1
|
Kim YM, Choi SY, Hwang O, Lee JY. Pyruvate Prevents Dopaminergic Neurodegeneration and Motor Deficits in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Mol Neurobiol 2022; 59:6956-6970. [PMID: 36057709 DOI: 10.1007/s12035-022-03017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopamine(DA)rgic neurons in the substantia nigra of the midbrain, and primarily causes motor symptoms. While the pathological cause of PD remains uncertain, oxidative damage, neuroinflammation, and energy metabolic perturbation have been implicated. Pyruvate has been shown neuroprotective in animal models for many neurological disorders, presumably owing to its potent anti-oxidative, anti-inflammatory, and energy metabolic properties. We therefore investigated whether exogenous pyruvate could also protect nigral DA neurons from degeneration and reverse the associated motor deficits in an animal model of PD using the DA neuron-specific toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was injected four times every 2 h into the peritoneum of mice, which resulted in a massive loss of DA neurons as well as an increase in neuronal death and cytosolic labile zinc overload. There were rises in inflammatory and oxidative responses, a drop in the striatal DA level, and the emergence of PD-related motor deficits. In comparison, when sodium pyruvate was administered intraperitoneally at a daily dose of 250 mg/kg for 7 days starting 2 h after the final MPTP treatment, significant relief in the MPTP-induced neuropathology, neurodegeneration, DA depletion, and motor symptoms was observed. Equiosmolar dose of NaCl had no neuroprotective effect, and lower doses of sodium pyruvate did not have any statistically significant effects. These findings suggest that pyruvate has therapeutic potential for the treatment of PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Zhang X, Yang Y, Guo L, Zhou J, Niu J, Wang P, Qiang Y, Liu K, Wen Y, Zhang L, Wang F. GPER1 Modulates Synaptic Plasticity During the Development of Temporal Lobe Epilepsy in Rats. Neurochem Res 2021; 46:2019-2032. [PMID: 34076791 DOI: 10.1007/s11064-021-03336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
G-protein coupled estrogen receptor 1 (GPER1) is a novel type of estrogen receptor. Several studies have shown that it has an anti-inflammatory action,which plays an important role in remyelination and cognitive ability adjustment. However, whether it is involved in the development of temporal lobe epilepsy (TLE) is still unknown. The present study established a TLE model by intraperitoneal injection of lithium chloride (3 mmol/kg) and pilocarpine (50 mg/kg) in rats to study the effect of GPER1 in the synaptic plasticity during the development of temporal lobe epilepsy. A microinjection cannula was implanted into the lateral ventricle region of rats via a stereotaxic instrument. G-1 is the specific GPER1 agonist and G15 is the specific GPER1 antagonist. The G1 or G15 and Dimethyl sulfoxide were injected into the rat brains in the intervention groups and control group, respectively. After G1 intervention, the learning and memory abilities and hippocampal neuron damage in epileptic rats were significantly improved, while G15 weakened the neuroprotective effect of GPER1. Meanwhile, G1 controlled the abnormal formation of hippocampal mossy fiber sprouting caused by seizures, and participated in the regulation of synaptic plasticity by reducing the expression of Synapsin I and increasing the expression of gephyrin. Inhibitory synapse gephyrin may play a significant role in synaptic plasticity.
Collapse
Affiliation(s)
- Xian Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yang Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Jinyu Zhou
- School of Public Health and Management, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
- Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
3
|
de Melo IS, Dos Santos YMO, Pacheco ALD, Costa MA, de Oliveira Silva V, Freitas-Santos J, de Melo Bastos Cavalcante C, Silva-Filho RC, Leite ACR, Gitaí DGL, Duzzioni M, Sabino-Silva R, Borbely AU, de Castro OW. Role of Modulation of Hippocampal Glucose Following Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2021; 58:1217-1236. [PMID: 33123979 DOI: 10.1007/s12035-020-02173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Maisa Araújo Costa
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Vanessa de Oliveira Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Jucilene Freitas-Santos
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Reginaldo Correia Silva-Filho
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Daniel Góes Leite Gitaí
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - Alexandre Urban Borbely
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
4
|
McDonald T, Hodson MP, Bederman I, Puchowicz M, Borges K. Triheptanoin alters [U- 13C 6]-glucose incorporation into glycolytic intermediates and increases TCA cycling by normalizing the activities of pyruvate dehydrogenase and oxoglutarate dehydrogenase in a chronic epilepsy mouse model. J Cereb Blood Flow Metab 2020; 40:678-691. [PMID: 30890077 PMCID: PMC7026856 DOI: 10.1177/0271678x19837380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triheptanoin is anticonvulsant in several seizure models. Here, we investigated changes in glucose metabolism by triheptanoin interictally in the chronic stage of the pilocarpine mouse epilepsy model. After injection of [U-13C6]-glucose (i.p.), enrichments of 13C in intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were quantified in hippocampal extracts and maximal activities of enzymes in each pathway were measured. The enrichment of 13C glucose in plasma was similar across all groups. Despite this, we observed reductions in incorporation of 13C in several glycolytic intermediates compared to control mice suggesting glucose utilization may be impaired and/or glycogenolysis increased in the untreated interictal hippocampus. Triheptanoin prevented the interictal reductions of 13C incorporation in most glycolytic intermediates, suggesting it increased glucose utilization or - as an additional astrocytic fuel - it decreased glycogen breakdown. In the TCA cycle metabolites, the incorporation of 13C was reduced in the interictal state. Triheptanoin restored the correlation between 13C enrichments of pyruvate relative to most of the TCA cycle intermediates in "epileptic" mice. Triheptanoin also prevented the reductions of hippocampal pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities. Decreased glycogen breakdown and increased glucose utilization and metabolism via the TCA cycle in epileptogenic brain areas may contribute to triheptanoin's anticonvulsant effects.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, Australia
| | - Mark P Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
5
|
McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Front Cell Neurosci 2018; 12:274. [PMID: 30233320 PMCID: PMC6127311 DOI: 10.3389/fncel.2018.00274] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose metabolism generates small amounts of energy, but oxidative glucose metabolism in the mitochondria generates most ATP, in addition to biosynthetic precursors in cells. Energy is crucial for the brain to signal "normally," while loss of energy can contribute to seizure generation by destabilizing membrane potentials and signaling in the chronic epileptic brain. Here we summarize the known biochemical mechanisms that contribute to the disturbance in oxidative glucose metabolism in epilepsy, including decreases in glucose transport, reduced activity of particular steps in the oxidative metabolism of glucose such as pyruvate dehydrogenase activity, and increased anaplerotic need. This knowledge justifies the use of alternative brain fuels as sources of energy, such as ketones, TCA cycle intermediates and precursors as well as even medium chain fatty acids and triheptanoin.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Choi JA, Kim YJ, Seo BR, Koh JY, Yoon YH. Potential Role of Zinc Dyshomeostasis in Matrix Metalloproteinase-2 and -9 Activation and Photoreceptor Cell Death in Experimental Retinal Detachment. ACTA ACUST UNITED AC 2018; 59:3058-3068. [DOI: 10.1167/iovs.17-23502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jeong A Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Jeon Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Tan KN, Simmons D, Carrasco-Pozo C, Borges K. Triheptanoin protects against status epilepticus-induced hippocampal mitochondrial dysfunctions, oxidative stress and neuronal degeneration. J Neurochem 2018; 144:431-442. [PMID: 29222946 DOI: 10.1111/jnc.14275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Triheptanoin, the triglyceride of heptanoate, is anaplerotic (refills deficient tricarboxylic acid cycle intermediates) via the propionyl-CoA carboxylase pathway. It has been shown to be neuroprotective and anticonvulsant in several models of neurological disorders. Here, we investigated the effects of triheptanoin against changes of hippocampal mitochondrial functions, oxidative stress and cell death induced by pilocarpine-induced status epilepticus (SE) in mice. Ten days of triheptanoin pre-treatment did not protect against SE, but it preserved hippocampal mitochondrial functions including state 2, state 3 ADP, state 3 uncoupled respiration, respiration linked to ATP synthesis along with the activities of pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex 24 h post-SE. Triheptanoin prevented the SE-induced reductions of hippocampal mitochondrial superoxide dismutase activity and plasma antioxidant status as well as lipid peroxidation. It also reduced neuronal degeneration in hippocampal CA1 and CA3 regions 3 days after SE. In addition, heptanoate significantly reduced hydrogen peroxide-induced cell death in cultured neurons. In situ hybridization localized the enzymes of the propionyl-CoA carboxylase pathway, specifically Pccα, Pccβ and methylmalonyl-CoA mutase to adult mouse hippocampal pyramidal neurons and dentate granule cells, indicating that anaplerosis may occur in neurons. In conclusion, triheptanoin appears to have anaplerotic and antioxidant effects which contribute to its neuroprotective properties.
Collapse
Affiliation(s)
- Kah Ni Tan
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Qld., Australia
| | - David Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Qld., Australia
| | - Catalina Carrasco-Pozo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile.,Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Qld., Australia
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Qld., Australia
| |
Collapse
|
8
|
Popova I, Malkov A, Ivanov AI, Samokhina E, Buldakova S, Gubkina O, Osypov A, Muhammadiev RS, Zilberter T, Molchanov M, Paskevich S, Zilberter M, Zilberter Y. Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models. Neurobiol Dis 2017; 106:244-254. [PMID: 28709994 DOI: 10.1016/j.nbd.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
Metabolic intervention strategy of epilepsy treatment has been gaining broader attention due to accumulated evidence that hypometabolism, manifested in humans as reduced brain glucose consumption, is a principal factor in acquired epilepsy. Therefore, targeting deficient energy metabolism may be an effective approach for treating epilepsy. To confront this pathology we utilized pyruvate, which besides being an anaplerotic mitochondrial fuel possesses a unique set of neuroprotective properties as it: (i) is a potent reactive oxygen species scavenger; (ii) abates overactivation of Poly [ADP-ribose] polymerase 1 (PARP-1); (iii) facilitates glutamate efflux from the brain; (iv) augments brain glycogen stores; (v) is anti-inflammatory; (vi) prevents neuronal hyperexcitability; and (vii) normalizes the cytosolic redox state. In vivo, chronic oral pyruvate administration completely abolished established epileptic phenotypes in three accepted and fundamentally different rodent acquired epilepsy models. Our study reports metabolic correction by pyruvate as a potentially highly effective treatment of acquired epilepsies.
Collapse
Affiliation(s)
- I Popova
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A Malkov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A I Ivanov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - E Samokhina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S Buldakova
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - O Gubkina
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - A Osypov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - R S Muhammadiev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | | | - M Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S Paskevich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - M Zilberter
- Neuronal Oscillations Lab, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Y Zilberter
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France.
| |
Collapse
|
9
|
Scott GF, Nguyen AQ, Cherry BH, Hollrah RA, Salinas I, Williams AG, Ryou MG, Mallet RT. Featured Article: Pyruvate preserves antiglycation defenses in porcine brain after cardiac arrest. Exp Biol Med (Maywood) 2017; 242:1095-1103. [PMID: 28361585 DOI: 10.1177/1535370217703353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiac arrest (CA) and cardiocerebral resuscitation (CCR)-induced ischemia-reperfusion imposes oxidative and carbonyl stress that injures the brain. The ischemic shift to anaerobic glycolysis, combined with oxyradical inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), provokes excessive formation of the powerful glycating agent, methylglyoxal. The glyoxalase (GLO) system, comprising the enzymes glyoxalase 1 (GLO1) and GLO2, utilizes reduced glutathione (GSH) supplied by glutathione reductase (GR) to detoxify methylglyoxal resulting in reduced protein glycation. Pyruvate, a natural antioxidant that augments GSH redox status, could sustain the GLO system in the face of ischemia-reperfusion. This study assessed the impact of CA-CCR on the cerebral GLO system and pyruvate's ability to preserve this neuroprotective system following CA. Domestic swine were subjected to 10 min CA, 4 min closed-chest CCR, defibrillation and 4 h recovery, or to a non-CA sham protocol. Sodium pyruvate or NaCl control was infused (0.1 mmol/kg/min, intravenous) throughout CCR and the first 60 min recovery. Protein glycation, GLO1 content, and activities of GLO1, GR, and GAPDH were analyzed in frontal cortex biopsied at 4 h recovery. CA-CCR produced marked protein glycation which was attenuated by pyruvate treatment. GLO1, GR, and GAPDH activities fell by 86, 55, and 30%, respectively, after CA-CCR with NaCl infusion. Pyruvate prevented inactivation of all three enzymes. CA-CCR sharply lowered GLO1 monomer content with commensurate formation of higher molecular weight immunoreactivity; pyruvate preserved GLO1 monomers. Thus, ischemia-reperfusion imposed by CA-CCR disabled the brain's antiglycation defenses. Pyruvate preserved these enzyme systems that protect the brain from glycation stress. Impact statement Recent studies have demonstrated a pivotal role of protein glycation in brain injury. Methylglyoxal, a by-product of glycolysis and a powerful glycating agent in brain, is detoxified by the glutathione-catalyzed glyoxalase (GLO) system, but the impact of cardiac arrest (CA) and cardiocerebral resuscitation (CCR) on the brain's antiglycation defenses is unknown. This study in a swine model of CA and CCR demonstrated for the first time that the intense cerebral ischemia-reperfusion imposed by CA-resuscitation disabled glyoxalase-1 and glutathione reductase (GR), the source of glutathione for methylglyoxal detoxification. Moreover, intravenous administration of pyruvate, a redox-active intermediary metabolite and antioxidant in brain, prevented inactivation of glyoxalase-1 and GR and blunted protein glycation in cerebral cortex. These findings in a large mammal are first evidence of GLO inactivation and the resultant cerebral protein glycation after CA-resuscitation, and identify novel actions of pyruvate to minimize protein glycation in postischemic brain.
Collapse
Affiliation(s)
- Gary F Scott
- 1 Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Anh Q Nguyen
- 1 Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brandon H Cherry
- 1 Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Roger A Hollrah
- 1 Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Isabella Salinas
- 2 Department of Biological Sciences, St. Mary's University, San Antonio, TX 78228, USA
| | - Arthur G Williams
- 1 Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Myoung-Gwi Ryou
- 3 Department of Medical Laboratory Sciences, Tarleton State University, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- 1 Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Sul JW, Kim TY, Yoo HJ, Kim J, Suh YA, Hwang JJ, Koh JY. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate. Arch Pharm Res 2016; 39:1151-9. [DOI: 10.1007/s12272-016-0814-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/05/2016] [Indexed: 01/12/2023]
|
11
|
Moro N, Ghavim SS, Harris NG, Hovda DA, Sutton RL. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury. Brain Res 2016; 1642:270-277. [PMID: 27059390 DOI: 10.1016/j.brainres.2016.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
Abstract
Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment.
Collapse
Affiliation(s)
- Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Sima S Ghavim
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Neil G Harris
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - David A Hovda
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Richard L Sutton
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| |
Collapse
|
12
|
Wang X, Hu X, Yang Y, Takata T, Sakurai T. Systemic pyruvate administration markedly reduces neuronal death and cognitive impairment in a rat model of Alzheimer's disease. Exp Neurol 2015; 271:145-54. [DOI: 10.1016/j.expneurol.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/22/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
|
13
|
Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology. Neurobiol Dis 2015; 81:214-24. [DOI: 10.1016/j.nbd.2014.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/27/2014] [Accepted: 11/19/2014] [Indexed: 01/31/2023] Open
|
14
|
Kim HN, Kim TY, Yoon YH, Koh JY. Pyruvate and cilostazol protect cultured rat cortical pericytes against tissue plasminogen activator (tPA)-induced cell death. Brain Res 2015; 1628:317-326. [PMID: 26111647 DOI: 10.1016/j.brainres.2015.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/19/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Since even a brief ischemia can cause permanent brain damage, rapid restoration of blood flow is critical to limiting damage. Although intravenous tPA during the acute stage is the treatment of choice for achieving reperfusion, this treatment is sometimes associated with brain hemorrhage. Agents that reduce tPA-related bleeding risk may help expand its therapeutic window. This study assessed whether zinc dyshomeostasis underlies the toxic effect of tPA on brain vascular pericytes; whether pyruvate, an inhibitor of zinc toxicity, protects pericytes against tPA-induced cell death; and whether cilostazol, which protects pericytes against tPA-induced cell death, affects zinc dyshomeostasis associated with tPA toxicity. Cultured pericytes from newborn rat brains were treated with 10-200 μg/ml tPA for 24 h, inducing cell death in a concentration-dependent manner. tPA-induced cell death was preceded by increases in intracellular free zinc levels, and was substantially attenuated by plasminogen activator inhibitor-1 (PAI-1) or TPEN. Pyruvate completely blocked direct zinc toxicity and tPA-induced pericyte cell death. Both cAMP and cilostazol, a PDE3 inhibitor that attenuates tPA-induced pericyte cell death in vitro and tPA-induced brain hemorrhage in vivo, reduced zinc- and tPA-induced pericyte cell death, suggesting that zinc dyshomeostasis may be targeted by cilostazol in tPA toxicity. These findings show that tPA-induced pericyte cell death may involve zinc dyshomeostasis, and that pyruvate and cilostazol attenuate tPA-induced cell death by reducing the toxic cascade triggered by zinc dyshomeostasis. Since pyruvate is an endogenous metabolite and cilostazol is an FDA-approved drug, in vivo testing of both as protectors against tPA-induced brain hemorrhage may be warranted. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Ha Na Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tae-Youn Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jae-Young Koh
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
15
|
Byun HR, Choi JA, Koh JY. The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics 2015; 6:1748-57. [PMID: 25054451 DOI: 10.1039/c4mt00143e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metallothionein-3 (Mt3), a zinc (Zn)-regulatory protein mainly expressed in the central nervous system, may contribute to oxidative cell death. In the present study, we examined the possible role of Mt3 in streptozotocin (STZ)-induced islet cell death and consequent hyperglycemia. Quantitative real-time polymerase chain reaction (RT-PCR) confirmed that islet cells expressed Mt3 mRNA. In all cases, wild-type (WT) mice injected with STZ exhibited hyperglycemia 7-21 days later. In stark contrast, all Mt3-null mice remained normoglycemic following STZ injection. STZ treatment increased free Zn levels in islet cells and induced their death in WT mice, but failed to do so in Mt3-null mice. Consistent with this, cultured Mt3-null islet cells exhibited striking resistance to STZ toxicity. Notably, PDE3a (phosphodiesterase 3A) was downregulated in islets of Mt3-null mice compared to those of WT mice, and was not induced by STZ treatment. Moreover, the PDE3 inhibitor cilostazol reduced islet cell death, likely by increasing cAMP levels, further supporting a role for PDE3 in STZ-induced islet cell death. Collectively, these results demonstrate that Mt3 may act through PDE3a to play a key role in Zn dyshomeostasis and cell death in STZ-treated islets.
Collapse
Affiliation(s)
- Hyae-Ran Byun
- Neural Injury Research Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
16
|
Choi JA, Hwang JU, Yoon YH, Koh JY. Methallothionein-3 contributes to vascular endothelial growth factor induction in a mouse model of choroidal neovascularization. Metallomics 2014; 5:1387-96. [PMID: 23962989 DOI: 10.1039/c3mt00150d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we investigated possible roles of the zinc (Zn)-binding protein metallothionein-3 (MT3) and cellular Zn in a mouse model of laser-induced choroidal neovascularization (CNV) using wild-type (WT) and MT3-knockout (KO) mice. Quantitative RT-PCR was used for the detection of MT3 mRNA. CNV was induced in mice between 8 and 12 weeks of age by disrupting the Bruch's membrane using an argon laser. Fundus photography and fluorescein angiography (FA) were performed 2 weeks following laser photocoagulation. The possible connection between MT3 and vascular endothelial growth factor (VEGF) expression was explored by quantifying VEGF levels in WT and MT3-KO mouse retinas by enzyme-linked immunosorbent assay. The role of Zn in VEGF expression was tested in WT and MT3-KO cells treated with pyrithione, with or without additional Zn, using immunoblotting and fluorescence photomicrography. Following laser-treatment, MT3-KO mice exhibited substantially smaller areas of CNV compared to WT mice. In addition, retinal angiograms revealed less severe fluorescein leakage in MT3-KO mice than in WT mice. On day 14 following the induction of CNV, VEGF expression was markedly increased in WT mice, but remained unchanged in MT3-KO mice. Consistent with the possible involvement of Zn released from MT3, raising intracellular Zn levels increased VEGF levels and activated its receptor, Flk-1, in both WT and MT3-KO retinal cells. Present results demonstrated that neural retinal cells express high levels of MT3, which might play a role in the process of CNV development. Moreover, Zn released from MT3 may contribute to VEGF induction.
Collapse
Affiliation(s)
- Jeong A Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
17
|
Nguyen AQ, Cherry BH, Scott GF, Ryou MG, Mallet RT. Erythropoietin: powerful protection of ischemic and post-ischemic brain. Exp Biol Med (Maywood) 2014; 239:1461-75. [PMID: 24595981 DOI: 10.1177/1535370214523703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10-15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO's membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain's resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Brandon H Cherry
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Gary F Scott
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Myoung-Gwi Ryou
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Robert T Mallet
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| |
Collapse
|
18
|
McCall T, Weil ZM, Nacher J, Bloss EB, El Maarouf A, Rutishauser U, McEwen BS. Depletion of polysialic acid from neural cell adhesion molecule (PSA-NCAM) increases CA3 dendritic arborization and increases vulnerability to excitotoxicity. Exp Neurol 2013; 241:5-12. [PMID: 23219884 PMCID: PMC3570583 DOI: 10.1016/j.expneurol.2012.11.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/26/2022]
Abstract
Chronic immobilization stress (CIS) shortens apical dendritic trees of CA3 pyramidal neurons in the hippocampus of the male rat, and dendritic length may be a determinant of vulnerability to stress. Expression of the polysialylated form of neural cell adhesion molecule (PSA-NCAM) in the hippocampal formation is increased by stress, while PSA removal by Endo-neuraminidase-N (endo-N) is known to cause the mossy fibers to defasciculate and synapse ectopically in their CA3 target area. We show here that enzymatic removal of PSA produced a remarkable expansion of dendritic arbors of CA3 pyramidal neurons, with a lesser effect in CA1. This expansion eclipsed the CIS-induced shortening of CA3 dendrites, with the expanded dendrites of both no-stress-endo-N and CIS-endo-N rats being longer than those in no-stress-control rats and much longer than those in CIS-control rats. As predicted by the hypothesis that endo-N-induced dendritic expansion might increase vulnerability to excitotoxic challenge, systemic injection with kainic acid, showed markedly increased neuronal degeneration, as assessed by fluorojade B histochemistry, in rats that had been treated with endo-N compared to vehicle-treated rats throughout the entire hippocampal formation. PSA removal also exacerbated the CIS-induced reduction in body weight and abolished effects of CIS on NPY and NR2B mRNA levels. These findings support the hypothesis that CA3 arbor plasticity plays a protective role during prolonged stress and clarify the role of PSA-NCAM in stress-induced dendritic plasticity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Body Mass Index
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Dendrites/drug effects
- Dendrites/pathology
- Dendrites/ultrastructure
- Disease Models, Animal
- Excitatory Amino Acid Agonists/toxicity
- Fluoresceins
- Gene Expression Regulation/drug effects
- Kainic Acid/toxicity
- Male
- Metalloendopeptidases/pharmacology
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Neural Cell Adhesion Molecules/drug effects
- Neural Cell Adhesion Molecules/metabolism
- Organic Chemicals
- Pyramidal Cells/drug effects
- Pyramidal Cells/metabolism
- Pyramidal Cells/pathology
- Pyramidal Cells/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Sialic Acids/deficiency
- Silver Staining
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Trudy McCall
- Laboratory of Neuroendocrinology, The Rockefeller University, New York NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kovac S, Abramov AY, Walker MC. Energy depletion in seizures: anaplerosis as a strategy for future therapies. Neuropharmacology 2012; 69:96-104. [PMID: 22659085 DOI: 10.1016/j.neuropharm.2012.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023]
Abstract
Seizure activity can lead to energy failure and neuronal injury, resulting in neurological and cognitive sequelae. Moreover, mutations affecting genes encoding for proteins that maintain energy homeostasis within the cell often result in an epileptic phenotype, implying that energy failure can contribute to epileptogenesis. Indeed, there is evidence to indicate that the efficacy of the ketogenic diet, a treatment for refractory epilepsy, can be partly explained by its effect on increasing energetic substrates. The ATP level, reflecting the energy level of a cell, is maintained by the potential gradient across the mitochondrial membrane. This potential gradient is maintained by NADH/H(+) equivalents, produced by reactions within the tricarboxylic acid cycle (TCA-cycle). Anaplerosis, the replenishment of TCA-cycle substrates, therefore represents an appealing strategy to address energy failure such as occurs in seizures. There is accumulating evidence that pyruvate, a classical anaplerotic substrate, has seizure suppressive effects and protects against seizure induced cell death. This review summarizes the evidence for the contribution of TCA cycle deficits in generating seizures. We highlight the role for TCA substrate supplementation in protecting against seizures and seizure induced cell death, and propose that these are important targets for future translational research addressing energy depletion in seizures. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| | | | | |
Collapse
|
20
|
Kovac S, Domijan AM, Walker MC, Abramov AY. Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J Cell Sci 2012; 125:1796-806. [PMID: 22328526 DOI: 10.1242/jcs.099176] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The mechanisms underlying neuronal death following excessive activity such as occurs during prolonged seizures are unclear, but mitochondrial dysfunction has been hypothesised to play a role. Here, we tested this with fluorescence imaging techniques in rat glio-neuronal neocortical co-cultures using low Mg(2+) levels to induce seizure-like activity. Glutamate activation of NMDA receptors resulted in Ca(2+) oscillations in neurons and a sustained depolarisation of the mitochondrial membrane potential, which was cyclosporine A sensitive, indicating mitochondrial permeability and transition pore opening. It was also dependent on glutamate release and NMDA receptor activation, because depolarisation was not observed after depleting vesicular glutamate with vacuolar-type H(+)-ATPase concanamycin A or blocking NMDA receptors with APV. Neuronal ATP levels in soma and dendrites decreased significantly during prolonged seizures and correlated with the frequency of the oscillatory Ca(2+) signal, indicative of activity-dependent ATP consumption. Blocking mitochondrial complex I, complex V or uncoupling mitochondrial oxidative phosphorylation under low-Mg(2+) conditions accelerated activity-dependent neuronal ATP consumption. Neuronal death increased after two and 24 hours of low Mg(2+) levels compared with control treatment, and was reduced by supplementation with the mitochondrial complex I substrate pyruvate. These findings demonstrate a crucial role for mitochondrial dysfunction in seizure-activity-induced neuronal death, and that strategies aimed at redressing this are neuroprotective.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, London, UK
| | | | | | | |
Collapse
|
21
|
Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 2010; 3:30. [PMID: 20974010 PMCID: PMC2988061 DOI: 10.1186/1756-6606-3-30] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/18/2022] Open
Abstract
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Center, Department of Neurology, Asan Institute for Life Science, University of Ulsan, College of Medicine, Seoul 138-736, Korea
| | | |
Collapse
|
22
|
Fukushima M, Lee SM, Moro N, Hovda DA, Sutton RL. Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury. J Neurotrauma 2010; 26:1095-110. [PMID: 19594384 DOI: 10.1089/neu.2008.0771] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study determined the effects of intraperitoneal sodium pyruvate (SP) treatment on the levels of circulating fuels and on cerebral microdialysis levels of glucose (MD(glc)), lactate (MD(lac)), and pyruvate (MD(pyr)), and the effects of SP treatment on neuropathology after left cortical contusion injury (CCI) in rats. SP injection (1000 mg/kg) 5 min after sham injury (Sham-SP) or CCI (CCI-SP) significantly increased arterial pyruvate (p < 0.005) and lactate (p < 0.001) compared to that of saline-treated rats with CCI (CCI-Sal). Serum glucose also increased significantly in CCI-SP compared to that in CCI-Sal rats (p < 0.05), but not in Sham-SP rats. MD(pyr) was not altered after CCI-Sal, whereas MD(lac) levels within the cerebral cortex significantly increased bilaterally (p < 0.05) and those for MD(glc) decreased bilaterally (p < 0.05). MD(pyr) levels increased significantly in both Sham-SP and CCI-SP rats (p < 0.05 vs. CCI-Sal) and were higher in left/injured cortex of the CCI-SP group (p < 0.05 vs. sham-SP). In CCI-SP rats the contralateral MD(lac) decreased below CCI-Sal levels (p < 0.05) and the ipsilateral MD(glc) levels exceeded those of CCI-Sal rats (p < 0.05). Rats with a single low (500 mg/kg) or high dose (1000 mg/kg) SP treatment had fewer damaged cortical cells 6 h post-CCI than did saline-treated rats (p < 0.05), but three hourly injections of SP (1000 mg/kg) were needed to significantly reduce contusion volume 2 weeks after CCI. Thus, a single intraperitoneal SP treatment increases circulating levels of three potential brain fuels, attenuates a CCI-induced reduction in extracellular glucose while increasing extracellular levels of pyruvate, but not lactate, and can attenuate cortical cell damage occurring within 6 h of injury. Enduring (2 week) neuronal protection was achieved only with multiple SP treatments within the first 2 h post-CCI, perhaps reflecting the need for additional fuel throughout the acute period of increased metabolic demands induced by CCI.
Collapse
Affiliation(s)
- Masamichi Fukushima
- Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7039, USA
| | | | | | | | | |
Collapse
|
23
|
Moro N, Sutton RL. Beneficial effects of sodium or ethyl pyruvate after traumatic brain injury in the rat. Exp Neurol 2010; 225:391-401. [PMID: 20670624 DOI: 10.1016/j.expneurol.2010.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/02/2010] [Accepted: 07/15/2010] [Indexed: 11/27/2022]
Abstract
Sodium pyruvate (SP) treatment initiated within 5 min post-injury is neuroprotective in a rat model of unilateral cortical contusion injury (CCI). The current studies examined: (1) effects of delayed SP treatments (1000 mg/kg, i.p., at 1, 12 and 24h), (2) effects of single (1h) or multiple (1, 12 and 24h) ethyl pyruvate treatments (EP; at 20 or 40 mg/kg, i.p.), and (3) mechanisms of action for pyruvate effects after CCI. In Experiment 1, both SP and EP treatment(s) significantly reduced the number of dead/dying cells in the ipsilateral hippocampus (dentate hilus+CA3(c) and/or CA3(a-b) regions) at 72 h post-CCI. Pyruvate treatment(s) attenuated CCI-induced reductions of cerebral cytochrome oxidase activity at 7 2h, significantly improving activity in peri-contusional cortex after multiple SP or EP treatments. Optical density measures of ipsilateral CD11b immuno-staining were significantly increased 72 h post-CCI, but these measures of microglia activation were not different from sham injury values in SP and EP groups with three post-CCI treatments. In Experiment 2, three treatments (1, 12 and 24h) of SP (1000 mg/kg) or EP (40 mg/kg) significantly improved recovery of beam-walking and neurological scores in the first 3 weeks after CCI, and EP treatments significantly improved spatial working memory 1 week post-CCI. Ipsilateral CA3(b) neuronal loss, but not cortical tissue loss, was significantly reduced 1 month post-CCI with pyruvate treatments begun 1h post-CCI. Thus, delayed pyruvate treatments after CCI are neuroprotective and improve neurobehavioral recovery; these effects may be mediated by improved metabolism and reduced inflammation.
Collapse
Affiliation(s)
- Nobuhiro Moro
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
24
|
Lee HN, Jeon GS, Kim DW, Cho IH, Cho SS. Expression of adenomatous polyposis coli protein in reactive astrocytes in hippocampus of kainic acid-induced rat. Neurochem Res 2009; 35:114-21. [PMID: 19655246 DOI: 10.1007/s11064-009-0036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
The adenomatous polyposis coli gene (APC) was initially identified through its link to colon cancer. It is associated with the regulation of cell cycle progression, survival, and differentiation of normal tissues. Recent studies have demonstrated that APC is also expressed in the adult brain at high levels. However, its role in glial cells under pathological progression remains unclear. In this study, we evaluated the expression of APC and its association with beta-catenin signaling pathway, following the induction of an excitotoxic lesion by kainic acid (KA) injection, which cause pyramidal cell degeneration. APC was predominantly present in oligodendrocytes in the normal brain, but was specifically associated with activated astrocytes in the KA-treated brain. Our quantitative analysis revealed that APC significantly increased from 1 day post lesion (PI), reached peak values at 3 days PI, and decreased thereafter. The phospho-GSK3beta levels also showed similar spatiotemporal patterns while beta-catenin expression was reduced at 1 and then increasingly returned to normal levels at 3, 7 days PI. For the first time, our data demonstrate the injury-induced astrocytic changes in the levels of APC, GSK3beta, and beta-catenin in vivo, which may actively be participate in cell adhesion and in the signaling pathway regulating cell survivals during brain insults.
Collapse
Affiliation(s)
- Ha Na Lee
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
25
|
Kim J, Kim TY, Hwang JJ, Lee JY, Shin JH, Gwag BJ, Koh JY. Accumulation of labile zinc in neurons and astrocytes in the spinal cords of G93A SOD-1 transgenic mice. Neurobiol Dis 2009; 34:221-9. [DOI: 10.1016/j.nbd.2009.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 10/21/2022] Open
|