1
|
Angeloni E, Germelli L, Costa B, Martini C, Da Pozzo E. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. Neurochem Int 2024; 182:105916. [PMID: 39681140 DOI: 10.1016/j.neuint.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Lucchi C, Simonini C, Rustichelli C, Avallone R, Zucchi E, Martinelli I, Biagini G, Mandrioli J. Reduced Levels of Neurosteroids in Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Biomolecules 2024; 14:1076. [PMID: 39334843 PMCID: PMC11430417 DOI: 10.3390/biom14091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Produced by the mitochondria and endoplasmic reticulum, neurosteroids such as allopregnanolone are neuroprotective molecules that influence various neuronal functions and regulate neuroinflammation. They are reduced in neurodegenerative diseases, while in the Wobbler mouse model, allopregnanolone and its precursor progesterone showed protective effects on motor neuron degeneration. This single-center case-control study included 37 patients with amyotrophic lateral sclerosis (ALS) and 28 healthy controls. Cerebrospinal fluid (CSF) neurosteroid levels were quantified using liquid chromatography-electrospray tandem mass spectrometry and compared between the two cohorts. Neurosteroid concentrations have been correlated with neuroinflammation and neurodegeneration biomarkers detected through an automated immunoassay, along with disease features and progression. Pregnenolone, progesterone, allopregnanolone, pregnanolone, and testosterone levels were significantly lower in ALS patients' CSF compared to healthy controls. A significant inverse correlation was found between neurofilament and neurosteroid levels. Neurosteroid concentrations did not correlate with disease progression, phenotype, genotype, or survival prediction. Our study suggests the independence of the disease features and its progression, from the dysregulation of neurosteroids in ALS patients' CSF. This neurosteroid reduction may relate to disease pathogenesis or be a consequence of disease-related processes, warranting further research. The inverse correlation between neurosteroids and neurofilament levels may indicate a failure of compensatory neuroprotective mechanisms against neurodegeneration.
Collapse
Affiliation(s)
- Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Ilaria Martinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| |
Collapse
|
3
|
Singh M, Krishnamoorthy VR, Kim S, Khurana S, LaPorte HM. Brain-derived neuerotrophic factor and related mechanisms that mediate and influence progesterone-induced neuroprotection. Front Endocrinol (Lausanne) 2024; 15:1286066. [PMID: 38469139 PMCID: PMC10925611 DOI: 10.3389/fendo.2024.1286066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Historically, progesterone has been studied significantly within the context of reproductive biology. However, there is now an abundance of evidence for its role in regions of the central nervous system (CNS) associated with such non-reproductive functions that include cognition and affect. Here, we describe mechanisms of progesterone action that support its brain-protective effects, and focus particularly on the role of neurotrophins (such as brain-derived neurotrophic factor, BDNF), the receptors that are critical for their regulation, and the role of certain microRNA in influencing the brain-protective effects of progesterone. In addition, we describe evidence to support the particular importance of glia in mediating the neuroprotective effects of progesterone. Through this review of these mechanisms and our own prior published work, we offer insight into why the effects of a progestin on brain protection may be dependent on the type of progestin (e.g., progesterone versus the synthetic, medroxyprogesterone acetate) used, and age, and as such, we offer insight into the future clinical implication of progesterone treatment for such disorders that include Alzheimer's disease, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | | | | | | | | |
Collapse
|
4
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
5
|
Calvo N, Einstein G. Steroid hormones: risk and resilience in women's Alzheimer disease. Front Aging Neurosci 2023; 15:1159435. [PMID: 37396653 PMCID: PMC10313425 DOI: 10.3389/fnagi.2023.1159435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
More women have Alzheimer disease (AD) than men, but the reasons for this phenomenon are still unknown. Including women in clinical research and studying their biology is key to understand not just their increased risk but also their resilience against the disease. In this sense, women are more affected by AD than men, but their reserve or resilience mechanisms might delay symptom onset. The aim of this review was to explore what is known about mechanisms underlying women's risk and resilience in AD and identify emerging themes in this area that merit further research. We conducted a review of studies analyzing molecular mechanisms that may induce neuroplasticity in women, as well as cognitive and brain reserve. We also analyzed how the loss of steroid hormones in aging may be linked to AD. We included empirical studies with human and animal models, literature reviews as well as meta-analyses. Our search identified the importance of 17-b-estradiol (E2) as a mechanism driving cognitive and brain reserve in women. More broadly, our analysis revealed the following emerging perspectives: (1) the importance of steroid hormones and their effects on both neurons and glia for the study of risk and resilience in AD, (2) E2's crucial role in women's brain reserve, (3) women's verbal memory advantage as a cognitive reserve factor, and (4) E2's potential role in linguistic experiences such as multilingualism and hearing loss. Future directions for research include analyzing the reserve mechanisms of steroid hormones on neuronal and glial plasticity, as well as identifying the links between steroid hormone loss in aging and risk for AD.
Collapse
Affiliation(s)
- Noelia Calvo
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
- Centre for Life Course and Aging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Early Signs of Neuroinflammation in the Postnatal Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2022:10.1007/s10571-022-01294-5. [PMID: 36219378 DOI: 10.1007/s10571-022-01294-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The Wobbler mouse is an accepted model of sporadic amyotrophic lateral sclerosis. The spinal cord of clinically symptomatic animals (3-5 months old) shows vacuolar motoneuron degeneration, inflammation, and gliosis accompanied by motor impairment. However, data are not conclusive concerning pathological changes appearing early after birth. To answer this question, we used postnatal day (PND) 6 genotyped Wobbler pups to determine abnormalities of glia and neurons at this early age period in the spinal cord. We found astrogliosis, microgliosis with morphophenotypic changes pointing to active ameboid microglia, enhanced expression of the proinflammatory markers TLR4, NFkB, TNF, and inducible nitric oxide synthase. The astrocytic enzyme glutamine synthase and the glutamate-aspartate transporter GLAST were also reduced in PND 6 Wobbler pups, suggesting excitotoxicity due to impaired glutamate homeostasis. At the neuronal level, PND 6 Wobblers showed swollen soma, increased choline acetyltransferase immunofluorescence staining, and low expression of the neuronal nuclear antigen NeuN. However, vacuolated motoneurons, a typical signature of older clinically symptomatic Wobbler mice, were absent in the spinal cord of PND 6 Wobblers. The results suggest predominance of neuroinflammation and abnormalities of microglia and astrocytes at this early period of Wobbler life, accompanied by some neuronal changes. Data support the non-cell autonomous hypothesis of the Wobbler disorder, and bring useful information with regard to intervening molecular inflammatory mechanisms at the beginning stage of human motoneuron degenerative diseases.
Collapse
|
7
|
De Nicola AF, Meyer M, Garay L, Kruse MS, Schumacher M, Guennoun R, Gonzalez Deniselle MC. Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2021; 42:23-40. [PMID: 34138412 DOI: 10.1007/s10571-021-01118-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina.
| | - María Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratory of Neurobiology, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Physiological Sciences, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| |
Collapse
|
8
|
Frye CA, Lembo VF, Walf AA. Progesterone's Effects on Cognitive Performance of Male Mice Are Independent of Progestin Receptors but Relate to Increases in GABA A Activity in the Hippocampus and Cortex. Front Endocrinol (Lausanne) 2021; 11:552805. [PMID: 33505354 PMCID: PMC7829189 DOI: 10.3389/fendo.2020.552805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023] Open
Abstract
Progestogens' (e.g., progesterone and its neuroactive metabolite, allopregnanolone), cognitive effects and mechanisms among males are not well-understood. We hypothesized if progestogen's effects on cognitive performance are through its metabolite allopregnanolone, and not actions via binding to traditional progestin receptors (PRs), then progesterone administration would enhance performance in tasks mediated by the hippocampus and cortex, coincident with increasing allopregnanolone concentrations, brain derived neurotrophic factor (BDNF) and/or muscimol binding of PR knock out (PRKO) and wild-type PR replete mice. Experiment 1: Progesterone (4 mg/kg, subcutaneously (SC; n = 12/grp), or oil vehicle control, was administered to gonadally-intact adult male mice PRKO mice and their wild-type counterparts and cognitive behaviors in object recognition, T-maze and water maze was examined. Progesterone, compared to vehicle, when administered post-training increased time investigating novel objects by the PRKO and wild-type mice in the object recognition task. In the T-maze task, progesterone administration to wild-type and PRKO mice had significantly greater number of spontaneous alternations compared to their vehicle-administered counterparts. In the water maze task, PRKO mice administered vehicle spent significantly fewer seconds in the quadrant associated with the escape platform on testing compared to all other groups. Experiment 2: Progesterone administered to wild-type and PRKO mice increased plasma progesterone and allopregnanolone levels (n = 5/group). PRKO mice had higher allopregnanolone levels in plasma and hippocampus, but not cortex, when administered progesterone and compared to wild-type mice. Experiment 3: Assessment of PR binding revealed progesterone administered wild-type mice had significantly greater levels of PRs in the hippocampus and cortex, compared to all other groups (n = 5/group). Wild-type mice administered progesterone, but not vehicle, had increased BDNF levels in the hippocampus, but not the cortex, compared to PRKOs. Wild-type as well as PRKO mice administered progesterone experienced significant increases in maximal GABAA agonist, muscimol, binding in hippocampus and cortex, compared to their vehicle-administered counterparts. Thus, adult male mice can be responsive to progesterone for cognitive performance, and such effects may be independent of PRs trophic actions of BDNF levels in the hippocampus and/or increases in GABAA activity in the hippocampus and cortex.
Collapse
Affiliation(s)
- Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Department of Biological Sciences, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Neuroscience Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Life Sciences Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Chemistry, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Vincent F. Lembo
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Alicia A. Walf
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
9
|
Lara A, Esperante I, Meyer M, Liere P, Di Giorgio N, Schumacher M, Guennoun R, Gargiulo-Monachelli G, De Nicola AF, Gonzalez Deniselle MC. Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 58:2088-2106. [PMID: 33411236 DOI: 10.1007/s12035-020-02209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3β-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFβ, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.
Collapse
Affiliation(s)
- Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Iván Esperante
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Noelia Di Giorgio
- Laboratory of Neuroendocrinology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, Buenos Aires, 1428, Argentina
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro Federico De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, Buenos Aires, 1121, Argentina.
| |
Collapse
|
10
|
Sharma A, Sane H, Paranjape A, Varghese R, Nair V, Biju H, Sawant D, Gokulchandran N, Badhe P. Improved survival in amyotrophic lateral sclerosis patients following autologous bone marrow mononuclear cell therapy: a long term 10-year retrospective study. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Promising results from previous studies using cell therapy have paved the way for an innovative treatment option for amyotrophic lateral sclerosis (ALS). There is considerable evidence of immune and inflammatory abnormalities in ALS. Bone marrow mononuclear cells (BMMNCs) possess immunomodulatory properties and could contribute to slowing of disease progression. Objective: Aim of our study was to evaluate the long-term effect of autologous BMMNCs combined with standard treatment on survival duration in a large population and to evaluate effect of type of onset and hormonal status on survival duration in the intervention group. Methods: This controlled, retrospective study spanned over 10 years, 5 months; included 216 patients with probable or definite ALS, 150 in intervention group receiving autologous BMMNCs and standard treatment, and 66 in control group receiving only standard treatment. The estimated survival duration of control group and intervention group was computed and compared using Kaplan Meier analysis. Survival duration of patients with different types of onset and hormonal status was compared within the intervention group. Results: None of the patients reported any major adverse events related to cell administration or the procedure. Kaplan Meier analysis estimated survival duration in the intervention group to be 91.7 months while 49.7 months in the control group (p = 0.008). Within the intervention group, estimated survival was significantly higher (p = 0.013) in patients with limb onset (102.3 months) vs. bulbar onset (49.9 months); premenopausal women (93.1 months) vs. postmenopausal women (57.6 months) (p = 0.002); and preandropausal men (153.7 months) vs. postandropausal males (56.5 months) (p = 0.006). Conclusion: Cell therapy using autologous BMMNCs along with standard treatment offers a promising and safe option for ALS with the potential of long term beneficial effect and increased survival. Limb onset patients, premenopausal women and men ≤ 40 years of age demonstrated better treatment efficacy.
Collapse
|
11
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
12
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
13
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
14
|
Meyer M, Kruse MS, Garay L, Lima A, Roig P, Hunt H, Belanoff J, de Kloet ER, Deniselle MCG, De Nicola AF. Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res 2019; 1727:146551. [PMID: 31726042 DOI: 10.1016/j.brainres.2019.146551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Analia Lima
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Hazel Hunt
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - Joseph Belanoff
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - E Ronald de Kloet
- Division of Endocrinology, Dept. of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
15
|
Gargiulo-Monachelli G, Meyer M, Lara A, Garay L, Lima A, Roig P, De Nicola AF, Gonzalez Deniselle MC. Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 2019; 192:105385. [PMID: 31150830 DOI: 10.1016/j.jsbmb.2019.105385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/21/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Bioquímica Humana, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Bioquímica Humana, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Ciencias Fisiológicas, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
16
|
Choline acetyltransferase and TrkA expression, as well as the improvement in cognition produced by E2 and P4 in ovariectomized rats, are blocked by ICI 182 780 and RU486. Behav Pharmacol 2018; 29:457-461. [DOI: 10.1097/fbp.0000000000000372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Brague JC, Zinn CR, Granot DY, Feathers CT, Swann JM. TrkB is necessary for male copulatory behavior in the Syrian Hamster (Mesocricetus auratus). Horm Behav 2018; 97:162-169. [PMID: 29092774 DOI: 10.1016/j.yhbeh.2017.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
The magnocellular medial preoptic nucleus (MPN mag), a subdivision of the medial preoptic area (MPOA), plays a critical role in the regulation of copulation in the male Syrian hamster; in part by mediating the effects of gonadal steroids. For example, ablation of the MPN mag eliminates mating and testosterone placed in the MPN mag restores mating in castrated males. Furthermore, testosterone treatment enhances synaptic density and dendritic spines in the MPN mag. Thus, copulatory behaviors are correlated with increases in synaptic morphology in the MPN mag. As brain derived neurotrophic factor (BDNF) and its receptor, tyrosine receptor kinase-B (TrkB), effect neuronal growth and synaptic plasticity, this study explored the role of TrkB and BDNF in mediating testosterone's effects on the MPN mag and behavior. Testosterone treatment increased BDNF expression and conversely lowered TrkB expression in the MPOA. siRNA-mediated TrkB knockdown in the MPN mag eliminated copulation two-days post injection and the behavior was restored one week later. These data indicate that testosterone influences the expression of BDNF and TrkB in the MPOA and that expression of copulation is dependent on the presence of TrkB. Taken together our findings support a role for TrkB and BDNF in mediating the effects of testosterone on copulatory behavior in the Syrian hamster.
Collapse
Affiliation(s)
- Joe C Brague
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States..
| | - Clifford R Zinn
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States
| | - Dean Y Granot
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States
| | - Cameron T Feathers
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States
| | - Jennifer M Swann
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States..
| |
Collapse
|
18
|
Meyer M, Garay LI, Kruse MS, Lara A, Gargiulo-Monachelli G, Schumacher M, Guennoun R, Coirini H, De Nicola AF, Gonzalez Deniselle MC. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 2017; 174:201-216. [PMID: 28951257 DOI: 10.1016/j.jsbmb.2017.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WŔs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratory of Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud: "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules", 94276, Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud: "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules", 94276, Kremlin-Bicêtre, France
| | - Hector Coirini
- Laboratory of Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Ciencias Fisiológicas, Facultad de Medicina, Universidad de, Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Sexual dimorphic expression of TrkB, TrkB-T1, and BDNF in the medial preoptic area of the Syrian hamster. Brain Res 2017; 1669:122-125. [PMID: 28606780 DOI: 10.1016/j.brainres.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/16/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Neurotrophins regulate many aspects of neuronal function and activity. Specifically, the binding of Brain-derived neurotrophic factor (BDNF) to Tyrosine receptor kinase-B (TrkB) or its truncated version, TrkB-T1, can cause growth and differentiation or dominant inhibition of receptor signaling, respectively. There is evidence that these neurotropic effects on nervous tissue, in both the central and peripheral nervous system, behave differently between the sexes. This study used western blots to examine the expression of these neurotrophins in the medial preoptic area (MPOA), a sexually dimorphic region of the hamster brain that controls male sex behavior. We report that TrkB-FL and BDNF show greater expression in male MPOA tissue, when compared to female. On the contrary, TrkB-T1 is expressed in greater abundance in the female MPOA. Our results indicate a clear sexual dimorphism of neurotrophins in the MPOA of the Syrian hamster. Furthermore, the greater expression of TrkB-FL and BDNF in the male MPOA suggests that these neurotrophins could be promoting synaptic growth to facilitate male-typical copulation. In contrast, the greater TrkB-T1 expression in the female MPOA suggests a possible inhibition of synaptic growth, and may contribute to the lack of male-typical copulation. Altogether, our data suggests that neurotrophins may play a larger role sexual differentiation than previously thought.
Collapse
|
20
|
Litim N, Morissette M, Di Paolo T. Effects of progesterone administered after MPTP on dopaminergic neurons of male mice. Neuropharmacology 2017; 117:209-218. [PMID: 28192111 DOI: 10.1016/j.neuropharm.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
Abstract
Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
21
|
Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M, De Nicola AF, Guennoun R. Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology 2016; 157:4446-4460. [PMID: 27571131 DOI: 10.1210/en.2016-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Philippe Liere
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Antoine Pianos
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Maria Meyer
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Fanny Aprahamian
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Annie Cambourg
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Michael Schumacher
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Rachida Guennoun
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
22
|
Yang J, Wang X, Liu S, Xue G. BDNF expression is up-regulated by progesterone in human umbilical cord mesenchymal stem cells. Neurol Res 2016; 38:1088-1093. [PMID: 27748163 DOI: 10.1080/01616412.2016.1235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate whether promotion of neuronal differentiation of human umbilical cord mesenchymal stem cells (HUMSCs) by progesterone (PROG) involves changes in brain-derived neurotrophic factor (BDNF) levels. METHODS We used rat brain tissue extracts to mimic the brain microenvironment. Quantitative sandwich enzyme-linked immunosorbent assay was performed to measure levels of BDNF in cultured medium with or without PROG. RESULTS Progesterone increased levels of BDNF in HUMSCs. CONCLUSION Progesterone enhancement of brain-derived neurotrophic factor levels may be involved in PROG activated-pathways to promote neuronal differentiation of HUMSCs.
Collapse
Affiliation(s)
- Jie Yang
- a Department of Pharmacy , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Xianying Wang
- a Department of Pharmacy , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Sha Liu
- b Department of Pharmacy , Bethune International Peace Hospital of Chinese PLA , Shijiazhuang , China
| | - Gai Xue
- b Department of Pharmacy , Bethune International Peace Hospital of Chinese PLA , Shijiazhuang , China
| |
Collapse
|
23
|
Zubeldia-Brenner L, Roselli CE, Recabarren SE, Gonzalez Deniselle MC, Lara HE. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J Neuroendocrinol 2016; 28:10.1111/jne.12401. [PMID: 27262161 PMCID: PMC4956521 DOI: 10.1111/jne.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.
Collapse
Affiliation(s)
- L Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, Portland, OR, USA
| | - S E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Chillán, Chile
| | - M C Gonzalez Deniselle
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H E Lara
- Laboratory of Neurobiochemistry Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
24
|
The progesterone receptor agonist Nestorone holds back proinflammatory mediators and neuropathology in the wobbler mouse model of motoneuron degeneration. Neuroscience 2015; 308:51-63. [DOI: 10.1016/j.neuroscience.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
|
25
|
Yang W, Zhang H. Effects of hindlimb unloading on neurotrophins in the rat spinal cord and soleus muscle. Brain Res 2015; 1630:1-9. [PMID: 26529644 DOI: 10.1016/j.brainres.2015.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/15/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the effects of hindlimb unloading (HU) on the expression of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), together with the expression of their high-affinity receptors tropomyosin receptor kinase C (TrkC) and tropomyosin receptor kinase B (TrkB), in lumbar (L4-6) segment of the spinal cord and in the soleus muscle. The mRNA and protein levels of the genes of interest were compared using quantitative PCR and western blot assays. Immunohistochemistry for NT-3 and BDNF was used to detect the levels of protein in the motoneurons in the lateral motor column. In this study, NT-3 and BDNF mRNA and protein expression were significantly increased in the spinal cord and soleus muscle after HU. NT-3 immunoreactivity, but not BDNF immunoreactivity, was significantly increased in the large motoneurons located in lateral motor column after 14 days of HU. The level of TrkC protein in the spinal cord and soleus muscle were significantly elevated after both 7 days and 14 days of HU. However, TrkC mRNA, TrkB mRNA and TrkB protein levels did not change significantly. Elevated BDNF, NT-3 and TrkC levels in the neuromuscular system indicate that neurotrophins are involved in HU-induced neuromuscular plasticity. NT-3 is a candidate to mediate the synaptic efficacy between alpha motoneurons and group Ia afferents.
Collapse
Affiliation(s)
- Wei Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| | - Hao Zhang
- Key Laboratory of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
27
|
Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 2015; 7:403-11. [PMID: 25961276 DOI: 10.1515/hmbci.2011.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023]
Abstract
Far beyond its role in reproduction, progesterone exerts neuro-protective, promyelinating, and anti-inflammatory effects in the nervous system. These effects are amplified under pathological conditions, implying that changes of the local environment sensitize nervous tissues to steroid therapy. The present survey covers our results of progesterone neuroprotection in a motoneuron neurodegeneration model and a neuroinflammation model. In the degenerating spinal cord of the Wobbler mouse, progesterone reverses the impaired expression of neurotrophins, increases enzymes of neurotransmission and metabolism, prevents oxidative damage of motoneurons and their vacuolar degeneration (paraptosis), and attenuates the development of mitochondrial abnormalities. After long-term treatment, progesterone also increases muscle strength and the survival of Wobbler mice. Subsequently, this review describes the effects of progesterone in mice with induced experimental autoimmune encephalomyelitis (EAE), a commonly used model of multiple sclerosis. In EAE mice, progesterone attenuates the clinical severity, decreases demyelination and neuronal dysfunction, increases axonal counts, reduces the formation of amyloid precursor protein profiles, and decreases the aberrant expression of growth-associated proteins. These actions of progesterone may be due to multiple mechanisms, considering that classic nuclear receptors, extranuclear receptors, and membrane receptors are all expressed in the spinal cord. Although many aspects of progesterone action in humans remain unsolved, data provided by experimental models makes getting to this objective closer than previously expected.
Collapse
|
28
|
Garay L, Gonzalez Deniselle MC, Gierman L, Lima A, Roig P, De Nicola AF. Pharmacotherapy with 17β-estradiol and progesterone prevents development of mouse experimental autoimmune encephalomyelitis. Horm Mol Biol Clin Investig 2015; 1:43-51. [PMID: 25961971 DOI: 10.1515/hmbci.2010.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/30/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pregnant women with multiple sclerosis (MS) show disease remission in the third trimester concomitant with high circulating levels of sex steroids. Rodent experimental autoimmune encephalomyelitis (EAE) is an accepted model for MS. Previous studies have shown that monotherapy with estrogens or progesterone exert beneficial effects on EAE. The aim of the present study was to determine if estrogen and progesterone cotherapy of C57BL/6 female mice provided substantial protection from EAE. METHODS A group of mice received single pellets of progesterone (100 mg) and 17 β-estradiol (2.5 mg) subcutaneously 1 week before EAE induction, whereas another group were untreated before EAE induction. On day 16 we compared the two EAE groups and control mice in terms of clinical scores, spinal cord demyelination, expression of myelin basic protein and proteolipid protein, macrophage cell infiltration, neuronal expression of brain-derived neurotrophic factor mRNA and protein, and the number of glial fribrillary acidic protein (GFAP)-immunopositive astrocytes. RESULTS Clinical signs of EAE were substantially attenuated by estrogen and progesterone treatment. Steroid cotherapy prevented spinal cord demyelination, infiltration of inflammatory cells and GFAP+ astrogliocytes to a great extent. In motoneurons, expression of BDNF mRNA and protein was highly stimulated, indicating concomitant beneficial effects of the steroid on neuronal and glial cells. CONCLUSIONS Cotherapy with estrogen and progesterone inhibits the development of major neurochemical abnormalities and clinical signs of EAE. We suggest that a combination of neuroprotective, promyelinating and immuno-suppressive mechanisms are involved in these beneficial effects.
Collapse
|
29
|
Wessels JM, Leyland NA, Agarwal SK, Foster WG. Estrogen induced changes in uterine brain-derived neurotrophic factor and its receptors. Hum Reprod 2015; 30:925-36. [DOI: 10.1093/humrep/dev018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Liu X, Li W, Dai L, Zhang T, Xia W, Liu H, Ma K, Xu J, Jin Y. Early repeated administration of progesterone improves the recovery of neuropathic pain and modulates spinal 18kDa-translocator protein (TSPO) expression. J Steroid Biochem Mol Biol 2014; 143:130-40. [PMID: 24607808 DOI: 10.1016/j.jsbmb.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/20/2022]
Abstract
Although progesterone was reported to be a neuroprotective agent against injuries to the nervous system, including the peripheral neuropathy, the mechanisms of its dose or timing-related effects remain unclear. Translocator protein (TSPO) is predominantly located in the mitochondrial outer membrane and has been recently implicated in modulation of several brain injuries and nociception. This experiment was conducted using a rat model of L5 spinal nerve ligation (SNL) to observe the effects of progesterone against allodynia development in an 84-day period and to explore the spinal TSPO expression after treatment. Our results demonstrated that a 10-day progesterone treatment started right after injury at a dose of 15 mg/kg/d or more could significantly increase the mechanical thresholds within the 84-day observation period. Moreover, increased TSPO expression was observed in the ipsilateral spinal dorsal horn after SNL surgery and reached its peak on Day 14. A treatment regimen of pharmacological progesterone augmented this spinal TSPO activation and expression before Day 28 and after Day 56. Both the anti-nociception and TSPO activation augment effect of progesterone were completely abolished by 5α-reductase inhibitor finasteride but not progesterone receptor antagonist mifepristone. These results indicate that early repeated administration of progesterone could improve the recovery of neuropathic pain and modulate spinal TSPO activation which were dependent on its 5α-reductase metabolites.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China.
| | - Weiyan Li
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China
| | - Lihua Dai
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Tingting Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjun Liu
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China
| | - Ke Ma
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jianguo Xu
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China
| | - Yi Jin
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China.
| |
Collapse
|
31
|
Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats. Psychopharmacology (Berl) 2014; 231:3375-90. [PMID: 24781516 PMCID: PMC4135012 DOI: 10.1007/s00213-014-3569-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g., mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated reproduction and reproduction-related behaviors (e.g., affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. OBJECTIVES We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. METHODS Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the ventral tegmental area before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP, and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex, and plasma. RESULTS Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain-derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. CONCLUSION Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF.
Collapse
|
32
|
Jayaraman A, Pike CJ. Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons. Mol Cell Endocrinol 2014; 384:52-60. [PMID: 24424444 PMCID: PMC3954450 DOI: 10.1016/j.mce.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/22/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022]
Abstract
Progesterone and other progestagens are used in combination with estrogens for clinical purposes, including contraception and postmenopausal hormone therapy. Progesterone and estrogens have interactive effects in brain, however interactions between synthetic progestagens and 17β-estradiol (E2) in neurons are not well understood. In this study, we investigated the effects of seven clinically relevant progestagens on estrogen receptor (ER) mRNA expression, E2-induced neuroprotection, and E2-induced BDNF mRNA expression. We found that medroxyprogesterone acetate decreased both ERα and ERβ expression and blocked E2-mediated neuroprotection and BDNF expression. Conversely, levonorgestrel and nesterone increased ERα and or ERβ expression, were neuroprotective, and failed to attenuate E2-mediated increases in neuron survival and BDNF expression. Other progestagens tested, including norethindrone, norethindrone acetate, norethynodrel, and norgestimate, had variable effects on the measured endpoints. Our results demonstrate a range of qualitatively different actions of progestagens in cultured neurons, suggesting significant variability in the neural effects of clinically utilized progestagens.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
33
|
Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014; 113:56-69. [DOI: 10.1016/j.pneurobio.2013.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
|
34
|
Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 2014; 62:218-32. [PMID: 24141020 DOI: 10.1016/j.nbd.2013.10.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.
Collapse
Affiliation(s)
- Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Eleonora Salvaneschi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Leonardo Bontempi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Alessandro Petese
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Italy
| | - Daniela Rossi
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Simona Collina
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
35
|
Gargiulo-Monachelli GM, Campos-Melo D, Droppelmann CA, Keller BA, Leystra-Lantz C, De Nicola AF, Gonzalez Deniselle MC, Volkening K, Strong MJ. Expression and cellular localization of the classical progesterone receptor in healthy and amyotrophic lateral sclerosis affected spinal cord. Eur J Neurol 2013; 21:273-80.e11. [DOI: 10.1111/ene.12291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
- G. M. Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry; Instituto de Biología y Medicina Experimental − CONICET and School of Medicine; University of Buenos Aires; Buenos Aires Argentina
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - D. Campos-Melo
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - C. A. Droppelmann
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - B. A. Keller
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
- Department of Pathology; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - C. Leystra-Lantz
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - A. F. De Nicola
- Laboratory of Neuroendocrine Biochemistry; Instituto de Biología y Medicina Experimental − CONICET and School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - M. C. Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry; Instituto de Biología y Medicina Experimental − CONICET and School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - K. Volkening
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - M. J. Strong
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| |
Collapse
|
36
|
De Nicola AF, Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Guennoun R, Schumacher M, Carreras MC, Poderoso JJ. Progesterone protective effects in neurodegeneration and neuroinflammation. J Neuroendocrinol 2013; 25:1095-103. [PMID: 23639063 DOI: 10.1111/jne.12043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 01/03/2023]
Abstract
Progesterone is a neuroprotective, promyelinating and anti-inflammatory factor for the nervous system. Here, we review the effects of progesterone in models of motoneurone degeneration and neuroinflammation. In neurodegeneration of the Wobbler mouse, a subset of spinal cord motoneurones showed increased activity of nitric oxide synthase (NOS), increased intramitochondrial NOS, decreased activity of respiratory chain complexes, and decreased activity and protein expression of Mn-superoxide dismutase type 2 (MnSOD2). Clinically, Wobblers suffered several degrees of motor impairment. Progesterone treatment restored the expression of neuronal markers, decreased the activity of NOS and enhanced complex I respiratory activity and MnSOD2. Long-term treatment with progesterone increased muscle strength, biceps weight and survival. Collectively, these data suggest that progesterone prevented neurodegeneration. To study the effects of progesterone in neuroinflammation, we employed mice with experimental autoimmune encephalomyelitis (EAE). EAE mice spinal cord showed increased mRNA levels of the inflammatory mediators tumour necrosis factor (TNF)α and its receptor TNFR1, the microglial marker CD11b, inducible NOS and the toll-like receptor 4. Progesterone pretreatment of EAE mice blocked the proinflammatory mediators, decreased Iba1+ microglial cells and attenuated clinical signs of EAE. Therefore, reactive glial cells became targets of progesterone anti-inflammatory effects. These results represent a starting point for testing the usefulness of neuroactive steroids in neurological disorders.
Collapse
Affiliation(s)
- A F De Nicola
- Department of Human Biochemistry, Faculty of Medicine, Instituto de Biologia y Medicina Experimental, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
38
|
Meyer M, Gonzalez Deniselle MC, Gargiulo-Monachelli G, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Progesterone attenuates several hippocampal abnormalities of the Wobbler mouse. J Neuroendocrinol 2013; 25:235-43. [PMID: 23157231 DOI: 10.1111/jne.12004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/03/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
It is now recognised that progesterone plays a protective role for diseases of the central nervous system. In the Wobbler mouse, a model of motoneurone degeneration, progesterone treatment prevents spinal cord neuropathology and clinical progression of the disease. However, neuropathological and functional abnormalities have also been discovered in the brain of Wobbler mice and patients with amyotrophic lateral sclerosis. The present study examined the hippocampus of control and afflicted Wobbler mice and the changes in response to progesterone treatment. Mice received either a single progesterone implant (20 mg for 18 days). We found that the hippocampal pathology of the untreated Wobblers involved a decreased expression of brain-derived neurotrophic factor (BDNF) mRNA, decreased astrogliosis in the stratum lucidum, stratum radiatum and stratum lacunosum-moleculare, decreased doublecortin (DCX)-positive neuroblasts in the subgranular zone of the dentate gyrus and a decreased density of GABA immunoreactive hippocampal interneurones and granule cells of the dentate gyrus. Although progesterone did not change the normal parameters of control mice, it attenuated several hippocampal abnormalities in Wobblers. Thus, progesterone increased hippocampal BDNF mRNA expression, decreased glial fibrillary acidic protein-positive astrocytes and increased the number of GABAergic interneurones and granule cells. The number of DCX expressing neuroblasts and immature neurones remained impaired in both progesterone-treated and untreated Wobblers. In conclusion, progesterone treatment exerted beneficial effects on some aspects of hippocampal neuropathology, suggesting its neuroprotective role in the brain, in agreement with previous data obtained in the spinal cord of Wobbler mice.
Collapse
Affiliation(s)
- M Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Numerous studies aimed at identifying the role of estrogen on the brain have used the ovariectomized rodent as the experimental model. And while estrogen intervention in these animals has, at least partially, restored cholinergic, neurotrophin and cognitive deficits seen in the ovariectomized animal, it is worth considering that the removal of the ovaries results in the loss of not only circulating estrogen but of circulating progesterone as well. As such, the various deficits associated with ovariectomy may be attributed to the loss of progesterone as well. Similarly, one must also consider the fact that the human menopause results in the precipitous decline of not just circulating estrogens, but in circulating progesterone as well and as such, the increased risk for diseases such as Alzheimer's disease during the postmenopausal period could also be contributed by this loss of progesterone. In fact, progesterone has been shown to exert neuroprotective effects, both in cell models, animal models and in humans. Here, we review the evidence that supports the neuroprotective effects of progesterone and discuss the various mechanisms that are thought to mediate these protective effects. We also discuss the receptor pharmacology of progesterone's neuroprotective effects and present a conceptual model of progesterone action that supports the complementary effects of membrane-associated and classical intracellular progesterone receptors. In addition, we discuss fundamental differences in the neurobiology of progesterone and the clinically used, synthetic progestin, medroxyprogesterone acetate that may offer an explanation for the negative findings of the combined estrogen/progestin arm of the Women's Health Initiative-Memory Study (WHIMS) and suggest that the type of progestin used may dictate the outcome of either pre-clinical or clinical studies that addresses brain function.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, Center FOR HER, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA.
| | | |
Collapse
|
40
|
Singh M, Su C. Progesterone-induced neuroprotection: factors that may predict therapeutic efficacy. Brain Res 2013; 1514:98-106. [PMID: 23340161 DOI: 10.1016/j.brainres.2013.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022]
Abstract
Both progesterone and estradiol have well-described neuroprotective effects against numerous insults in a variety of cell culture models, animal models and in humans. However, the efficacy of these hormones may depend on a variety of factors, including the type of hormone used (ex. progesterone versus medroxyprogesterone acetate), the duration of the postmenopausal period prior to initiating the hormone intervention, and potentially, the age of the subject. The latter two factors relate to the proposed existence of a "window of therapeutic opportunity" for steroid hormones in the brain. While such a window of opportunity has been described for estrogen, there is a paucity of information to address whether such a window of opportunity exists for progesterone and its related progestins. Here, we review known cellular mechanisms likely to underlie the protective effects of progesterone and furthermore, describe key differences in the neurobiology of progesterone and the synthetic progestin, medroxyprogesterone acetate (MPA). Based on the latter, we offer a model that defines some of the key cellular and molecular players that predict the neuroprotective efficacy of progesterone. Accordingly, we suggest how changes in the expression or function of these cellular and molecular targets of progesterone with age or prolonged duration of hormone withdrawal (such as following surgical or natural menopause) may impact the efficacy of progesterone. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, Center FOR HER, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA.
| | | |
Collapse
|
41
|
Progesterone, brain-derived neurotrophic factor and neuroprotection. Neuroscience 2012; 239:84-91. [PMID: 23036620 DOI: 10.1016/j.neuroscience.2012.09.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 01/06/2023]
Abstract
While the effects of progesterone in the CNS, like those of estrogen, have generally been considered within the context of reproductive function, growing evidence supports its importance in regulating non-reproductive functions including cognition and affect. In addition, progesterone has well-described protective effects against numerous insults in a variety of cell models, animal models and in humans. While ongoing research in several laboratories continues to shed light on the mechanism(s) by which progesterone and its related progestins exert their effects in the CNS, our understanding is still incomplete. Among the key mediators of progesterone's beneficial effects is the family of growth factors called neurotrophins. Here, we review the mechanisms by which progesterone regulates one important member of the neurotrophin family, brain-derived neurotrophic factor (BDNF), and provides support for its pivotal role in the protective program elicited by progesterone in the brain.
Collapse
|
42
|
Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 2012; 226:40-50. [PMID: 23000619 DOI: 10.1016/j.neuroscience.2012.09.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022]
Abstract
In mice with experimental autoimmune encephalomyelitis (EAE) pretreatment with progesterone improves clinical signs and decreases the loss of myelin basic protein (MBP) and proteolipid protein (PLP) measured by immunohistochemistry and in situ hybridization. Presently, we analyzed if progesterone effects in the spinal cord of EAE mice involved the decreased transcription of local inflammatory mediators and the increased transcription of myelin proteins and myelin transcription factors. C57Bl/6 female mice were divided into controls, EAE and EAE receiving progesterone (100mg implant) 7 days before EAE induction. Tissues were collected on day 17 post-immunization. Real time PCR technology demonstrated that progesterone blocked the EAE-induced increase of the proinflammatory mediators tumor necrosis factor alpha (TNFα) and its receptor TNFR1, the microglial marker CD11b and toll-like receptor 4 (TLR4) mRNAs, and increased mRNA expression of PLP and MBP, the myelin transcription factors NKx2.2 and Olig1 and enhanced CC1+oligodendrocyte density respect of untreated EAE mice. Immunocytochemistry demonstrated decreased Iba1+microglial cells. Confocal microscopy demonstrated that TNFα colocalized with glial-fibrillary acidic protein+astrocytes and OX-42+microglial cells. Therefore, progesterone treatment improved the clinical signs of EAE, decreased inflammatory glial reactivity and increased myelination. Data suggest that progesterone neuroprotection involves the modulation of transcriptional events in the spinal cord of EAE mice.
Collapse
|
43
|
Su C, Cunningham RL, Rybalchenko N, Singh M. Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. Endocrinology 2012; 153:4389-400. [PMID: 22778217 PMCID: PMC3423611 DOI: 10.1210/en.2011-2177] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progesterone (P4) is cytoprotective in various experimental models, but our understanding of the mechanisms involved is still incomplete. Our laboratory has implicated brain-derived neurotrophic factor (BDNF) signaling as an important mediator of P4's protective actions. We have shown that P4 increases the expression of BDNF, an effect mediated by the classical P4 receptor (PR), and that the protective effects of P4 were abolished using inhibitors of Trk receptor signaling. In an effort to extend our understanding of the interrelationship between P4 and BDNF signaling, we determined whether P4 influenced BDNF release and examined the role of the classical PR and a putative membrane PR, progesterone receptor membrane component-1 (Pgrmc1), as mediators of this response. Given recent data from our laboratory that supported the role of ERK5 in BDNF release, we also tested whether P4-induced BDNF release was mediated by ERK5. In this study, we found that P4 and the membrane-impermeable P4 (P4-BSA) both induced BDNF release from cultured C6 glial cells and primary astrocytes. Both these cells lack the classical nuclear/intracellular PR but express high levels of membrane-associated PR, including Pgrmc1. Using RNA interference-mediated knockdown of Pgrmc1 expression, we determined that P4-induced BDNF release was dependent on the expression of Pgrmc1, although pharmacological inhibition of the PR failed to alter the effects of P4. Furthermore, the BDNF release elicited by P4 was mediated by ERK5, and not ERK1/2. Collectively, our data describe that P4 elicits an increase in BDNF release from glia via a Pgrmc1-induced ERK5 signaling mechanism and identify Pgrmc1 as a potential therapeutic target for future hormone-based drug development for the treatment of such degenerative diseases as Alzheimer's disease as well as other diseases wherein neurotrophin dysregulation is noted.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, 3400 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA
| | | | | | | |
Collapse
|
44
|
Deniselle MCG, Carreras MC, Garay L, Gargiulo-Monachelli G, Meyer M, Poderoso JJ, De Nicola AF. Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J Neurochem 2012; 122:185-95. [DOI: 10.1111/j.1471-4159.2012.07753.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Kim MJ, Shin HJ, Won KA, Yang KY, Ju JS, Park YY, Park JS, Bae YC, Ahn DK. Progesterone produces antinociceptive and neuroprotective effects in rats with microinjected lysophosphatidic acid in the trigeminal nerve root. Mol Pain 2012; 8:16. [PMID: 22429647 PMCID: PMC3315401 DOI: 10.1186/1744-8069-8-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/19/2012] [Indexed: 12/17/2022] Open
Abstract
Background In our present study, we studied the role of demyelination of the trigeminal nerve root in the development of prolonged nociceptive behavior in the trigeminal territory. Results Under anesthesia, the Sprague-Dawley rats were mounted onto a stereotaxic frame and 3 μL of lysophosphatidic acid (LPA, 1 nmol) was injected into the trigeminal nerve root to produce demyelination. This treatment decreased the air-puff thresholds, persisted until postoperative day 130, and then returned to the preoperative levels 160 days after LPA injection. The LPA-treated rats also showed a significant hyper-responsiveness to pin-prick stimulation. We further investigated the antinociceptive and neuroprotective effects of progesterone in rats undergoing demyelination of the trigeminal nerve root. Progesterone (8, 16 mg/kg/day) was administered subcutaneously, beginning on the operative day, for five consecutive days in the LPA-treated rats. Treatment with progesterone produced significant early anti-allodynic effects and delayed prolonged anti-allodynic effects. The expression of protein zero (P0) and peripheral myelin protein 22 (PMP22) were significantly down-regulated in the trigeminal nerve root on postoperative day 5 following LPA injection. This down-regulation of the P0 and PMP22 levels was blocked by progesterone treatment. Conclusions These results suggest that progesterone produces antinociceptive effects through neuroprotective action in animals with LPA-induced trigeminal neuropathic pain. Moreover, progesterone has potential utility as a novel therapy for trigeminal neuropathic pain relief at an appropriate managed dose and is therefore a possible future treatment strategy for improving the recovery from injury.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Palliser HK, Yates DM, Hirst JJ. Progesterone receptor isoform expression in response to in utero growth restriction in the fetal guinea pig brain. Neuroendocrinology 2012; 96:60-7. [PMID: 22508316 DOI: 10.1159/000335138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 11/11/2011] [Indexed: 11/19/2022]
Abstract
Intra-uterine growth restriction (IUGR) is a significant in utero complication that can have profound effects on brain development including reduced myelination and deficits that can continue into adulthood. Progesterone increases oligodendrocyte proliferation and myelin expression, an action that may depend on the expression of progesterone receptor (PR) isoforms A (PRA) and B (PRB). The objective of this study was to determine the effect of IUGR on PR isoform expression in the brain of male and female fetuses and whether effects were associated with a reduction in myelination. We used a guinea pig model that involves selective reduction in maternal perfusion to the placenta at midgestation (35 days, term 70 days). This resulted in a significant reduction in body weight with marked sparing of brain weight. PRA, PRB and myelin basic protein (MBP) expression were measured in the brains of male and female growth-restricted and control fetuses at late gestation. MBP, as a measure of myelination, was found to decrease in association with IUGR in the CA1 hippocampal region with no change observed in the cortical white matter. There was a marked increase in PRA, PRB and total PR expression in the IUGR fetal brain. Control female fetuses demonstrated significantly higher PRA:PRB ratios than males; however, this sex difference was abolished with IUGR. These data suggest the central nervous system effects of clinical use of progesterone augmentation therapy in late pregnancy should be carefully evaluated. The overall upregulation of PR isoforms in association with IUGR suggests increased progesterone action and a possible neuroprotective mechanism.
Collapse
Affiliation(s)
- H K Palliser
- Mothers and Babies Research Centre and School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia. hannah.palliser @ newcastle.edu.au
| | | | | |
Collapse
|
47
|
Meyer M, Gonzalez Deniselle M, Gargiulo-Monachelli G, Garay L, Schumacher M, Guennoun R, De Nicola A. Progesterone effects on neuronal brain-derived neurotrophic factor and glial cells during progression of Wobbler mouse neurodegeneration. Neuroscience 2012; 201:267-79. [DOI: 10.1016/j.neuroscience.2011.11.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2011] [Accepted: 11/12/2011] [Indexed: 01/09/2023]
|
48
|
Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer's disease. Neurobiol Aging 2011; 32:1964-76. [DOI: 10.1016/j.neurobiolaging.2009.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/21/2022]
|
49
|
Labombarda F, González S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 2011; 231:135-46. [DOI: 10.1016/j.expneurol.2011.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/09/2011] [Accepted: 06/04/2011] [Indexed: 11/26/2022]
|
50
|
Chao OY, Huston JP, von Bothmer A, Pum ME. Chronic progesterone treatment of male rats with unilateral 6-hydroxydopamine lesion of the dorsal striatum exacerbates [corrected] parkinsonian symptoms. Neuroscience 2011; 196:228-36. [PMID: 21888950 DOI: 10.1016/j.neuroscience.2011.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 12/27/2022]
Abstract
Progesterone (PROG) shows neuroprotective effects in numerous lesion models, including a mouse model of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the possible beneficial effects of PROG on the behavioral and neurochemical impairments incurred in the hemiparkinsonian 6-hydroxydopamine (6-OHDA) model have not been investigated. Vehicle or PROG (4 mg/kg or 8 mg/kg) was daily applied over 13 days after unilateral injection of 6-OHDA into the dorsal striatum of male rats. Turning behavior, foot slips on a horizontal grid, and forelimb use during rearing in a cylinder were observed on days 4, 5, 9, 10, 13, and 14 postlesion, and then the brain samples were analyzed by HPLC-EC. Chronic 8 mg/kg of PROG administration increased the DOPAC/dopamine (DA) ratio in the lesioned striatum, ipsiversive turnings, and the number of hind limb slips and decreased the symmetrical use of forelimbs. Thus, contrary to hypothesis, the chronic treatment with PROG exasperated rather than alleviated the motor impairments in the hemiparkinsonian rats. Because previous studies with the MPTP model had shown protective effects when PROG treatment was administrated before the lesion, our results do not rule out such potential neuroprotective action with prelesion PROG treatment. However, our results raise the question of possible negative interactions between PROG and parkinsonian symptoms in males.
Collapse
Affiliation(s)
- O Y Chao
- Center for Behavioral Neuroscience, University of Düsseldorf, Universitaetstr. 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|