1
|
Shamanskiy V, Mikhailova AA, Tretiakov EO, Ushakova K, Mikhailova AG, Oreshkov S, Knorre DA, Ree N, Overdevest JB, Lukowski SW, Gostimskaya I, Yurov V, Liou CW, Lin TK, Kunz WS, Reymond A, Mazunin I, Bazykin GA, Fellay J, Tanaka M, Khrapko K, Gunbin K, Popadin K. Secondary structure of the human mitochondrial genome affects formation of deletions. BMC Biol 2023; 21:103. [PMID: 37158879 PMCID: PMC10166460 DOI: 10.1186/s12915-023-01606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.
Collapse
Affiliation(s)
- Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alina A Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Kristina Ushakova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Sergei Oreshkov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Jonathan B Overdevest
- Department of Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Irina Gostimskaya
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Valerian Yurov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Experimental Epileptology and Cognition Research, University Bonn, Bonn, Germany
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Georgii A Bazykin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8636, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Clinical Laboratory, IMS Miyoshi General Hospital, Fujikubo, Miyoshi-Machi, Iruma, Saitama Prefecture, 974-3354-0041, Japan
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Hoitzing H, Gammage PA, Haute LV, Minczuk M, Johnston IG, Jones NS. Energetic costs of cellular and therapeutic control of stochastic mitochondrial DNA populations. PLoS Comput Biol 2019; 15:e1007023. [PMID: 31242175 PMCID: PMC6615642 DOI: 10.1371/journal.pcbi.1007023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 07/09/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
The dynamics of the cellular proportion of mutant mtDNA molecules is crucial for mitochondrial diseases. Cellular populations of mitochondria are under homeostatic control, but the details of the control mechanisms involved remain elusive. Here, we use stochastic modelling to derive general results for the impact of cellular control on mtDNA populations, the cost to the cell of different mtDNA states, and the optimisation of therapeutic control of mtDNA populations. This formalism yields a wealth of biological results, including that an increasing mtDNA variance can increase the energetic cost of maintaining a tissue, that intermediate levels of heteroplasmy can be more detrimental than homoplasmy even for a dysfunctional mutant, that heteroplasmy distribution (not mean alone) is crucial for the success of gene therapies, and that long-term rather than short intense gene therapies are more likely to beneficially impact mtDNA populations.
Collapse
Affiliation(s)
- Hanne Hoitzing
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Payam A. Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Iain G. Johnston
- Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
- Alan Turing Institute, London, United Kingdom
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Lakshmanan LN, Yee Z, Ng LF, Gunawan R, Halliwell B, Gruber J. Clonal expansion of mitochondrial DNA deletions is a private mechanism of aging in long-lived animals. Aging Cell 2018; 17:e12814. [PMID: 30043489 PMCID: PMC6156498 DOI: 10.1111/acel.12814] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Disruption of mitochondrial metabolism and loss of mitochondrial DNA (mtDNA) integrity are widely considered as evolutionarily conserved (public) mechanisms of aging (López-Otín et al., Cell, 153, 2013 and 1194). Human aging is associated with loss in skeletal muscle mass and function (Sarcopenia), contributing significantly to morbidity and mortality. Muscle aging is associated with loss of mtDNA integrity. In humans, clonally expanded mtDNA deletions colocalize with sites of fiber breakage and atrophy in skeletal muscle. mtDNA deletions may therefore play an important, possibly causal role in sarcopenia. The nematode Caenorhabditis elegans also exhibits age-dependent decline in mitochondrial function and a form of sarcopenia. However, it is unclear if mtDNA deletions play a role in C. elegans aging. Here, we report identification of 266 novel mtDNA deletions in aging nematodes. Analysis of the mtDNA mutation spectrum and quantification of mutation burden indicates that (a) mtDNA deletions in nematode are extremely rare, (b) there is no significant age-dependent increase in mtDNA deletions, and (c) there is little evidence for clonal expansion driving mtDNA deletion dynamics. Thus, mtDNA deletions are unlikely to drive the age-dependent functional decline commonly observed in C. elegans. Computational modeling of mtDNA dynamics in C. elegans indicates that the lifespan of short-lived animals such as C. elegans is likely too short to allow for significant clonal expansion of mtDNA deletions. Together, these findings suggest that clonal expansion of mtDNA deletions is likely a private mechanism of aging predominantly relevant in long-lived animals such as humans and rhesus monkey and possibly in rodents.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Zhuangli Yee
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - Rudiyanto Gunawan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Barry Halliwell
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Jan Gruber
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| |
Collapse
|
4
|
Ma H, Lee Y, Hayama T, Van Dyken C, Marti-Gutierrez N, Li Y, Ahmed R, Koski A, Kang E, Darby H, Gonmanee T, Park Y, Wolf DP, Jai Kim C, Mitalipov S. Germline and somatic mtDNA mutations in mouse aging. PLoS One 2018; 13:e0201304. [PMID: 30040856 PMCID: PMC6057648 DOI: 10.1371/journal.pone.0201304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset diseases in humans. Here, we asked if somatic mtDNA mutations are also associated with aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2-34 months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably, no acquired somatic mutations were detected in tested tissues. However, we identified several non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inherited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased significantly with age implicating involvement in premature aging. Our results suggest that, in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging process in wt mice.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Yeonmi Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Younjung Park
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Don P. Wolf
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chong Jai Kim
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
5
|
Resolving the Enigma of the Clonal Expansion of mtDNA Deletions. Genes (Basel) 2018; 9:genes9030126. [PMID: 29495484 PMCID: PMC5867847 DOI: 10.3390/genes9030126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are cell organelles that are special since they contain their own genetic material in the form of mitochondrial DNA (mtDNA). Damage and mutations of mtDNA are not only involved in several inherited human diseases but are also widely thought to play an important role during aging. In both cases, point mutations or large deletions accumulate inside cells, leading to functional impairment once a certain threshold has been surpassed. In most cases, it is a single type of mutant that clonally expands and out-competes the wild type mtDNA, with different mutant molecules being amplified in different cells. The challenge is to explain where the selection advantage for the accumulation comes from, why such a large range of different deletions seem to possess this advantage, and how this process can scale to species with different lifespans such as those of rats and man. From this perspective, we provide an overview of current ideas, present an update of our own proposal, and discuss the wider relevance of the phenomenon for aging.
Collapse
|
6
|
Antipova VN, Lomaeva MG, Zyrina NV. Mitochondrial DNA deletions in tissues of mice after ionizing radiation exposure. Int J Radiat Biol 2018; 94:282-288. [DOI: 10.1080/09553002.2018.1419299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Valeriya N. Antipova
- Laboratory of Biophysics of Active Media, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Milena G. Lomaeva
- Laboratory of Radiation Molecular Biology, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nadezhda V. Zyrina
- Laboratory of Crystallophysics and X-ray Research, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
7
|
DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 2017; 33:89-104. [PMID: 27143693 DOI: 10.1016/j.arr.2016.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
Abstract
As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined.
Collapse
Affiliation(s)
- Karen L DeBalsi
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Kirsten E Hoff
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Kraytsberg Y, Guo X, Tao S, Kuznetsov A, MacLean C, Ehrlich D, Feldman E, Dombrovsky I, Yang D, Cloutier GJ, Castaneda-Sceppa C, Khrapko K, Khrapko K. Quantitation of Mitochondrial DNA Deletions Via Restriction Digestion/Long-Range Single-Molecule PCR. Methods Mol Biol 2016; 1351:33-46. [PMID: 26530673 DOI: 10.1007/978-1-4939-3040-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantification of deletions in mtDNA is a long-standing problem in mutational analysis. We describe here an approach that combines the power of single-molecule PCR of the entire mitochondrial genome with the enrichment of the deletions by restriction digestion. This approach is indispensable if information about wide range of deletion types in a sample is critical, such as in studies concerning distribution of deletion breakpoints (as opposed to approaches where fraction of a single deletion or a limited set of deletions is used as a proxy for total deletion load). Because deletions in a sample are quantified almost exhaustively, the other important application of this approach involves studies where only small amounts of tissue, such as biopsies, are available.
Collapse
Affiliation(s)
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Saisai Tao
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Evan Feldman
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Deye Yang
- Heart Centre, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Gregory J Cloutier
- Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | | | - Konstantin Khrapko
- Department of Biology, Northeastern University, 300 Huntington Avenue, Boston, MA, 02115, USA.
| | - Konstantin Khrapko
- Department of Biology, Northeastern University, 300 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Campbell G, Krishnan KJ, Deschauer M, Taylor RW, Turnbull DM. Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle. Hum Mol Genet 2014; 23:4612-20. [PMID: 24740879 PMCID: PMC4119413 DOI: 10.1093/hmg/ddu176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/07/2023] Open
Abstract
Large-scale mitochondrial DNA (mtDNA) deletions are an important cause of mitochondrial disease, while somatic mtDNA deletions cause focal respiratory chain deficiency associated with ageing and neurodegenerative disorders. As mtDNA deletions only cause cellular pathology at high levels of mtDNA heteroplasmy, an mtDNA deletion must accumulate to levels which can result in biochemical dysfunction-a process known as clonal expansion. A number of hypotheses have been proposed for clonal expansion of mtDNA deletions, including a replicative advantage for deleted mitochondrial genomes inferred by their smaller size--implying that the largest mtDNA deletions would also display a replicative advantage over smaller mtDNA deletions. We proposed that in muscle fibres from patients with mtDNA maintenance disorders, which lead to the accumulation of multiple mtDNA deletions, we would observe the largest mtDNA deletions spreading the furthest longitudinally through individual muscle fibres by means of a greater rate of clonal expansion. We characterized mtDNA deletions in patients with mtDNA maintenance disorders from a range of 'large' and 'small' cytochrome c oxidase (COX)-deficient regions in skeletal muscle fibres. We measured the size of clonally expanded deletions in 62 small and 60 large individual COX-deficient f regions. No significant difference was observed in individual patients or in the total dataset (small fibre regions mean 6.59 kb--large fibre regions mean 6.51 kb). Thus no difference existed in the rate of clonal expansion throughout muscle fibres between mtDNA deletions of different sizes; smaller mitochondrial genomes therefore do not appear to have an inherent replicative advantage in human muscle.
Collapse
Affiliation(s)
- Georgia Campbell
- Wellcome Trust Centre for Mitochondrial Research, and Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Kim J Krishnan
- Wellcome Trust Centre for Mitochondrial Research, and Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube Str. 40, Halle (Saale) D-06120, Germany
| | | | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, and Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Popadin K, Safdar A, Kraytsberg Y, Khrapko K. When man got his mtDNA deletions? Aging Cell 2014; 13:579-82. [PMID: 24894296 PMCID: PMC4326951 DOI: 10.1111/acel.12231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 11/28/2022] Open
Abstract
Somatic mtDNA mutations and deletions in particular are known to clonally expand within cells, eventually reaching detrimental intracellular concentrations. The possibility that clonal expansion is a slow process taking a lifetime had prompted an idea that founder mutations of mutant clones that cause mitochondrial dysfunction in the aged tissue might have originated early in life. If, conversely, expansion was fast, founder mutations should predominantly originate later in life. This distinction is important: indeed, from which mutations should we protect ourselves – those of early development/childhood or those happening at old age? Recently, high-resolution data describing the distribution of mtDNA deletions have been obtained using a novel, highly efficient method (Taylor et al., 2014). These data have been interpreted as supporting predominantly early origin of founder mutations. Re-analysis of the data implies that the data actually better fit mostly late origin of founders, although more research is clearly needed to resolve the controversy.
Collapse
Affiliation(s)
| | - Adeel Safdar
- Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA USA
| | | | - Konstantin Khrapko
- Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA USA
| |
Collapse
|
11
|
Taylor SD, Ericson NG, Burton JN, Prolla TA, Silber JR, Shendure J, Bielas JH. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell 2014; 13:29-38. [PMID: 23911137 PMCID: PMC4068027 DOI: 10.1111/acel.12146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2013] [Indexed: 12/24/2022] Open
Abstract
Due largely to the inability to accurately quantify and characterize de novo deletion events, the mechanisms underpinning the pathogenic expansion of mtDNA deletions in aging and neuromuscular disorders remain poorly understood. Here, we outline and validate a new tool termed 'Digital Deletion Detection' (3D) that allows for high-resolution analysis of rare deletions occurring at frequencies as low as 1 × 10(-8) . 3D is a three-step process that includes targeted enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into thousands of droplets for direct quantification via droplet digital PCR, and breakpoint characterization using massively parallel sequencing. Using 3D, we interrogated over 8 billion mitochondrial genomes to analyze the age-related dynamics of mtDNA deletions in human brain tissue. We demonstrate that the total deletion load increases with age, while the total number and diversity of unique deletions remain constant. Our data provide support for the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions.
Collapse
Affiliation(s)
- Sean D. Taylor
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
| | - Nolan G. Ericson
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
| | - Joshua N. Burton
- Department of Genome Sciences; University of Washington; 3720 15th Ave NE Seattle WA 98195 USA
| | - Tomas A. Prolla
- Department of Medical Genetics; University of Wisconsin-Madison; 425-G Henry Mall Madison WI 53706 USA
| | - John R. Silber
- Neurological Surgery; University of Washington Medical Center; 1959 NE Pacific St Seattle WA 98195 USA
| | - Jay Shendure
- Department of Genome Sciences; University of Washington; 3720 15th Ave NE Seattle WA 98195 USA
| | - Jason H. Bielas
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
- Human Biology Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
- Department of Pathology; University of Washington Medical Center; 1959 NE Pacific St Seattle WA 98195 USA
| |
Collapse
|
12
|
Khrapko K, Turnbull D. Mitochondrial DNA mutations in aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:29-62. [PMID: 25149213 DOI: 10.1016/b978-0-12-394625-6.00002-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The relationship of mitochondrial DNA mutations to aging is still debated. Most mtDNA mutations are recessive: there are multiple copies per cell and mutation needs to clonally expand to cause respiratory deficiency. Overall mtDNA mutant loads are low, so effects of mutations are limited to critical areas where mutations locally reach high fractions. This includes respiratory chain deficient zones in muscle fibers, respiratory-deficient crypts in colon, and massive expansions of deleted mtDNA in substantia nigra neurons. mtDNA "mutator" mouse with increased rate of mtDNA mutations is a useful model, although rates and distribution of mutations may significantly deviate from what is observed in human aging. Comparison of species with different longevity reveals intriguing longevity-related traits in mtDNA sequence, although their significance is yet to be evaluated. The impact of somatic mtDNA mutations rapidly increases with age, so their importance is expected to grow as human life expectancy increases.
Collapse
Affiliation(s)
- Konstantin Khrapko
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Doug Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
13
|
Williams SL, Mash DC, Züchner S, Moraes CT. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet 2013; 9:e1003990. [PMID: 24339796 PMCID: PMC3854840 DOI: 10.1371/journal.pgen.1003990] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022] Open
Abstract
The accumulation of heteroplasmic mitochondrial DNA (mtDNA) deletions and single nucleotide variants (SNVs) is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq) to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the “common” deletion and other “major arc” deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ− mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states. Mitochondria are unique among animal organelles in that they contain their own multi-copy genome (mtDNA). For the past 20 years it has been known that tissues like brain and muscle accumulate somatic mtDNA mutations with age. Because individual mtDNA mutations are present at very low levels, few details are known about the spectrum of mutations associated with aging. Advances in sequencing technology now permit the examination of mtDNA mutations at high resolution. We have examined the spectrum of mtDNA mutations present in putamen, a brain region prone to the accumulation of somatic mtDNA mutations. We were able to quantify the accumulation of clonal and non-clonal deletions in the mtDNA coding region which are known to have a strong association with aging. Partial deletions and novel duplications of the mtDNA control region were also identified, and appear to be more prevalent than previously recognized, but levels showed weaker associations with age than coding region deletions. Single nucleotide variants accumulate fastest in the control region, with a skew towards the accumulation of pathogenic mutations in the coding region. Understanding how the mitochondrial genome alters with age provides a benchmark for studies of somatic mtDNA mutations and dissection of the role they play in normal aging and degenerative diseases.
Collapse
Affiliation(s)
- Siôn L. Williams
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| | - Deborah C. Mash
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- Department of Cell Biology and Anatomy, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
14
|
Campbell GR, Reeve A, Ziabreva I, Polvikoski TM, Taylor RW, Reynolds R, Turnbull DM, Mahad DJ. Mitochondrial DNA deletions and depletion within paraspinal muscles. Neuropathol Appl Neurobiol 2013; 39:377-89. [PMID: 22762368 PMCID: PMC4063338 DOI: 10.1111/j.1365-2990.2012.01290.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aims Although mitochondrial abnormalities have been reported within paraspinal muscles in patients with axial weakness and neuromuscular disease as well as with ageing, the basis of respiratory deficiency in paraspinal muscles is not known. This study aimed to determine the extent and basis of respiratory deficiency in paraspinal muscles from cases undergoing surgery for degenerative spinal disease and post mortem cases without a history of spinal disease, where age-related histopathological changes were previously reported. Methods Cervical and lumbar paraspinal muscles were obtained peri-operatively from 13 patients and from six post mortem control cases (age range 18–82 years) without a neurological disease. Sequential COX/SDH (mitochondrial respiratory chain complex IV/complex II) histochemistry was performed to identify respiratory-deficient muscle fibres (lacking complex IV with intact complex II activity). Real-time polymerase chain reaction, long-range polymerase chain reaction and sequencing were used to identify and characterize mitochondrial DNA (mtDNA) deletions and determine mtDNA copy number status. Mitochondrial respiratory chain complex subunits were detected by immunohistochemistry. Results The density of respiratory-deficient fibres increased with age. On average, 3.96% of fibres in paraspinal muscles were respiratory-deficient (range 0–10.26). Respiratory deficiency in 36.8% of paraspinal muscle fibres was due to clonally expanded mtDNA deletions. MtDNA depletion accounted for further 13.5% of respiratory deficiency. The profile of immunohistochemically detected subunits of complexes was similar in respiratory-deficient fibres with and without mtDNA deletions or mtDNA depletion. Conclusions Paraspinal muscles appeared to be particularly susceptible to age-related mitochondrial respiratory chain defects. Clonally expanded mtDNA deletions and focal mtDNA depletion may contribute towards the development of age-related postural abnormalities.
Collapse
Affiliation(s)
- G R Campbell
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Figge MT, Osiewacz HD, Reichert AS. Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics? Bioessays 2013; 35:314-22. [PMID: 23359437 DOI: 10.1002/bies.201200125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maintenance of functional mitochondria is essential in order to prevent degenerative processes leading to disease and aging. Mitochondrial dynamics plays a crucial role in ensuring mitochondrial quality but may also generate and spread molecular damage through a population of mitochondria. Computational simulations suggest that this dynamics is advantageous when mitochondria are not or only marginally damaged. In contrast, at a higher degree of damage, mitochondrial dynamics may be disadvantageous. Deceleration of fusion-fission cycles could be one way to adapt to this situation and to delay a further decline in mitochondrial quality. However, this adaptive response makes the mitochondrial network more vulnerable to additional molecular damage. The "mitochondrial infectious damage adaptation" (MIDA) model explains a number of inconsistent and counterintuitive data such as the "clonal expansion" of mutant mitochondrial DNA. We propose that mitochondrial dynamics is a double-edged sword and suggest ways to test this experimentally.
Collapse
Affiliation(s)
- Marc Thilo Figge
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany.
| | | | | |
Collapse
|
16
|
Is mitochondrial DNA turnover slower than commonly assumed? Biogerontology 2012; 13:557-64. [DOI: 10.1007/s10522-012-9390-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/21/2012] [Indexed: 11/27/2022]
|
17
|
Campbell GR, Kraytsberg Y, Krishnan KJ, Ohno N, Ziabreva I, Reeve A, Trapp BD, Newcombe J, Reynolds R, Lassmann H, Khrapko K, Turnbull DM, Mahad DJ. Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis. Acta Neuropathol 2012; 124:209-20. [PMID: 22688405 PMCID: PMC3674417 DOI: 10.1007/s00401-012-1001-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/26/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022]
Abstract
Mitochondrial DNA deletions (∆-mtDNA) have been implicated in the pathogenesis of Alzheimer's disease (AD), multiple sclerosis (MS) and Parkinson's disease (PD), as well as ageing. Clonal expansion of ∆-mtDNA is the process by which a mutant mtDNA molecule increases to high levels within a single cell containing both wild-type and mutant mtDNA. Unlike in AD and PD, the diffuse inflammatory process in MS involves the choroid plexus, and mitochondria are exposed to reactive oxygen and nitrogen species over a prolonged period. We determined the extent of respiratory enzyme deficiency and ∆-mtDNA at a single cell level within choroid plexus epithelial cells in MS as well as in AD, PD and controls. The respiratory enzyme-deficient (lacking complex IV and with intact complex II activity) cells were more prevalent within the choroid plexus in AD, MS and PD compared with controls. The main catalytic subunit of complex IV (subunit-I of cytochrome c oxidase) was lacking in significantly more respiratory enzyme-deficient cells in MS compared with AD, PD and controls. The single cell analysis showed a fourfold increase in the percentage of respiratory enzyme-deficient choroid plexus epithelial cells harbouring clonally expanded ∆-mtDNA in MS. Our findings establish clonal expansion of ∆-mtDNA as a feature relatively more prominent within the choroid plexus epithelium in MS than AD, PD or controls. We propose clonal expansion of ∆-mtDNA as a molecular link between inflammation and part of a delayed cellular energy failure in MS.
Collapse
Affiliation(s)
- Graham R Campbell
- The Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 2012; 37:284-92. [DOI: 10.1016/j.tibs.2012.02.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/30/2012] [Accepted: 02/08/2012] [Indexed: 12/18/2022]
|
19
|
Figge MT, Reichert AS, Meyer-Hermann M, Osiewacz HD. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging. PLoS Comput Biol 2012; 8:e1002576. [PMID: 22761564 PMCID: PMC3386171 DOI: 10.1371/journal.pcbi.1002576] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 05/08/2012] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span. Mitochondria are organelles that play a central role as ‘cellular power plants’. The cellular organization of these organelles involves a dynamic spatial network where mitochondria constantly undergo fusion and fission associated with the mixing of their molecular content. Together with the processes of mitophagy and biogenesis of mitochondrial mass, this results into a cellular surveillance system for maintaining their bioenergetic quality. The accumulation of molecular damage in mitochondria is associated with various human disorders and with aging. However, how these processes affect aging and how they can be reconciled with existing aging theories is just at the beginning to be considered. Mathematical modeling allows simulating the dynamics of mitochondrial quality control during aging in silico and leads to the ‘mitochondrial infectious damage adaptation’ (MIDA) model of aging. It reconciles a number of counterintuitive observations obtained during the last decade including infection-like processes of molecular damage spread, the reduction of fusion and fission rates during cellular aging, and observed life span extension for reduced mitochondrial fission. Interestingly, the MIDA model suggests that a reduction in mitochondrial dynamics rather than being merely a sign or even cause of aging, may actually reflect a systemic adaptation to prolong organismic life span.
Collapse
Affiliation(s)
- Marc Thilo Figge
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
20
|
Clark J, Dai Y, Simon DK. Do somatic mitochondrial DNA mutations contribute to Parkinson's disease? PARKINSONS DISEASE 2011; 2011:659694. [PMID: 21603185 PMCID: PMC3096076 DOI: 10.4061/2011/659694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/01/2011] [Indexed: 12/21/2022]
Abstract
A great deal of evidence supports a role for mitochondrial dysfunction in the pathogenesis of Parkinson's disease (PD), although the origin of the mitochondrial dysfunction in PD remains unclear. Expression of mitochondrial DNA (mtDNA) from PD patients in “cybrid” cell lines recapitulates the mitochondrial defect, implicating a role for mtDNA mutations, but the specific mutations responsible for the mitochondrial dysfunction in PD have been difficult to identify. Somatic mtDNA point mutations and deletions accumulate with age and reach high levels in substantia nigra (SN) neurons. Mutations in mitochondrial DNA polymerase γ (POLG) that lead to the accumulation of mtDNA mutations are associated with a premature aging phenotype in “mutator” mice, although overt parkinsonism has not been reported in these mice, and with parkinsonism in humans. Together these data support, but do not yet prove, the hypothesis that the accumulation of somatic mtDNA mutations in SN neurons contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Joanne Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, E/CLS-628, Boston, MA 02215, USA
| | | | | |
Collapse
|
21
|
Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 2010; 69:481-92. [PMID: 21446022 PMCID: PMC3580047 DOI: 10.1002/ana.22109] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/07/2023]
Abstract
Objective Cerebral atrophy is a correlate of clinical progression in multiple sclerosis (MS). Mitochondria are now established to play a part in the pathogenesis of MS. Uniquely, mitochondria harbor their own mitochondrial DNA (mtDNA), essential for maintaining a healthy central nervous system. We explored mitochondrial respiratory chain activity and mtDNA deletions in single neurons from secondary progressive MS (SPMS) cases. Methods Ninety-eight snap-frozen brain blocks from 13 SPMS cases together with complex IV/complex II histochemistry, immunohistochemistry, laser dissection microscopy, long-range and real-time PCR and sequencing were used to identify and analyze respiratory-deficient neurons devoid of complex IV and with complex II activity. Results The density of respiratory-deficient neurons in SPMS was strikingly in excess of aged controls. The majority of respiratory-deficient neurons were located in layer VI and immediate subcortical white matter (WM) irrespective of lesions. Multiple deletions of mtDNA were apparent throughout the gray matter (GM) in MS. The respiratory-deficient neurons harbored high levels of clonally expanded mtDNA deletions at a single-cell level. Furthermore, there were neurons lacking mtDNA-encoded catalytic subunits of complex IV. mtDNA deletions sufficiently explained the biochemical defect in the majority of respiratory-deficient neurons. Interpretation These findings provide evidence that neurons in MS are respiratory-deficient due to mtDNA deletions, which are extensive in GM and may be induced by inflammation. We propose induced multiple deletions of mtDNA as an important contributor to neurodegeneration in MS.
Collapse
Affiliation(s)
- Graham R Campbell
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|