recovery in animal models of multiple sclerosis.
Collapse
|
9
|
Ribeiro C, Neto AP, das Neves J, Bahia MF, Sarmento B. Preparation of polyelectrolyte nanocomplexes containing recombinant human hepatocyte growth factor as potential oral carriers for liver regeneration. Methods Mol Biol 2012; 811:113-25. [PMID: 22042676 DOI: 10.1007/978-1-61779-388-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The large number of cytokines and growth factors implicated in the regulation of liver regeneration has led to the possibility of using these molecules in therapy, namely, in the case of recombinant human hepatocyte growth factor (rhHGF). The importance and potential clinical usefulness of rhHGF has been extensively studied and documented, with results suggesting that this molecule could be a powerful tool toward increased success in hepatic regenerative therapy. However, the peptidic nature of this drug presents several challenges toward its effective administration and targeting. The possibility of encapsulating rhHGF in dextran sulfate/chitosan nanoparticles to allow its oral administration and direct liver-targeting is discussed in this manuscript. Details of a rapid and simple method for the preparation of such rhHGF-loaded nanocomplexes are presented. Beyond the practical aspects of the method, characterization techniques and main experimental features of obtained nanocarriers are also briefly analyzed and discussed.
Collapse
Affiliation(s)
- Catarina Ribeiro
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
10
|
Kanehisa M, Ishitobi Y, Ando T, Okamoto S, Maruyama Y, Kohno K, Ninomiya T, Higuma H, Tanaka Y, Tsuru J, Hanada H, Kodama K, Akiyoshi J. Serum hepatocyte growth factor levels and the effects of antidepressants in panic disorder. Neuropeptides 2010; 44:431-5. [PMID: 20483455 DOI: 10.1016/j.npep.2010.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 04/11/2010] [Accepted: 04/27/2010] [Indexed: 11/24/2022]
Abstract
Previous animal studies have suggested that hepatocyte growth factor (HGF) could be associated with depression- and anxiety-related behaviors. Our aim was to relate serum HGF levels with State-Trait Anxiety Inventory (STAI), Profile of Mood State (POMS), and Revised NEO Personality Inventory (NEO-PI-R) scores in patients with panic disorder (with or without agoraphobia) and healthy controls. We examined 67 patients with panic disorders and 97 controls. Patients were split into two groups according to whether they exhibited a 50% improvement in test scores (good/high response group: n = 26) or not (poor/low response group: n = 41). In both healthy control and panic disorder individuals, there were no significant associations between HGF serum levels and STAI or NEO-PI-R scores. However, there was a significant correlation between serum HGF levels and fatigue in healthy control subjects in as scored by POMS testing. HGF concentration in the good/high response group was significantly elevated compared to both the low/poor response group (p < 0.01) and the control group (p < 0.01). HGF levels in the poor response group did not differ from the control group (p = 0.48). These results indicate that increased serum HGF levels might be a requirement for antidepressant efficacy in patients with panic disorders.
Collapse
Affiliation(s)
- Masayuki Kanehisa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita 879-5593, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|