1
|
Butler MB, Vellaiyappan SK, Bhatti F, Syed FEM, Rafati Fard A, Teh JQ, Grodzinski B, Akhbari M, Adeeko S, Dilworth R, Bhatti A, Waheed U, Robinson S, Osunronbi T, Walker B, Ottewell L, Suresh G, Kuhn I, Davies BM, Kotter MRN, Mowforth OD. The impact of phosphodiesterase inhibition on neurobehavioral outcomes in preclinical models of traumatic and non-traumatic spinal cord injury: a systematic review. Front Med (Lausanne) 2023; 10:1237219. [PMID: 37675134 PMCID: PMC10479944 DOI: 10.3389/fmed.2023.1237219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Study design Systematic review. Objective The objective of this study was to evaluate the impact of phosphodiesterase (PDE) inhibitors on neurobehavioral outcomes in preclinical models of traumatic and non-traumatic spinal cord injury (SCI). Methods A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and was registered with PROSPERO (CRD42019150639). Searches were performed in MEDLINE and Embase. Studies were included if they evaluated the impact of PDE inhibitors on neurobehavioral outcomes in preclinical models of traumatic or non-traumatic SCI. Data were extracted from relevant studies, including sample characteristics, injury model, and neurobehavioral assessment and outcomes. Risk of bias was assessed using the SYRCLE checklist. Results The search yielded a total of 1,679 studies, of which 22 met inclusion criteria. Sample sizes ranged from 11 to 144 animals. PDE inhibitors used include rolipram (n = 16), cilostazol (n = 4), roflumilast (n = 1), and PDE4-I (n = 1). The injury models used were traumatic SCI (n = 18), spinal cord ischemia (n = 3), and degenerative cervical myelopathy (n = 1). The most commonly assessed outcome measures were Basso, Beattie, Bresnahan (BBB) locomotor score (n = 13), and grid walking (n = 7). Of the 22 papers that met the final inclusion criteria, 12 showed a significant improvement in neurobehavioral outcomes following the use of PDE inhibitors, four papers had mixed findings and six found PDE inhibitors to be ineffective in improving neurobehavioral recovery following an SCI. Notably, these findings were broadly consistent across different PDE inhibitors and spinal cord injury models. Conclusion In preclinical models of traumatic and non-traumatic SCI, the administration of PDE inhibitors appeared to be associated with statistically significant improvements in neurobehavioral outcomes in a majority of included studies. However, the evidence was inconsistent with a high risk of bias. This review provides a foundation to aid the interpretation of subsequent clinical trials of PDE inhibitors in spinal cord injury. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=150639, identifier: CRD42019150639.
Collapse
Affiliation(s)
- Max B. Butler
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sundar K. Vellaiyappan
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faheem Bhatti
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Fazal-E-Momin Syed
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Amir Rafati Fard
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jye Quan Teh
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ben Grodzinski
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Melika Akhbari
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sylva Adeeko
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Rory Dilworth
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aniqah Bhatti
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Unaiza Waheed
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Robinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Temidayo Osunronbi
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Benn Walker
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Luke Ottewell
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Gayathri Suresh
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Isla Kuhn
- Medical Library, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin M. Davies
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. N. Kotter
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Oliver D. Mowforth
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2022; 18:100524. [PMID: 36619202 PMCID: PMC9813796 DOI: 10.1016/j.mtbio.2022.100524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia. Nanomaterials have opened new avenues for SCI treatment. Among them, performance-based nanomaterials derived from a variety of materials facilitate improvements in the microenvironment of traumatic injury and, in some cases, promote neuron regeneration. Nanoparticulate drug delivery systems enable the optimization of drug effects and drug bioavailability, thus contributing to the development of novel treatments. The improved efficiency and accuracy of gene delivery will also benefit the exploration of SCI mechanisms and the understanding of key genes and signaling pathways. Herein, we reviewed different types of nanomaterials applied to the treatment of SCI and summarized their functions and advantages to provide new perspectives for future clinical therapies.
Collapse
Affiliation(s)
- Weiquan Gong
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Tianhui Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Mingxue Che
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Yongjie Wang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chuanyu He
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Lidi Liu
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Zhenshan Lv
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Corresponding author.
| | - Shaokun Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China,Corresponding author. Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
3
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina,Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
4
|
Hamilton AM, Sampson TR. Traumatic spinal cord injury and the contributions of the post-injury microbiome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:251-290. [PMID: 36427958 DOI: 10.1016/bs.irn.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Spinal cord injuries are an enormous burden on injured individuals and their caregivers. The pathophysiological effects of injury are not limited to the spine and limb function, but affect numerous body systems. Growing observations in human studies and experimental models suggest that the gut microbiome is altered following spinal cord injury. Given the importance of signals derived from the gut microbiome for host physiology, it is possible that injury-triggered dysbiosis subsequently affects aspects of recovery. Here, we review emerging literature on the role of the microbiome following spinal cord injury. Specifically, we highlight findings from both human and experimental studies that correlate taxonomic changes to aspects of injury recovery. Examination of both observational and emerging interventional studies supports the notion that future therapeutic avenues for spinal cord injury pathologies may lie at the interface of the host and indigenous microbes.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
5
|
Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci 2022; 15:808510. [PMID: 35283731 PMCID: PMC8904388 DOI: 10.3389/fnmol.2022.808510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2021] [Accepted: 01/26/2022] [Indexed: 01/03/2023] Open
Abstract
Spinal cord injury (SCI) results in multiple pathophysiological processes, including blood–spinal cord barrier disruption, hemorrhage/ischemia, oxidative stress, neuroinflammation, scar formation, and demyelination. These responses eventually lead to severe tissue destruction and an inhibitory environment for neural regeneration.cAMP signaling is vital for neurite outgrowth and axonal guidance. Stimulating intracellular cAMP activity significantly promotes neuronal survival and axonal regrowth after SCI.However, neuronal cAMP levels in adult CNS are relatively low and will further decrease after injury. Targeting cAMP signaling has become a promising strategy for neural regeneration over the past two decades. Furthermore, studies have revealed that cAMP signaling is involved in the regulation of glial cell function in the microenvironment of SCI, including macrophages/microglia, reactive astrocytes, and oligodendrocytes. cAMP-elevating agents in the post-injury milieu increase the cAMP levels in both neurons and glial cells and facilitate injury repair through the interplay between neurons and glial cells and ultimately contribute to better morphological and functional outcomes. In recent years, combination treatments associated with cAMP signaling have been shown to exert synergistic effects on the recovery of SCI. Agents carried by nanoparticles exhibit increased water solubility and capacity to cross the blood–spinal cord barrier. Implanted bioscaffolds and injected hydrogels are potential carriers to release agents locally to avoid systemic side effects. Cell transplantation may provide permissive matrices to synergize with the cAMP-enhanced growth capacity of neurons. cAMP can also induce the oriented differentiation of transplanted neural stem/progenitor cells into neurons and increase the survival rate of cell grafts. Emerging progress focused on cAMP compartmentation provides researchers with new perspectives to understand the complexity of downstream signaling, which may facilitate the clinical translation of strategies targeting cAMP signaling for SCI repair.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyan Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Jun Gao
| |
Collapse
|
6
|
Chang DJ, Cho HY, Hwang S, Lee N, Choi C, Lee H, Hong KS, Oh SH, Kim HS, Shin DA, Yoon YW, Song J. Therapeutic Effect of BDNF-Overexpressing Human Neural Stem Cells (F3.BDNF) in a Contusion Model of Spinal Cord Injury in Rats. Int J Mol Sci 2021; 22:6970. [PMID: 34203489 PMCID: PMC8269438 DOI: 10.3390/ijms22136970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The most common type of spinal cord injury is the contusion of the spinal cord, which causes progressive secondary tissue degeneration. In this study, we applied genetically modified human neural stem cells overexpressing BDNF (brain-derived neurotrophic factor) (F3.BDNF) to determine whether they can promote functional recovery in the spinal cord injury (SCI) model in rats. We transplanted F3.BDNF cells via intrathecal catheter delivery after a contusion of the thoracic spinal cord and found that they were migrated toward the injured spinal cord area by MR imaging. Transplanted F3.BDNF cells expressed neural lineage markers, such as NeuN, MBP, and GFAP and were functionally connected to the host neurons. The F3.BDNF-transplanted rats exhibited significantly improved locomotor functions compared with the sham group. This functional recovery was accompanied by an increased volume of spared myelination and decreased area of cystic cavity in the F3.BDNF group. We also observed that the F3.BDNF-transplanted rats showed reduced numbers of Iba1- and iNOS-positive inflammatory cells as well as GFAP-positive astrocytes. These results strongly suggest the transplantation of F3.BDNF cells can modulate inflammatory cells and glia activation and also improve the hyperalgesia following SCI.
Collapse
Affiliation(s)
- Da-Jeong Chang
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (D.-J.C.); (S.H.); (N.L.); (C.C.)
| | - Hwi-Young Cho
- Department of Physical Therapy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| | - Seyoung Hwang
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (D.-J.C.); (S.H.); (N.L.); (C.C.)
| | - Nayeon Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (D.-J.C.); (S.H.); (N.L.); (C.C.)
| | - Chunggab Choi
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (D.-J.C.); (S.H.); (N.L.); (C.C.)
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Chungcheongbuk-do, Korea; (H.L.); (K.S.H.)
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Chungcheongbuk-do, Korea; (H.L.); (K.S.H.)
| | - Seung-Hun Oh
- CHA Bundang Medical Center, Department of Neurology, CHA University, 59 Yatap-ro, Budang-gu, Seongnam-si 13496, Gyeonggi-do, Korea; (S.-H.O.); (H.S.K.)
| | - Hyun Sook Kim
- CHA Bundang Medical Center, Department of Neurology, CHA University, 59 Yatap-ro, Budang-gu, Seongnam-si 13496, Gyeonggi-do, Korea; (S.-H.O.); (H.S.K.)
| | - Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Young Wook Yoon
- Department of Physiology, Korea University College of Medicine, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Korea
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (D.-J.C.); (S.H.); (N.L.); (C.C.)
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
| |
Collapse
|
7
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
8
|
Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol 2020; 200:101970. [PMID: 33358752 DOI: 10.1016/j.pneurobio.2020.101970] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injuries do not heal properly in contrast to normal tissue repair, in which functional recovery typically occurs. The reason for this dichotomy in wound repair is explained in part by macrophage and microglial malfunction, affecting both the extrinsic and intrinsic barriers to appropriate axonal regeneration. In normal healing tissue, macrophages promote the repair of injured tissue by regulating transitions through different phases of the healing response. In contrast, inflammation dominates the outcome of CNS injury, often leading to secondary damage. Therefore, an understanding of the molecular mechanisms underlying this dichotomy is critical to advance in neuronal repair therapies. Recent studies highlight the plasticity and complexity of macrophages and microglia beyond the classical view of the M1/M2 polarization paradigm. This plasticity represents an in vivo continuous spectrum of phenotypes with overlapping functions and markers. Moreover, macrophage and microglial plasticity affect many events essential for neuronal regeneration after injury, such as myelin and cell debris clearance, inflammation, release of cytokines, and trophic factors, affecting both intrinsic neuronal properties and extracellular matrix deposition. Until recently, this complexity was overlooked in the translation of therapies modulating these responses for the treatment of neuronal injuries. However, recent studies have shed important light on the underlying molecular mechanisms of this complexity and its transitions and effects on regenerative events. Here we review the complexity of macrophages and microglia after neuronal injury and their roles in regeneration, as well as the underlying molecular mechanisms, and we discuss current challenges and future opportunities for treatment.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
9
|
Li M, Rong ZJ, Cao Y, Jiang LY, Zhong D, Li CJ, Sheng XL, Hu JZ, Lu HB. Utx Regulates the NF-κB Signaling Pathway of Natural Stem Cells to Modulate Macrophage Migration during Spinal Cord Injury. J Neurotrauma 2020; 38:353-364. [PMID: 32977735 DOI: 10.1089/neu.2020.7075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs) play vital roles in the homeostasis of neurological function. Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) is an important regulator of stem cell phenotypes. In our current study, we aimed to investigate whether the conditional knockout of UTX on neural stem cells alters macrophage assembly in response to spinal cord injury (SCI). Conditional knockout Utx of NSC (Utx-KO) mice was used to generate SCI models by the modified Allen method. We reported that neurological function and scar hyperplasia significantly improved in Utx-KO mice after SCI, accompanied by significantly reduced assembly of macrophages. With a 45-fold pathway array and Western blot, we found that Utx-KO could significantly inhibit NF-κB signaling activation and promote the synthesis and secretion of macrophage migration inhibitory factor (MIF) in NSCs. Administration of the selective NF-κB p65 activator betulinic acid and the selective MIF inhibitor ISO-1 confirmed that the activation of NF-κB p65 phosphorylation or inhibition of MIF could eliminate the benefits of Utx-KO in SCI, such as inhibition of macrophage aggregation and reduction in scar proliferation. This study confirmed that UTX in NSCs could alter macrophage migration and improve neurological function recovery after SCI in mice.
Collapse
Affiliation(s)
- Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Dong Zhong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Cheng-Jun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Xiao-Long Sheng
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Hong-Bin Lu
- Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
10
|
MicroRNA-223 targets NLRP3 to relieve inflammation and alleviate spinal cord injury. Life Sci 2020; 254:117796. [DOI: 10.1016/j.lfs.2020.117796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
|
11
|
Person JM, Welch BA, Spann RA, Harris KK, Pride Y, Tucci MA, Taylor EB, Grayson BE. Immuno-hematologic parameters following rodent spinal cord contusion are negatively influenced by high-fat diet consumption. J Neuroimmunol 2020; 343:577226. [PMID: 32247229 DOI: 10.1016/j.jneuroim.2020.577226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) results in perturbations to the immune system leading to increased infection susceptibility. In parallel, the consumption of high-fat diets (HFD) leads to a chronic inflammation in circulation and body tissues. We investigated the impact of 16 weeks of HFD on chronically-injured rats. SCI rats under both chow and HFD showed peripheral leukocyte changes that include reduced percentages of total, helper and cytotoxic T, and natural killer cells. Expression of immune-related genes in the spleen and thymus reflected the impact of both chronic injury and diet. Changes to the immune system following SCI are adversely impacted by HFD consumption.
Collapse
Affiliation(s)
- Jon M Person
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Redin A Spann
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Kwamie K Harris
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Yilianys Pride
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Michelle A Tucci
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
12
|
Sabin KZ, Echeverri K. The role of the immune system during regeneration of the central nervous system. ACTA ACUST UNITED AC 2019; 7. [PMID: 32864529 DOI: 10.1016/j.regen.2019.100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Central nervous system damage in mammals leads to neuronal cell death, axonal degeneration, and formation of a glial scar resulting in functional and behavioral defects. Other vertebrates, like fish and salamanders, have retained the ability to functionally regenerate after central nervous system injury. To date research from many research organisms has led to a more concise understanding of the response of local neural cells to injury. However, it has become clear that non-neural cells of the immune system play an important role in determining the tissue response to injury. In this review we briefly consider the mammalian response to injury compared to organisms with the natural ability to regenerate. We then discuss similarities and differences in how cells of the innate and adaptive immune system respond and contribute to tissue repair in various species.
Collapse
Affiliation(s)
- K Z Sabin
- Eugene Bell Center for Regenerative Biology & Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - K Echeverri
- Eugene Bell Center for Regenerative Biology & Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| |
Collapse
|
13
|
Goonoo N, Bhaw-Luximon A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv 2019; 9:18124-18146. [PMID: 35702423 PMCID: PMC9115879 DOI: 10.1039/c9ra02765c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022] Open
Abstract
The primary aim of tissue engineering scaffolds is to mimic the in vivo environment and promote tissue growth. In this quest, a number of strategies have been developed such as enhancing cell-material interactions through modulation of scaffold physico-chemical parameters. However, more is required for scaffolds to relate to the cell natural environment. Growth factors (GFs) secreted by cells and extracellular matrix (ECM) are involved in both normal repair and abnormal remodeling. The direct use of GFs on their own or when incorporated within scaffolds represent a number of challenges such as release rate, stability and shelf-life. Small molecules have been proposed as promising alternatives to GFs as they are able to minimize or overcome many shortcomings of GFs, in particular immune response and instability. Despite the promise of small molecules in various TE applications, their direct use is limited by nonspecific adverse effects on non-target tissues and organs. Hence, they have been incorporated within scaffolds to localize their actions and control their release to target sites. However, scanty rationale is available which links the chemical structure of these molecules with their mode of action. We herewith review various small molecules either when used on their own or when incorporated within polymeric carriers/scaffolds for bone, cartilage, neural, adipose and skin tissue regeneration.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology (BDDN) Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius Réduit Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology (BDDN) Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius Réduit Mauritius
| |
Collapse
|
14
|
Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, Yokota K, Hara M, Kubota K, Matsumoto Y, Harimaya K, Ozato K, Masuda T, Tsuda M, Tamura T, Inoue K, Edgerton VR, Iwamoto Y, Nakashima Y, Okada S. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. SCIENCE ADVANCES 2019; 5:eaav5086. [PMID: 31106270 PMCID: PMC6520026 DOI: 10.1126/sciadv.aav5086] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2018] [Accepted: 04/11/2019] [Indexed: 05/31/2023]
Abstract
Traumatic spinal cord injury (SCI) brings numerous inflammatory cells, including macrophages, from the circulating blood to lesions, but pathophysiological impact resulting from spatiotemporal dynamics of macrophages is unknown. Here, we show that macrophages centripetally migrate toward the lesion epicenter after infiltrating into the wide range of spinal cord, depending on the gradient of chemoattractant C5a. However, macrophages lacking interferon regulatory factor 8 (IRF8) cannot migrate toward the epicenter and remain widely scattered in the injured cord with profound axonal loss and little remyelination, resulting in a poor functional outcome after SCI. Time-lapse imaging and P2X/YRs blockade revealed that macrophage migration via IRF8 was caused by purinergic receptors involved in the C5a-directed migration. Conversely, pharmacological promotion of IRF8 activation facilitated macrophage centripetal movement, thereby improving the SCI recovery. Our findings reveal the importance of macrophage centripetal migration via IRF8, providing a novel therapeutic target for central nervous system injury.
Collapse
Affiliation(s)
- Kazu Kobayakawa
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Orthopedic Surgery, Spinal Injuries Center, Iizuka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Tamaru
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kensuke Kubota
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Spinal Injuries Center, Iizuka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 2019; 137:785-797. [PMID: 30929040 PMCID: PMC6510275 DOI: 10.1007/s00401-019-01992-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Virtually all phases of spinal cord injury pathogenesis, including inflammation, cell proliferation and differentiation, as well as tissue remodeling, are mediated in part by infiltrating monocyte-derived macrophages. It is now clear that these infiltrating macrophages have distinct functions from resident microglia and are capable of mediating both harmful and beneficial effects after injury. These divergent effects have been largely attributed to environmental cues, such as specific cytokines, that influence the macrophage polarization state. In this review, we also consider the possibility that different macrophage origins, including the spleen, bone marrow, and local self-renewal, may also affect macrophage fate, and ultimately their function that contribute to the complex pathobiology of spinal cord injury.
Collapse
Affiliation(s)
- Lindsay M Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
16
|
Diogo CC, da Costa LM, Pereira JE, Filipe V, Couto PA, Geuna S, Armada-da-Silva PA, Maurício AC, Varejão ASP. Kinematic and kinetic gait analysis to evaluate functional recovery in thoracic spinal cord injured rats. Neurosci Biobehav Rev 2019; 98:18-28. [PMID: 30611796 DOI: 10.1016/j.neubiorev.2018.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2018] [Revised: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The recovery of walking function following spinal cord injury (SCI) is of major importance to patients and clinicians. In experimental SCI studies, a rat model is widely used to assess walking function, following thoracic spinal cord lesion. In an effort to provide a resource which investigators can refer to when seeking the most appropriate functional assay, the authors have compiled and categorized the behavioral assessments used to measure the deficits and recovery of the gait in thoracic SCI rats. These categories include kinematic and kinetic measurements. Within this categorization, we discuss the advantages and disadvantages of each type of measurement. The present review includes the type of outcome data that they produce, the technical difficulty and the time required to potentially train the animals to perform them, and the need for expensive or highly specialized equipment. The use of multiple kinematic and kinetic parameters is recommended to identify subtle deficits and processes involved in the compensatory mechanisms of walking function after experimental thoracic SCI in rats.
Collapse
Affiliation(s)
- Camila Cardoso Diogo
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Maltez da Costa
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Vítor Filipe
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; INESC TEC, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal
| | - Pedro Alexandre Couto
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Paulo A Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Dafundo, Cruz Quebrada, Portugal; CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - Ana Colette Maurício
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; Animal Science and Study Centre (CECA), Institute of Sciences, Technologies and Agroenvironment of the University of Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Artur S P Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
17
|
Myers SA, Gobejishvili L, Saraswat Ohri S, Garrett Wilson C, Andres KR, Riegler AS, Donde H, Joshi-Barve S, Barve S, Whittemore SR. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol Dis 2018; 124:353-363. [PMID: 30557659 DOI: 10.1016/j.nbd.2018.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence links changes in the gut microbiome and intestinal barrier function to alterations in CNS function. We examined the role of endotoxin-responsive, cAMP-specific, Pde4 subfamily b (Pde4b) enzyme in gut dysbiosis induced neuro-inflammation and white matter loss following spinal cord injury (SCI). Using a thoracic contusion model in C57Bl/6 wild type female mice, SCI led to significant shifts in the gut bacterial community including an increase in the phylum Proteobacteria, which consists of endotoxin-harboring, gram-negative bacteria. This was accompanied by increased systemic inflammatory marker, soluble CD14, along with markers of the endoplasmic reticulum stress response (ERSR) and inflammation in the SCI epicenter. Deletion of Pde4b reduced epicenter expression of markers for the ERSR and inflammation, at both acute and chronic time points post-SCI. Correspondingly, expression of oligodendrocyte mRNAs increased. Within the injury penumbra, inflammatory protein markers of activated astrocytes (GFAP), macrophage/microglia (CD11b, Iba1), and the proinflammatory mediator Cox2, were decreased in Pde4b-/- mice. The absence of Pde4b improved white matter sparing and recovery of hindlimb locomotion following injury. Importantly, SCI-induced gut dysbiosis, bacterial overgrowth and endotoxemia were also prevented in Pde4b-/- mice. Taken together, these findings indicate that PDE4B plays an important role in the development of acute and chronic inflammatory response and consequent recovery following SCI.
Collapse
Affiliation(s)
- Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Leila Gobejishvili
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - C Garrett Wilson
- UAB School of Medicine, University of Alabama at Birmingham, Bevill Biomedical Research Building, Birmingham, AL 35294, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Hridgandh Donde
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Shirish Barve
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA.
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Anatomical Science & Neurobiology, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA.
| |
Collapse
|
18
|
Norden DM, Faw TD, McKim DB, Deibert RJ, Fisher LC, Sheridan JF, Godbout JP, Basso DM. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. J Neurotrauma 2018; 36:937-949. [PMID: 30014767 DOI: 10.1089/neu.2018.5806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) produces a toxic inflammatory microenvironment that negatively affects plasticity and recovery. Recently, we showed glial activation and peripheral myeloid cell infiltration extending beyond the epicenter through the remote lumbar cord after thoracic SCI. The presence and role of infiltrating monocytes is important, especially in the lumbar cord where locomotor central pattern generators are housed. Therefore, we compared the inflammatory profile of resident microglia and peripheral myeloid cells after SCI. Bone marrow chimeras received midthoracic contusive SCI, and trafficking was determined 1-7 days later. Fluorescence-activated cell (FAC) sorting showed similar infiltration timing of both neutrophils and macrophages in epicenter and lumbar regions. While neutrophil numbers were attenuated by day 3, macrophages remained unchanged at day 7, suggesting that macrophages have important long-term influence on the microenvironment. Nanostring gene array identified a strong proinflammatory profile of infiltrating macrophages relative to microglia at both epicenter and lumbar sites. Macrophages had elevated expression of inflammatory cytokines (IL-1β, IFNγ), chemokines (CCL2, CXCL2), mediators (COX-1, MMP-9), and receptors (CCR2, Ly6C), and decreased expression of growth promoting genes (GDNF, BDNF). Importantly, lumbar macrophages had elevated expression of active trafficking genes (CCR2, l-selectin, MMP-9) compared with epicenter macrophages. Further, acute rehabilitation exacerbated the inflammatory profile of infiltrated macrophages in the lumbar cord. Such high inflammatory potential and negative response to rehabilitation of infiltrating macrophages within lumbar locomotor central pattern generators likely impedes activity-dependent recovery. Therefore, limiting active trafficking of macrophages into the lumbar cord identifies a novel target for SCI therapies to improve locomotion.
Collapse
Affiliation(s)
- Diana M Norden
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Timothy D Faw
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- 3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Rochelle J Deibert
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Lesley C Fisher
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - John F Sheridan
- 4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan P Godbout
- 2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - D Michele Basso
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018; 15:541-553. [PMID: 29717413 PMCID: PMC6095779 DOI: 10.1007/s13311-018-0631-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Deficits in neuronal function are a hallmark of spinal cord injury (SCI) and therapeutic efforts are often focused on central nervous system (CNS) axon regeneration. However, secondary injury responses by astrocytes, microglia, pericytes, endothelial cells, Schwann cells, fibroblasts, meningeal cells, and other glia not only potentiate SCI damage but also facilitate endogenous repair. Due to their profound impact on the progression of SCI, glial cells and modification of the glial scar are focuses of SCI therapeutic research. Within and around the glial scar, cells deposit extracellular matrix (ECM) proteins that affect axon growth such as chondroitin sulfate proteoglycans (CSPGs), laminin, collagen, and fibronectin. This dense deposition of material, i.e., the fibrotic scar, is another barrier to endogenous repair and is a target of SCI therapies. Infiltrating neutrophils and monocytes are recruited to the injury site through glial chemokine and cytokine release and subsequent upregulation of chemotactic cellular adhesion molecules and selectins on endothelial cells. These peripheral immune cells, along with endogenous microglia, drive a robust inflammatory response to injury with heterogeneous reparative and pathological properties and are targeted for therapeutic modification. Here, we review the role of glial and inflammatory cells after SCI and the therapeutic strategies that aim to replace, dampen, or alter their activity to modulate SCI scarring and inflammation and improve injury outcomes.
Collapse
Affiliation(s)
- Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
20
|
Rodriguez-Grande B, Obenaus A, Ichkova A, Aussudre J, Bessy T, Barse E, Hiba B, Catheline G, Barrière G, Badaut J. Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia 2018; 66:1663-1677. [DOI: 10.1002/glia.23336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Beatriz Rodriguez-Grande
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Andre Obenaus
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda California
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences; UC Riverside; Riverside California
- Department of Pediatrics; University of California, Irvine; Irvine California
| | - Aleksandra Ichkova
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Justine Aussudre
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Thomas Bessy
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Elodie Barse
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Bassem Hiba
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Gwénaëlle Catheline
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Grégory Barrière
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Jerome Badaut
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
21
|
Wang Z, Nong J, Shultz RB, Zhang Z, Kim T, Tom VJ, Ponnappan RK, Zhong Y. Local delivery of minocycline from metal ion-assisted self-assembled complexes promotes neuroprotection and functional recovery after spinal cord injury. Biomaterials 2016; 112:62-71. [PMID: 27744221 DOI: 10.1016/j.biomaterials.2016.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 02/09/2023]
Abstract
Many mechanisms contribute to the secondary injury cascades following traumatic spinal cord injury (SCI). However, most current treatment strategies only target one or a few elements in the injury cascades, and have been largely unsuccessful in clinical trials. Minocycline hydrochloride (MH) is a clinically available antibiotic and anti-inflammatory drug that has been shown to target a broad range of secondary injury mechanisms via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, MH is only neuroprotective at high concentrations. The inability to translate the high doses of MH used in experimental animals to tolerable doses in human patients limits its clinical efficacy. In addition, the duration of MH treatment is limited because long-term systemic administration of high doses of MH has been shown to cause liver toxicity and even death. We have developed a drug delivery system in the form of hydrogel loaded with polysaccharide-MH complexes self-assembled by metal ions for controlled release of MH. This drug delivery system can be injected into the intrathecal space for local delivery of MH with sufficient dose and duration, without causing any additional tissue damage. We show that local delivery of MH at a dose that is lower than the standard human dose (3 mg/kg) was more effective in reducing secondary injury and promoting locomotor functional recovery than systemic injection of MH with the highest dose and duration reported in experimental animal SCI (90-135 mg/kg).
Collapse
Affiliation(s)
- Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Zhiling Zhang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Taegyo Kim
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Veronica J Tom
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ravi K Ponnappan
- Department of Orthopaedic Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 2015; 219:141-154. [PMID: 26343846 DOI: 10.1016/j.jconrel.2015.08.060] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI.
Collapse
Affiliation(s)
- Shushi Kabu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada V5Z 1M9
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo. PLoS One 2015. [PMID: 26222542 PMCID: PMC4519270 DOI: 10.1371/journal.pone.0134371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2’-bipyridine-5,5’-decarboxylic acid (BPY-DCA) and 8-Br-cyclic AMP (cAMP) inhibits scar formation and collagen deposition, leading to enhanced axon regeneration and partial functional recovery after spinal cord injury. While BPY-DCA is not a clinical drug, the clinically approved iron chelator deferoxamine mesylate (DFO) may be a suitable alternative for anti-scarring treatment (AST). In order to prove the scar-suppressing efficacy of DFO we modified a recently published in vitro model for CNS scarring. The model comprises a co-culture system of cerebral astrocytes and meningeal fibroblasts, which form scar-like clusters when stimulated with transforming growth factor-β (TGF-β). We studied the mechanisms of TGF-β-induced CNS scarring and compared the efficiency of different putative pharmacological scar-reducing treatments, including BPY-DCA, DFO and cAMP as well as combinations thereof. We observed modulation of TGF-β-induced scarring at the level of fibroblast proliferation and contraction as well as specific changes in the expression of extracellular matrix molecules and axon growth inhibitory proteins. The individual and combinatorial pharmacological treatments had distinct effects on the cellular and molecular aspects of in vitro scarring. DFO could be identified as a putative anti-scarring treatment for CNS trauma. We subsequently validated this by local application of DFO to a dorsal hemisection in the rat thoracic spinal cord. DFO treatment led to significant reduction of scarring, slightly increased regeneration of corticospinal tract as well as ascending CGRP-positive axons and moderately improved locomotion. We conclude that the in vitro model for CNS scarring is suitable for efficient pre-screening and identification of putative scar-suppressing agents prior to in vivo application and validation, thus saving costs, time and laboratory animals.
Collapse
|
24
|
Silver J, Schwab ME, Popovich PG. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 2014; 7:a020602. [PMID: 25475091 DOI: 10.1101/cshperspect.a020602] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Animal studies are now showing the exciting potential to achieve significant functional recovery following central nervous system (CNS) injury by manipulating both the inefficient intracellular growth machinery in neurons, as well as the extracellular barriers, which further limit their regenerative potential. In this review, we have focused on the three major glial cell types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of their precursors, which form major extrinsic barriers to regrowth in the injured CNS. Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or sprout, there is accumulating evidence that even in the adult and, especially after boosting their growth motor, neurons possess the capacity for considerable circuit reorganization and even lengthy regeneration when these glial obstacles to neuronal regrowth are modified, eliminated, or overcome.
Collapse
Affiliation(s)
- Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44140
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea JR, Lee JK. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis 2014; 74:114-25. [PMID: 25461258 DOI: 10.1016/j.nbd.2014.10.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/18/2023] Open
Abstract
Spinal cord injury (SCI) leads to formation of a fibrotic scar that is inhibitory to axon regeneration. Recent evidence indicates that the fibrotic scar is formed by perivascular fibroblasts, but the mechanism by which they are recruited to the injury site is unknown. Using bone marrow transplantation in mouse model of spinal cord injury, we show that fibroblasts in the fibrotic scar are associated with hematogenous macrophages rather than microglia, which are limited to the surrounding astroglial scar. Depletion of hematogenous macrophages results in reduced fibroblast density and basal lamina formation that is associated with increased axonal growth in the fibrotic scar. Cytokine gene expression analysis after macrophage depletion indicates that decreased Tnfsf8, Tnfsf13 (tumor necrosis factor superfamily members) and increased BMP1-7 (bone morphogenetic proteins) expression may serve as anti-fibrotic mechanisms. Our study demonstrates that hematogenous macrophages are necessary for fibrotic scar formation and macrophage depletion results in changes in multiple cytokines that make the injury site less fibrotic and more conducive to axonal growth.
Collapse
Affiliation(s)
- Y Zhu
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, FL 33136, United States
| | - C Soderblom
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, FL 33136, United States
| | - V Krishnan
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, FL 33136, United States
| | - J Ashbaugh
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, FL 33136, United States
| | - J R Bethea
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, FL 33136, United States
| | - J K Lee
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, FL 33136, United States.
| |
Collapse
|
26
|
Immune modulatory therapies for spinal cord injury – Past, present and future. Exp Neurol 2014; 258:91-104. [DOI: 10.1016/j.expneurol.2014.01.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 01/18/2023]
|
27
|
Grosso MJ, Matheus V, Clark M, van Rooijen N, Iannotti CA, Steinmetz MP. Effects of an Immunomodulatory Therapy and Chondroitinase After Spinal Cord Hemisection Injury. Neurosurgery 2014; 75:461-71. [DOI: 10.1227/neu.0000000000000447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Individually, immunomodulatory therapy and chondroitinases have demonstrated neuroprotective and potential neuroregenerative effects following spinal cord injury.
OBJECTIVE:
To investigate the therapeutic potential of combined immunomodulatory and chondroitin sulfate-glycosaminoglycan degradation therapy in spinal cord injury.
METHODS:
A combined immunomodulatory treatment using (1) liposome-encapsulated clodronate (selectively depletes peripheral macrophages), and (2) rolipram (a selective type 4 phosphodiesterase inhibitor), along with the chondroitin sulfate proteoglycan-glycosaminoglycan-degrading enzyme, chondroitinase ABC (ChABC), was assessed for its potential to promote axonal regrowth and improve locomotor recovery following midthoracic spinal cord hemisection injury in adult rats.
RESULTS:
We demonstrate that combined treatment with liposomal clodronate, rolipram, and ChABC attenuates macrophage accumulation at the site of injury, reduces axonal die-back of injured dorsal column axons, and produces the greatest improvement in locomotor recovery at 6 weeks postinjury compared with controls and noncombined therapy. Anterograde and retrograde tracing revealed that delivery of clodronate, rolipram, and ChABC did not promote substantial axonal regeneration through the site of injury, although the treatment did limit the extent of axonal die-back. Histological assessments revealed that combined treatment with clodronate/rolipram and/or ChABC resulted in a significant reduction in lesion size and cystic cavitation in comparison with injured controls. Combined clodronate, rolipram, and ChABC treatment reduced the accumulation of macrophages within the injured spinal cord 7 weeks after injury.
CONCLUSION:
The present data suggest that delivery of an immunomodulatory therapy consisting of clodronate and rolipram, in combination with ChABC, reduces axonal injury and enhances neuroprotection, plasticity, and hindlimb functional recovery after hemisection spinal cord injury in adult rats.
Collapse
Affiliation(s)
- Matthew J. Grosso
- Center for Spine Health, Department of Neurological Surgery, Cleveland Clinic, Cleveland, Ohio
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | - Nico van Rooijen
- Department of Cell Biology & Immunology, Faculty of Medicine, Free University Medical Center, Amsterdam, Netherlands
| | | | - Michael P. Steinmetz
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
| |
Collapse
|
28
|
Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol 2013; 250:31-42. [PMID: 24041988 DOI: 10.1016/j.expneurol.2013.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023]
Abstract
Axon regeneration after spinal cord injury in mammals is inadequate to restore function, illustrating the need to design better strategies for improving outcomes. Increasing the levels of the second messenger cyclic adenosine monophosphate (cAMP) after spinal cord injury enhances axon regeneration across a wide variety of species, making it an excellent candidate molecule that has therapeutic potential. However, several important aspects of the cellular and molecular mechanisms by which cAMP enhances axon regeneration are still unclear, such as how cAMP affects axon growth patterns, the molecular components within growing axon tips, the lesion scar, and neuronal survival. To address these points, we took advantage of the large, identified reticulospinal (RS) neurons in lamprey, a vertebrate that exhibits robust axon regeneration after a complete spinal cord transection. Application of a cAMP analog, db-cAMP, at the time of spinal cord transection increased the number of axons that regenerated across the lesion site. Db-cAMP also promoted axons to regenerate in straighter paths, prevented abnormal axonal growth patterns, increased the levels of synaptotagmin within axon tips, and increased the number of axotomized neurons that survived after spinal cord injury, thereby increasing the pool of neurons available for regeneration. There was also a transient increase in the number of microglia/macrophages and improved repair of the lesion site. Taken together, these data reveal several new features of the cellular and molecular mechanisms underlying cAMP-mediated enhancement of axon regeneration, further emphasizing the positive roles for this conserved pathway.
Collapse
|
29
|
Xue H, Zhang XY, Liu JM, Song Y, Liu TT, Chen D. NDGA reduces secondary damage after spinal cord injury in rats via anti-inflammatory effects. Brain Res 2013; 1516:83-92. [DOI: 10.1016/j.brainres.2013.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2012] [Revised: 03/30/2013] [Accepted: 04/08/2013] [Indexed: 01/05/2023]
|
30
|
Costa LM, Pereira JE, Filipe VM, Magalhães LG, Couto PA, Gonzalo-Orden JM, Raimondo S, Geuna S, Maurício AC, Nikulina E, Filbin MT, Varejão AS. Rolipram promotes functional recovery after contusive thoracic spinal cord injury in rats. Behav Brain Res 2013; 243:66-73. [DOI: 10.1016/j.bbr.2012.12.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2012] [Revised: 12/24/2012] [Accepted: 12/29/2012] [Indexed: 01/28/2023]
|
31
|
Ajao DO, Pop V, Kamper JE, Adami A, Rudobeck E, Huang L, Vlkolinsky R, Hartman RE, Ashwal S, Obenaus A, Badaut J. Traumatic brain injury in young rats leads to progressive behavioral deficits coincident with altered tissue properties in adulthood. J Neurotrauma 2012; 29:2060-74. [PMID: 22697253 DOI: 10.1089/neu.2011.1883] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) affects many infants and children, and results in enduring motor and cognitive impairments with accompanying changes in white matter tracts, yet few experimental studies in rodent juvenile models of TBI (jTBI) have examined the timeline and nature of these deficits, histologically and functionally. We used a single controlled cortical impact (CCI) injury to the parietal cortex of rats at post-natal day (P) 17 to evaluate behavioral alterations, injury volume, and morphological and molecular changes in gray and white matter, with accompanying measures of electrophysiological function. At 60 days post-injury (dpi), we found that jTBI animals displayed behavioral deficits in foot-fault and rotarod tests, along with a left turn bias throughout their early developmental stages and into adulthood. In addition, anxiety-like behaviors on the zero maze emerged in jTBI animals at 60 dpi. The final lesion constituted only ∼3% of brain volume, and morphological tissue changes were evaluated using MRI, as well as immunohistochemistry for neuronal nuclei (NeuN), myelin basic protein (MBP), neurofilament-200 (NF200), and oligodendrocytes (CNPase). White matter morphological changes were associated with a global increase in MBP immunostaining and reduced compound action potential amplitudes at 60 dpi. These results suggest that brain injury early in life can induce long-term white matter dysfunction, occurring in parallel with the delayed development and persistence of behavioral deficits, thus modeling clinical and longitudinal TBI observations.
Collapse
Affiliation(s)
- David O Ajao
- Department of Physiology, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schaal SM, Garg MS, Ghosh M, Lovera L, Lopez M, Patel M, Louro J, Patel S, Tuesta L, Chan WM, Pearse DD. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS One 2012; 7:e43634. [PMID: 23028463 PMCID: PMC3446989 DOI: 10.1371/journal.pone.0043634] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
The extent of damage following spinal cord injury (SCI) can be reduced by various neuroprotective regimens that include maintaining levels of cyclic adenosine monophosphate (cyclic AMP), via administration of the phosphodiesterase 4 (PDE4) inhibitor Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following contusive SCI in rat as well as its prominent PDE target and putative mechanism of protection. Rolipram or vehicle control (10% ethanol) was given subcutaneously (s.c.) daily for 2 wk post-injury (PI) after which the preservation of oligodendrocytes, neurons and central myelinated axons was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (given at 1 h PI) increased neuronal survival; 0.5 mg to 1.0 mg/kg protected oligodendrocytes and 1.0 mg/kg produced optimal preservation of central myelinated axons. Ethanol also demonstrated significant neuronal and oligo-protection; though the preservation provided was significantly less than Rolipram. Subsequent use of this optimal Rolipram dose, 1.0 mg/kg, via different routes (i.v., s.c. or oral, 1 h PI), demonstrated that i.v. administration produced the most significant and consistent cyto- and axo- protection, although all routes were effective. Examination of the therapeutic window for i.v. Rolipram (1.0 mg/kg), when initiated between 1 and 48 h after SCI, revealed maximal neuroprotection at 2 h post-SCI, although the protective efficacy of Rolipram could still be observed when administration was delayed for up to 48 h PI. Importantly, use of the optimal Rolipram regimen significantly improved locomotor function after SCI as measured by the BBB score. Lastly we show SCI-induced changes in PDE4A, B and D expression and phosphorylation as well as cytokine expression and immune cell infiltration. We demonstrate that Rolipram abrogates SCI-induced PDE4B1 and PDE4A5 production, PDE4A5 phosphorylation, MCP-1 expression and immune cell infiltration, while preventing post-injury reductions in IL-10. This work supports the use of Rolipram as an acute neuroprotectant following SCI and defines an optimal administration protocol and target for its therapeutic application.
Collapse
Affiliation(s)
- Sandra Marie Schaal
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
| | - Maneesh Sen Garg
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lilie Lovera
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michael Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Monal Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jack Louro
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samik Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Luis Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Damien Daniel Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Liang H, Li C, Gao A, Liang P, Shao Y, Lin T, Zhang X. Spinal duraplasty with two novel substitutes restored locomotor function after acute laceration spinal cord injury in rats. J Biomed Mater Res B Appl Biomater 2012; 100:2131-40. [DOI: 10.1002/jbm.b.32778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2012] [Revised: 05/29/2012] [Accepted: 06/28/2012] [Indexed: 02/07/2023]
|
34
|
Drug-eluting microfibrous patches for the local delivery of rolipram in spinal cord repair. J Control Release 2012; 161:910-7. [PMID: 22634093 DOI: 10.1016/j.jconrel.2012.05.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2012] [Revised: 05/03/2012] [Accepted: 05/16/2012] [Indexed: 01/10/2023]
Abstract
Spinal cord injury (SCI) remains a major challenge for regenerative medicine. Following SCI, axon growth inhibitors and other inflammatory responses prevent functional recovery. Previous studies have demonstrated that rolipram, an anti-inflammatory and cyclic adenosine monophosphate preserving small molecule, improves spinal cord regeneration when delivered systemically. However, more recent studies showed that rolipram has some adverse effects in spinal cord repair. Here, we developed a drug-delivery platform for the local delivery of rolipram into the spinal cord. The potential of drug-eluting microfibrous patches for continuous delivery of high and low-dose rolipram concentrations was characterized in vitro. Following C5 hemisections, athymic rats were treated with patches loaded with low and high doses of rolipram. In general, animals treated with low-dose rolipram experienced greater functional and anatomical recovery relative to all other groups. Outcomes from the high-dose rolipram treatment were similar to those with no treatment. In addition, high-dose treated animals experienced reduced survival rates suggesting that systemic toxicity was reached. With the ability to control the release of drug dosage locally within the spinal cord, drug-eluting microfibrous patches demonstrate the importance of appropriate local release-kinetics of rolipram, proving their usefulness as a therapeutic platform for the study and repair of SCI.
Collapse
|
35
|
McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett 2012; 519:115-21. [PMID: 22343313 DOI: 10.1016/j.neulet.2012.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 01/03/2023]
Abstract
The inhibitory extracellular environment that develops in response to traumatic brain injury and spinal cord injury hinders axon growth thereby limiting restoration of function. Several strategies have been developed to engineer a more permissive central nervous system (CNS) environment to promote regeneration and functional recovery. The multi-faced inhibitory nature of the CNS lesion suggests that therapies used in combination may be more effective. In this mini-review we summarize the most recent attempts to engineer the CNS extracellular environment after injury using combinatorial strategies. The advantages and limits of various combination therapies utilizing neurotrophin delivery, cell transplantation, and biomaterial scaffolds are discussed. Treatments that reduce the inhibition by chondroitin sulfate proteoglycans, myelin-associated inhibitors, and other barriers to axon regeneration are also reviewed. Based on the current state of the field, future directions are suggested for research on combination therapies in the CNS.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr. Box 1097, St. Louis, MO 63130, United States
| | | |
Collapse
|
36
|
Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 2012; 87:10-20. [PMID: 22024597 PMCID: PMC9827422 DOI: 10.1016/j.brainresbull.2011.10.004] [Citation(s) in RCA: 752] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2011] [Revised: 10/02/2011] [Accepted: 10/10/2011] [Indexed: 01/11/2023]
Abstract
Microglia are activated in response to a number of different pathological states within the CNS including injury, ischemia, and infection. Microglial activation results in their production of pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α. While release of these factors is typically intended to prevent further damage to CNS tissue, they may also be toxic to neurons and other glial cells. Mounting evidence indicates that chronic microglial activation may also contribute to the development and progression of neurodegenerative disorders. Unfortunately, determining the role of pro-inflammatory cytokines in these disorders has been complicated by their dual roles in neuroprotection and neurodegeneration. The purpose of this review is to summarize current understanding of the involvement of cytokines in neurodegenerative disorders and their potential signaling mechanisms in this context. Taken together, recent findings suggest that microglial activation and pro-inflammatory cytokines merit interest as targets in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Joshua A. Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA,Corresponding author. Tel.: +1 843 792 7594; fax: +1 843 792 5137. (N.L. Banik)
| |
Collapse
|
37
|
Hwang DH, Jeong SR, Kim BG. Gene transfer mediated by stem cell grafts to treat CNS injury. Expert Opin Biol Ther 2011; 11:1599-610. [PMID: 22017608 DOI: 10.1517/14712598.2011.631908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Stem cell transplantation holds promise for promoting anatomical repair and functional recovery after traumatic or ischemic injuries to the CNS. Harnessing stem cells with therapeutic genes of interest is regarded as an attractive approach to augment therapeutic benefits of stem cell grafts. AREAS COVERED The advantage of stem-cell-mediated gene transfer is the engraftibility of stem cells that can ensure a long-term and stable expression of therapeutic genes. In addition, stem-cell-gene interaction may synergistically amplify therapeutic benefits. Delivery of classical neurotrophic factor genes provided neuroprotective and pro-regenerative effects in various injury models. Some studies employed therapeutic genes targeting post-injury microenvironment to support endogenous repair. Recent trials of stem-cell-mediated transfer of nonclassical growth factors showed relatively novel biological effects. Combinatorial strategies seem to have the potential to improve therapeutic efficacy. EXPERT OPINION Future development of induced pluripotent stem cells and novel scaffolding biomaterials will greatly expedite the advances in ex vivo gene therapy to treat CNS injury. Before moving to a clinical stage, rigorous preclinical evaluations are needed to identify an optimal gene or gene combination in different injury settings. Improving the safety of viral vectors will be a critical prerequisite for the clinical translation.
Collapse
Affiliation(s)
- Dong H Hwang
- Ajou University School of Medicine, Brain Disease Research Center, Institute for Medical Sciences, Suwon, Republic of Korea
| | | | | |
Collapse
|
38
|
Kwiatkoski M, Guimarães FS, Del-Bel E. Cannabidiol-treated Rats Exhibited Higher Motor Score After Cryogenic Spinal Cord Injury. Neurotox Res 2011; 21:271-80. [DOI: 10.1007/s12640-011-9273-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
39
|
Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, Kruse F, Kögler G, Wernet P, Hartung HP, Müller HW. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. ACTA ACUST UNITED AC 2011; 135:431-46. [PMID: 21903726 DOI: 10.1093/brain/awr222] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Stem cell therapy is a potential treatment for spinal cord injury and different stem cell types have been grafted into animal models and humans suffering from spinal trauma. Due to inconsistent results, it is still an important and clinically relevant question which stem cell type will prove to be therapeutically effective. Thus far, stem cells of human sources grafted into spinal cord mostly included barely defined heterogeneous mesenchymal stem cell populations derived from bone marrow or umbilical cord blood. Here, we have transplanted a well-defined unrestricted somatic stem cell isolated from human umbilical cord blood into an acute traumatic spinal cord injury of adult immune suppressed rat. Grafting of unrestricted somatic stem cells into the vicinity of a dorsal hemisection injury at thoracic level eight resulted in hepatocyte growth factor-directed migration and accumulation within the lesion area, reduction in lesion size and augmented tissue sparing, enhanced axon regrowth and significant functional locomotor improvement as revealed by three behavioural tasks (open field Basso-Beattie-Bresnahan locomotor score, horizontal ladder walking test and CatWalk gait analysis). To accomplish the beneficial effects, neither neural differentiation nor long-lasting persistence of the grafted human stem cells appears to be required. The secretion of neurite outgrowth-promoting factors in vitro further suggests a paracrine function of unrestricted somatic stem cells in spinal cord injury. Given the highly supportive functional characteristics in spinal cord injury, production in virtually unlimited quantities at GMP grade and lack of ethical concerns, unrestricted somatic stem cells appear to be a highly suitable human stem cell source for clinical application in central nervous system injuries.
Collapse
Affiliation(s)
- Jessica Schira
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40223 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12:388-99. [PMID: 21673720 DOI: 10.1038/nrn3053] [Citation(s) in RCA: 1030] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Macrophages from the peripheral circulation and those derived from resident microglia are among the main effector cells of the inflammatory response that follows spinal cord trauma. There has been considerable debate in the field as to whether the inflammatory response is good or bad for tissue protection and repair. Recent studies on macrophage polarization in non-neural tissues have shed much light on their changing functional states. In the context of this literature, we discuss the activation of macrophages and microglia following spinal cord injury, and their effects on repair. Harnessing their anti-inflammatory properties could pave the way for new therapeutic strategies for spinal cord trauma.
Collapse
Affiliation(s)
- Samuel David
- The Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, Quebec, Canada, H3G 1A4.
| | | |
Collapse
|
41
|
Vereyken EJF, Heijnen PDAM, Baron W, de Vries EHE, Dijkstra CD, Teunissen CE. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types. J Neuroinflammation 2011; 8:58. [PMID: 21615896 PMCID: PMC3123187 DOI: 10.1186/1742-2094-8-58] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2011] [Accepted: 05/26/2011] [Indexed: 12/23/2022] Open
Abstract
Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS) and spinal cord injury (SCI), being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1), pro-inflammatory, macrophages and alternatively activated (AA/M2), growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS) and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight (< 10 kD) fraction of neuronal conditioned medium, while CA macrophages were attracted in higher numbers by astrocyte- and oligodendrocyte conditioned medium. Intrinsic motility was twice as high in AA macrophages compared to CA macrophages. The adhesion to extracellular matrix molecules (ECM) was significantly enhanced in CA macrophages compared to control and AA macrophages. The actin cytoskeleton was differentially organized between CA and AA macrophages, possibly due to greater activity of the GTPases RhoA and Rac in CA macrophages. Phagocytosis of myelin and neuronal fragments was increased in CA macrophages compared to AA macrophages. The increase in myelin phagocytosis was associated with higher expression of CR3/MAC-1 in CA macrophages. Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.
Collapse
Affiliation(s)
- Elly J F Vereyken
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Bao F, Fleming JC, Golshani R, Pearse DD, Kasabov L, Brown A, Weaver LC. A selective phosphodiesterase-4 inhibitor reduces leukocyte infiltration, oxidative processes, and tissue damage after spinal cord injury. J Neurotrauma 2011; 28:1035-49. [PMID: 21355819 DOI: 10.1089/neu.2010.1575] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that a selective phosphodiesterase type 4 inhibitor (PDE4-I; IC486051) would attenuate early inflammatory and oxidative processes following spinal cord injury (SCI) when delivered during the first 3 days after injury. Rats receiving a moderately severe thoracic-clip-compression SCI were treated with the PDE4-I (0.5, 1.0, and 3.0 mg/kg IV) in bolus doses from 2-60 h post-injury. Doses at 0.5 mg/kg and 1.0 mg/kg significantly decreased myeloperoxidase (MPO) enzymatic activity (neutrophils), expression of a neutrophil-associated protein and of ED-1 (macrophages), and estimates of lipid peroxidation in cord lesion homogenates at 24 h and 72 h post-injury by 25-40%. The 3.0 mg/kg dose had small or no effects on these measures. The PDE4-I treatment (0.5 or 1.0 mg/kg) reduced expression of the oxidative enzymes gp91(phox), inducible nitric oxide synthase, and cyclooxygenase-2, and diminished free radical generation by up to 40%. Treatment with 0.5 mg/kg PDE4-I improved motor function (as assessed by the Basso-Beattie-Bresnahan scale) significantly from 4-8 weeks after SCI (average difference 1.3 points). Mechanical allodynia elicited from the hindpaw decreased by up to 25%. The PDE4-I treatment also increased white matter volume near the lesion at 8 weeks after SCI. In conclusion, the PDE4-I reduced key markers of oxidative stress and leukocyte infiltration, producing cellular protection, locomotor improvements, and a reduction in neuropathic pain. Early inhibition of PDE4 is neuroprotective after SCI when given acutely and briefly at sufficient doses.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Team, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.
Collapse
Affiliation(s)
- Alicia L. Hawthorne
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, 460 W. 12th Ave., 770 Biomedical Research Tower, Columbus, Ohio 43210 USA
| | - Phillip G. Popovich
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, 460 W. 12th Ave., 770 Biomedical Research Tower, Columbus, Ohio 43210 USA
| |
Collapse
|