1
|
Han Y, Lin X. The relationship between psychological stress and ovulatory disorders and its molecular mechanisms: a narrative review. J Psychosom Obstet Gynaecol 2024; 45:2418110. [PMID: 39436713 DOI: 10.1080/0167482x.2024.2418110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
This narrative review explores the relationship between psychological stress and ovulatory disorders, focusing on the molecular mechanisms involved. Ovulation is regulated by the hypothalamus-pituitary-ovarian (HPO) axis, and disruptions in this axis can lead to ovulatory dysfunction. Chronic psychological stress affects the HPO axis, resulting in abnormalities in hypothalamus hormone secretion, pituitary hormone release, and ovarian function. These disruptions cause ovulation disorders and menstrual irregularities. The mechanisms by which psychological stress affects ovulation involve alterations in neuropeptides and hormones, activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairment of follicular development, generation of oxidative stress, and the decline in ovarian reserve function. Understanding these mechanisms is crucial for developing interventions to restore reproductive health. Psychological interventions, such as cognitive-behavioral therapy, have shown promise in improving ovulation and pregnancy rates in women with ovulatory disorders. Further research is needed to explore the specific mechanisms of these interventions and optimize treatment strategies. Addressing psychological factors is essential in managing reproductive health and ovulatory disorders.
Collapse
Affiliation(s)
- Yichen Han
- Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
2
|
Zhang L, Wang HL, Zhang YF, Mao XT, Wu TT, Huang ZH, Jiang WJ, Fan KQ, Liu DD, Yang B, Zhuang MH, Huang GM, Liang Y, Zhu SJ, Zhong JY, Xu GY, Li XM, Cao Q, Li YY, Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab 2024:S1550-4131(24)00366-8. [PMID: 39366386 DOI: 10.1016/j.cmet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a common and chronic gastrointestinal disorder that is characterized by abdominal discomfort and occasional diarrhea. The pathogenesis of IBS-D is thought to be related to a combination of factors, including psychological stress, abnormal muscle contractions, and inflammation and disorder of the gut microbiome. However, there is still a lack of comprehensive analysis of the logical regulatory correlation among these factors. In this study, we found that stress induced hyperproduction of xanthine and altered the abundance and metabolic characteristics of Lactobacillus murinus in the gut. Lactobacillus murinus-derived spermidine suppressed the basal expression of type I interferon (IFN)-α in plasmacytoid dendritic cells by inhibiting the K63-linked polyubiquitination of TRAF3. The reduction in IFN-α unrestricted the contractile function of colonic smooth muscle cells, resulting in an increase in bowel movement. Our findings provided a theoretical basis for the pathological mechanism of, and new drug targets for, stress-exposed IBS-D.
Collapse
Affiliation(s)
- Li Zhang
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Fang Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Zhi-Hui Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Wan-Jun Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ke-Qi Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan-Dan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei-Hui Zhuang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Ming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang-Yan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Chamignon C, Mallaret G, Rivière J, Vilotte M, Chadi S, de Moreno de LeBlanc A, LeBlanc JG, Carvalho FA, Pane M, Mousset PY, Langella P, Lafay S, Bermúdez-Humarán LG. Beneficial Effects of Lactobacilli Species on Intestinal Homeostasis in Low-Grade Inflammation and Stress Rodent Models and Their Implication in the Modulation of the Adhesive Junctional Complex. Biomolecules 2023; 13:1295. [PMID: 37759696 PMCID: PMC10527021 DOI: 10.3390/biom13091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on intestinal homeostasis is well described and numerous studies suggest the ability of some probiotic strains to protect the intestinal epithelial integrity and host homeostasis. In this work, we aimed to assess the beneficial effects of three Lactobacillus strains (Lacticaseibacillus rhamnosus LR04, Lacticaseibacillus casei LC03, and Lactiplantibacillus plantarum CNCM I-4459) and their mechanism of action in low-grade inflammation or neonatal maternal separation models in mice. We compared the impact of these strains to that of the well-known probiotic Lacticaseibacillus rhamnosus GG. Our results demonstrated that the three strains have the potential to restore the barrier functions by (i) increasing mucus production, (ii) restoring normal permeability, and (iii) modulating colonic hypersensitivity. Moreover, gene expression analysis of junctional proteins revealed the implication of Claudin 2 and Cingulin in the mechanisms that underlie the interactions between the strains and the host. Taken together, our data suggest that LR04, CNCM I-4459, and LC03 restore the functions of an impaired intestinal barrier.
Collapse
Affiliation(s)
- Célia Chamignon
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
- INDIGO Therapeutics, 33000 Bordeaux, France (S.L.)
| | - Geoffroy Mallaret
- INSERM U1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France; (G.M.); (F.A.C.)
| | - Julie Rivière
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | - Marthe Vilotte
- INRAE, GABI, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sead Chadi
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | | | - Jean Guy LeBlanc
- CERELA-CONICET, San Miguel de Tucumán T4000ILC, Tucumán, Argentina; (A.d.M.d.L.); (J.G.L.)
| | - Frédéric Antonio Carvalho
- INSERM U1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France; (G.M.); (F.A.C.)
| | - Marco Pane
- Probiotical Research, 28100 Novara, Italy;
| | | | - Philippe Langella
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | - Sophie Lafay
- INDIGO Therapeutics, 33000 Bordeaux, France (S.L.)
| | - Luis G. Bermúdez-Humarán
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| |
Collapse
|
4
|
Traini C, Idrizaj E, Biagioni C, Baccari MC, Vannucchi MG. Otilonium Bromide Prevents Cholinergic Changes in the Distal Colon Induced by Chronic Water Avoidance Stress, a Rat Model of Irritable Bowel Syndrome. Int J Mol Sci 2023; 24:ijms24087440. [PMID: 37108603 PMCID: PMC10139220 DOI: 10.3390/ijms24087440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Irritable Bowel syndrome (IBS) is a highly widespread gastrointestinal disorder whose symptomatology mainly affect the large intestine. Among the risk factors, psychosocial stress is the most acknowledged. The repeated water avoidance stress (rWAS) is considered an animal model of psychosocial stress that is capable of mimicking IBS. Otilonium bromide (OB), which is orally administered, concentrates in the large bowel and controls most of the IBS symptoms in humans. Several reports have shown that OB has multiple mechanisms of action and cellular targets. We investigated whether the application of rWAS to rats induced morphological and functional alterations of the cholinergic neurotransmission in the distal colon and whether OB prevented them. The results demonstrated that rWAS affects cholinergic neurotransmission by causing an increase in acid mucin secretion, in the amplitude of electrically evoked contractile responses, abolished by atropine, and in the number of myenteric neurons expressing choline acetyltransferase. OB counteracted these changes and also showed an intrinsic antimuscarinic effect on the post-synaptic muscular receptors. We assume that the rWAS consequences on the cholinergic system are linked to corticotrophin-releasing factor-1 (CRF1) receptor activation by the CRF hypothalamic hormone. OB, by interfering with the CFR/CRFr activation, interrupted the cascade events responsible for the changes affecting the rWAS rat colon.
Collapse
Affiliation(s)
- Chiara Traini
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Cristina Biagioni
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maria Caterina Baccari
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maria Giuliana Vannucchi
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
5
|
Mayer EA, Ryu HJ, Bhatt RR. The neurobiology of irritable bowel syndrome. Mol Psychiatry 2023; 28:1451-1465. [PMID: 36732586 PMCID: PMC10208985 DOI: 10.1038/s41380-023-01972-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Irritable bowel syndrome (IBS) is the most prevalent disorder of brain-gut interactions that affects between 5 and 10% of the general population worldwide. The current symptom criteria restrict the diagnosis to recurrent abdominal pain associated with altered bowel habits, but the majority of patients also report non-painful abdominal discomfort, associated psychiatric conditions (anxiety and depression), as well as other visceral and somatic pain-related symptoms. For decades, IBS was considered an intestinal motility disorder, and more recently a gut disorder. However, based on an extensive body of reported information about central, peripheral mechanisms and genetic factors involved in the pathophysiology of IBS symptoms, a comprehensive disease model of brain-gut-microbiome interactions has emerged, which can explain altered bowel habits, chronic abdominal pain, and psychiatric comorbidities. In this review, we will first describe novel insights into several key components of brain-gut microbiome interactions, starting with reported alterations in the gut connectome and enteric nervous system, and a list of distinct functional and structural brain signatures, and comparing them to the proposed brain alterations in anxiety disorders. We will then point out the emerging correlations between the brain networks with the genomic, gastrointestinal, immune, and gut microbiome-related parameters. We will incorporate this new information into a systems-based disease model of IBS. Finally, we will discuss the implications of such a model for the improved understanding of the disorder and the development of more effective treatment approaches in the future.
Collapse
Affiliation(s)
- Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Departments of Medicine, Psychiatry and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Hyo Jin Ryu
- A.T. Still University School of Osteopathic Medicine in Arizona, Meza, AZ, USA
| | - Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Mulak A, Freud T, Waluga M, Bangdiwala SI, Palsson OS, Sperber AD. Sex- and gender-related differences in the prevalence and burden of disorders of gut-brain interaction in Poland. Neurogastroenterol Motil 2023; 35:e14568. [PMID: 36989186 DOI: 10.1111/nmo.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND The aim of the study was to assess sex- and gender-related differences in the epidemiology and impact of disorders of gut-brain interaction (DGBI) in Poland. METHODS Data used for the current analysis were derived from the Polish population sample of 2057 subjects (1030 F, 1027 M) collected via the Internet survey that included the Rome IV diagnostic questionnaire and 80 supplementary questions. KEY RESULTS The overall prevalence of DGBI in Poland was 46.0% (51.7% in women and 40.3% in men, p < 0.001). Comparing women versus men, esophageal disorders were observed in 6.3% vs. 6.0%, respectively (p > 0.05), gastroduodenal disorders in 14.0% vs. 7.8% (p < 0.001), bowel disorders in 44.3% vs. 33.9% (p < 0.001), and anorectal disorders in 9.9% vs. 7.7% (p > 0.05). The six most common DGBI included functional constipation 14.2%, functional dyspepsia 8.3%, proctalgia fugax 6.6%, functional bloating 4.8%, functional diarrhea 4.5%, and irritable bowel syndrome (IBS) 4.4%. All these disorders, except for functional diarrhea, were more common in women. The DGBI overlap was significantly higher in women than in men (16.7% vs. 11.2%, p < 0.001). A higher number of overlapping DGBI correlated positively with IBS severity, higher level of somatization, anxiety and depression, poorer quality of life (QoL), and increased healthcare utilization. CONCLUSIONS AND INFERENCES This is the first comprehensive report on significant sex/gender-related differences in the prevalence and burden of DGBI in Poland. The revealed differences between women and men with DGBI in the clinical profile, psychosocial variables, and healthcare utilization may have important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Tamar Freud
- Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marek Waluga
- Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Shrikant I Bangdiwala
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Olafur S Palsson
- Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ami D Sperber
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Di Nardo G, Cremon C, Staiano A, Stanghellini V, Borrelli O, Strisciuglio C, Romano C, Mallardo S, Scarpato E, Marasco G, Salvatore S, Zenzeri L, Felici E, Pensabene L, Sestito S, Francavilla R, Quitadamo P, Baldassarre M, Giorgio V, Tambucci R, Ziparo C, Parisi P, Barbaro MR, Barbara G. Role of inflammation in pediatric irritable bowel syndrome. Neurogastroenterol Motil 2023; 35:e14365. [PMID: 35340083 DOI: 10.1111/nmo.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND IBS affects a large number of children throughout the world and is thought to be the result of disturbed neuroimmune function along with the brain-gut axis. Although the underlying pathophysiologic mechanisms are not clear, the role of low-grade inflammation and mucosal immune activation in IBS symptom generation has become evident also in subsets of pediatric patients. Animal models provided meaningful insight in the causal relationship between abnormal mucosal immune activation and changes in gastrointestinal (GI) sensory-motor function. Likewise, the development of long-standing GI symptoms fulfilling the current criteria for functional GI disorders after infection gastroenteritis and in patients with IBD or celiac disease in remission further supports this hypothesis. Immune activation, its impact on gut sensory-motor function, and potential implications for symptom generation emerged in both children and adults with IBS. PURPOSE The aim of this review is to summarize the main evidence on the presence of low-grade inflammation and immune activation in children with IBS, its possible role in symptom generation, and its potential implication for new therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Di Nardo
- NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Cesare Cremon
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, "Federico II", University of Naples, Naples, Italy
| | | | - Osvaldo Borrelli
- Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Romano
- Pediatric Gastroenterology Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Saverio Mallardo
- Pediatric Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Elena Scarpato
- Department of Translational Medical Science, "Federico II", University of Naples, Naples, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Salvatore
- Pediatric Department, Ospedale "F. Del Ponte", University of Insubria, Varese, Italy
| | - Letizia Zenzeri
- NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Pediatric Emergency Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Enrico Felici
- Pediatric and Pediatric Emergency Unit, "Umberto Bosio" Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Simona Sestito
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Quitadamo
- Department of Pediatrics, A.O.R.N. Santobono-Pausilipon, Naples, Italy
| | - Mariella Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Renato Tambucci
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Ziparo
- NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Pasquale Parisi
- NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
8
|
Torres-Maravilla E, Holowacz S, Delannoy J, Lenoir L, Jacouton E, Gervason S, Meynier M, Boucard AS, Carvalho FA, Barbut F, Bermúdez-Humarán LG, Langella P, Waligora-Dupriet AJ. Serpin-positive Bifidobacterium breve CNCM I-5644 improves intestinal permeability in two models of irritable bowel syndrome. Sci Rep 2022; 12:19776. [PMID: 36396717 PMCID: PMC9672316 DOI: 10.1038/s41598-022-21746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotic supplementation can help to mitigate the pathogenesis of irritable bowel syndrome (IBS) by reinforcing the intestinal barrier, and reducing both inflammation and proteolytic activity. Here, a combination of in vitro tests was performed on 33 Bifidobacterium strains as probiotic candidates for IBS. In addition to the classical tests performed, the detection of the serine protease inhibitor (serpin) enzyme capable of decreasing the high proteolytic activity found in IBS patients was included. Three serpin-positive strains were selected: Bifidobacterium breve CNCM I-5644, Bifidobacterium longum subsp. infantis CNCM I-5645 and B. longum CNCM I-5646 for their immunomodulation properties and protection of intestinal epithelial integrity in vitro. Furthermore, we found that B. breve CNCM I-5644 strain prevented intestinal hyperpermeability by upregulating Cingulin and Tight Junction Protein 1 mRNA levels and reducing pro-inflammatory markers. The ability of CNCM I-5644 strain to restore intestinal hyperpermeability (FITC-dextran) was shown in the murine model of low-grade inflammation induced by dinitrobenzene sulfonic acid (DNBS). This effect of this strain was corroborated in a second model of IBS, the neonatal maternal separation model in mice. Altogether, these data suggest that serpin-positive B. breve CNCM I-5644 may partially prevent disorders associated with increased barrier permeability such as IBS.
Collapse
Affiliation(s)
- Edgar Torres-Maravilla
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France ,grid.7429.80000000121866389Université Paris Cité, INSERM, 3PHM, F-75006 Paris, France
| | - Sophie Holowacz
- PiLeJe Laboratoire, 37 Quai de Grenelle, 75015 Paris Cedex 15, France
| | - Johanne Delannoy
- grid.7429.80000000121866389Université Paris Cité, INSERM, 3PHM, F-75006 Paris, France
| | - Loïc Lenoir
- PiLeJe Laboratoire, 37 Quai de Grenelle, 75015 Paris Cedex 15, France
| | - Elsa Jacouton
- PiLeJe Laboratoire, 37 Quai de Grenelle, 75015 Paris Cedex 15, France
| | - Sandie Gervason
- grid.494717.80000000115480420INSERM UMR 1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Maëva Meynier
- grid.494717.80000000115480420INSERM UMR 1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Anne-Sophie Boucard
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Frédéric A. Carvalho
- grid.494717.80000000115480420INSERM UMR 1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Frédéric Barbut
- grid.7429.80000000121866389Université Paris Cité, INSERM, 3PHM, F-75006 Paris, France ,grid.50550.350000 0001 2175 4109National Reference Laboratory for C. Difficile, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Luis G. Bermúdez-Humarán
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
9
|
Yoshioka T, Ohashi M, Matsumoto K, Omata T, Hamano T, Yamazaki M, Kimiki S, Okano K, Kobayashi R, Yamada D, Hada N, Kato S, Saitoh A. Repeated psychological stress, chronic vicarious social defeat stress, evokes irritable bowel syndrome-like symptoms in mice. Front Neurosci 2022; 16:993132. [PMID: 36277999 PMCID: PMC9582264 DOI: 10.3389/fnins.2022.993132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has demonstrated that emotional states and intestinal conditions are inter-connected in so-called “brain–gut interactions.” Indeed, many psychiatric disorders are accompanied by gastrointestinal symptoms, such as the irritable bowel syndrome (IBS). However, the functional connection remains elusive, partly because there are few useful experimental animal models. Here, we focused on a highly validated animal model of stress-induced psychiatric disorders, such as depression, known as the chronic vicarious social defeat stress (cVSDS) model mice, which we prepared using exposure to repeated psychological stress, thereafter examining their intestinal conditions. In the charcoal meal test and the capsaicin-induced hyperalgesia test, cVSDS model mice showed a significantly higher intestinal transit ratio and increased visceral pain-related behaviors, respectively. These changes persisted over one month after the stress session. On the other hand, the pathological evaluations of the histological and inflammatory scores of naive and cVSDS model mice did not differ. Furthermore, keishikashakuyakuto—a kampo medicine clinically used for the treatment of IBS—normalized the intestinal motility change in cVSDS model mice. Our results indicate that cVSDS model mice present IBS-like symptoms such as chronic intestinal peristaltic changes and abdominal hyperalgesia without organic lesion. We therefore propose the cVSDS paradigm as a novel animal model of IBS with wide validity, elucidating the correlation between depressive states and intestinal abnormalities.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Misaki Ohashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoki Omata
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Takumi Hamano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Mayuna Yamazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Sayaka Kimiki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kotaro Okano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Riho Kobayashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Noriyasu Hada
- Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- *Correspondence: Akiyoshi Saitoh,
| |
Collapse
|
10
|
Jiang FR, Hang L, Zhou Y, Feng Y, Yuan JY. Estrogen-gut microbiota interactions and irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:511-520. [DOI: 10.11569/wcjd.v30.i12.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder with a complex pathogenesis that has a serious impact on the quality of life of patients. Abnormal visceral sensation, disordered gut motility, dysregulated immunity, and damaged intestinal barrier are thought to be involved in the pathogenesis of IBS. Female predisposition to IBS strongly suggests that sex hormones such as estrogen are involved in the development of IBS. In addition, dysbiosis of the intestinal flora is closely related to IBS. The interaction between estrogen and gut microbiota in IBS has not been fully elucidated. This review summarizes and evaluates the progress of related studies. Based on the new findings and shortcomings of current studies, we discuss the directions and issues that need to be resolved in future research.
Collapse
Affiliation(s)
- Feng-Ru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
11
|
Mocci E, Goto T, Chen J, Ament S, Traub RJ, Dorsey SG. Early and Late Transcriptional Changes in Blood, Neural, and Colon Tissues in Rat Models of Stress-Induced and Comorbid Pain Hypersensitivity Reveal Regulatory Roles in Neurological Disease. FRONTIERS IN PAIN RESEARCH 2022; 3:886042. [PMID: 35655748 PMCID: PMC9152010 DOI: 10.3389/fpain.2022.886042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) and temporomandibular disorder (TMD) are two chronic pain conditions that frequently overlap in the same individual, more commonly in women. Stress is a significant risk factor, exacerbating or triggering one or both conditions. However, the mechanisms underlying IBS–TMD co-morbidity are mostly unknown. Aim To detect both specific and common stress-induced visceral hypersensitivity (SIH) and comorbid TMD–IBS pain hypersensitivity (CPH) genetic signatures over time. Method Twenty-four female rats were randomly assigned to one of three experimental groups: naïve, SIH, and CPH (orofacial pain plus stress). RNA was extracted from blood, colon, spinal cord, and dorsal root ganglion 1 or 7 weeks after the stress paradigm. We combined differential gene expression and co-expression network analyses to define both SIH and CPH expression profiles across tissues and time. Results The transcriptomic profile in blood and colon showed increased expression of genes enriched in inflammatory and neurological biological processes in CPH compared to SIH rats, both at 1 and 7 weeks after stress. In lumbosacral spinal tissue, both SIH and CPH rats compared to naïve revealed decreased expression of genes related to synaptic activity and increased expression of genes enriched in “angiogenesis,” “Neurotrophin,” and “PI3K-Akt” pathways. Compared to SIH, CPH rats showed increased expression of angiogenesis-related genes 1 week after exposure to stress, while 7 weeks post-stress the expression of these genes was higher in SIH rats. In dorsal root ganglia (DRG), CPH rats showed decreased expression of immune response genes at week 1 and inhibition of nerve myelination genes at 7 weeks compared to naïve. For all tissues, we observed higher expression of genes involved in ATP production in SIH compared to CPH at 1 week and this was reversed 7 weeks after the induction of stress. Conclusion Our study highlights an increased inflammatory response in CPH compared to SIH rats in the blood and colon. DRG and spinal transcriptomic profiles of both CPH and SIH rats showed inhibition of synaptic activity along with activation of angiogenesis. Targeting these biological processes may lead to a more profound understanding of the mechanisms underlying IBS–TMD comorbidities and new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Evelina Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| | - Taichi Goto
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
| | - Jie Chen
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
- *Correspondence: Susan G. Dorsey
| |
Collapse
|
12
|
Antispasmodic Effect of Bergamot Essential Oil on Rat Isolated Gut Tissues. Pharmaceutics 2022; 14:pharmaceutics14040775. [PMID: 35456609 PMCID: PMC9025531 DOI: 10.3390/pharmaceutics14040775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Preclinical data indicate that bergamot essential oil (BEO) can modulate the synaptic functions within the central nervous system (CNS). Particularly, several data shows that essential oil is endowed with reproducible analgesic and anxiolytic effects that may derived from the ability to modulate the excitatory and inhibitory neurotransmission in the CNS. Although there are differences in the functional complexity of the enteric nervous system (ENS), it is likely that the phytocomplex has biological properties in gut superimposable to those showed in the CNS. Accordingly, the aim of this study was to investigate ex-vivo the effect of bergamot essential oil and its main constituents on the contractile activity of rat isolated colon, jejunum and ileum induced by different muscle stimulants such as acetylcholine (10−6 M) and potassium chloride (80 mM). Our present data demonstrate that BEO inhibits cholinergically- and non cholinergically-mediated contractions in rat isolated gut and that linalool is the most active component. These results suggest that the phytocomplex might be useful in the treatment of spastic disorders in ENS mainly characterized by the presence of pain; incidentally, irritable bowel syndrome (IBS) is a painful condition in which a role for neurotransmitter dysfunction has been envisaged. More investigation is required for clinical translation of the present data.
Collapse
|
13
|
Aguilera-Lizarraga J, Hussein H, Boeckxstaens GE. Immune activation in irritable bowel syndrome: what is the evidence? Nat Rev Immunol 2022; 22:674-686. [PMID: 35296814 DOI: 10.1038/s41577-022-00700-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder that is characterized by abdominal pain and an altered defecation pattern. It affects between 5 and 20% of the general population and can seriously impact quality of life. The pathophysiology of IBS is rather complex and multifactorial including, for example, altered signalling by the gut-brain axis, dysbiosis, abnormal visceral pain signalling and intestinal immune activation. The latter has gained particular interest in recent years, with growing insight into the bidirectional communication between the nervous system and the immune system. In this Review, we detail the current evidence suggesting that immune activation contributes to the pathology seen in patients with IBS and discuss the potential mechanisms involved. Moreover, we describe how immune mediators, particularly those released by mast cells, can directly activate or sensitize pain-transmitting nerves, leading to increased pain signalling and abdominal pain. Finally, we discuss the potential of interventions targeting immune activation as a new therapeutic strategy for patients suffering from IBS.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Hind Hussein
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Ameliorative Effects of Humulus japonicus Extract and Polysaccharide-Rich Extract of Phragmites rhizoma in Rats with Gastrointestinal Dysfunctions Induced by Water Avoidance Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9993743. [PMID: 35096122 PMCID: PMC8799342 DOI: 10.1155/2022/9993743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Chronic stress can cause the gastrointestinal disorders characterized by an altered bowel movement and abdominal pain. Studies have shown that Humulus japonicus extract (HJE) has anti-inflammatory and antidiarrheal effects, and Phragmites rhizoma extract (PEP) has antioxidative and antistress effects. The present study aimed to investigate the possible effects of HJE and PEP in rat models with stress-induced gastrointestinal dysfunctions. The rats were exposed to water avoidance stress (WAS, 1 h/day) for 10 days to induce gastrointestinal disorders. We found that WAS significantly increased fecal pellet output during 1 h stress, gastric emptying, colonic contractility, and permeability compared to the normal rats. Pretreatment with HJE and PEP (0.25 and 0.5 mL/kg, both administered separately) improved the increased gastric emptying and colonic contractility induced by electrical field stimulation, acetylcholine, and serotonin and also alleviated the increased colonic permeability. HJE and PEP also increased the claudin-1 and occludin expressions, reduced by WAS. WAS increased the concentration of TNF-α and TBARS and reduced FRAP. HJE and PEP recovered these effects. HJE and PEP improved the gastrointestinal disorders induced by WAS by upregulating the tight junction protein, possibly acting on cholinergic and serotonergic receptors to abolish the colonic hypercontractility and hyperpermeability and degradation of inflammatory cytokines via an antioxidant effect.
Collapse
|
15
|
Brylev L, Fominykh V, Chernenkaia V, Chernenkiy I, Gorbachev K, Ataulina A, Izvekov A, Monakhov M, Olenichev A, Orlov S, Turin I, Loginov M, Rautbart S, Baymukanov A, Parshikov V, Demeshonok V, Yakovlev A, Druzhkova T, Guekht A, Gulyaeva N. Stress load and neurodegeneration after gastrostomy tube placement in amyotrophic lateral sclerosis patients. Metab Brain Dis 2021; 36:2473-2482. [PMID: 34559375 DOI: 10.1007/s11011-021-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Dysphagia and progressive swallowing problems due to motoneuron death is one of amyotrophic lateral sclerosis (ALS) symptoms. Malnutrition and body weight loss result in immunological disturbances, fatigability and increase risk of secondary complications in ALS patients, percutaneous endoscopic gastrostomy tube (PEG) placement representing a well-recognized method for malnutrition correction and potentially increasing life expectancy. However, despite nutritional correction, occasional rapid neurological deterioration may develop after PEG placement. We have hypothesized that this decline can be a result of exteroceptive stress during PEG placement and promote neurodegeneration in ALS patients. Intravenous sedation may decrease stress during invasive procedures and it is safe during PEG placement in ALS patients. The aim of the study was comparing different PEG placement protocols of anesthesia (local anesthesia or local anesthesia plus intravenous sedation) in ALS from perspectives of stress load and neurological deterioration profile. During 1.5 years 94 ALS patients were admitted; gastrostomy was performed in 79 patients. After screening according to inclusion and exclusion criteria, 30 patients were included in the prospective consecutive study. All patients were divided in two groups, with local anesthesia and with combination of local anesthesia and intravenous sedation. Routine biochemical indices, neurodegeneration and stress markers were measured. The age of ALS patients was 61 ± 10 years; 20 patients were included at stage 4A and 10 at stage 4B (King's College staging). PEG was placed at average14 months after the diagnosis and 2.2 years after first symptoms. Mean ALS Functional Rating Scale-Revised was 27.8, mean forced vital capacity of lung 46.3% (19-91%). After one year of observation only 8 patients survived. Mean life duration after PEG was 5 months (5 days-20 months). Comparison of two PEG placement protocols did not reveal differences in survival time, stress load and inflammation level. Higher saliva cortisol levels, serum cortisol, glucose, C-reactive protein and interleukin-6 were detected after PEG placement, confirming considerable stress response. PEG is a stressful factor for ALS patients, PEG placement representing a natural model of exteroceptive stress. Stress response was detected as increased cortisol, C-reactive protein, interleukin-6, and glucose levels. Intravenous sedation did not increase the risk of PEG placement procedure, however, sedation protocol did not affect stress load.
Collapse
Affiliation(s)
- L Brylev
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
- "Live Now" Charity Foundation for supporting people with ALS and other neuromuscular disorders, Moscow, Russia
| | - V Fominykh
- Bujanov Moscow City Clinical Hospital, Moscow, Russia.
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia.
| | - V Chernenkaia
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - I Chernenkiy
- Bauman Moscow State Technical University, Moscow, Russia
| | - K Gorbachev
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - A Ataulina
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - A Izvekov
- Mukhin Moscow City Clinical Hospital, Moscow, Russia
| | - M Monakhov
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - A Olenichev
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - S Orlov
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - I Turin
- Moscow City Clinical Hospital №40, Moscow, Russia
| | - M Loginov
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - S Rautbart
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - A Baymukanov
- Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | - V Parshikov
- "Live Now" Charity Foundation for supporting people with ALS and other neuromuscular disorders, Moscow, Russia
| | - V Demeshonok
- "Live Now" Charity Foundation for supporting people with ALS and other neuromuscular disorders, Moscow, Russia
| | - A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - T Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - A Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
16
|
Cao DY, Hu B, Xue Y, Hanson S, Dessem D, Dorsey SG, Traub RJ. Differential Activation of Colonic Afferents and Dorsal Horn Neurons Underlie Stress-Induced and Comorbid Visceral Hypersensitivity in Female Rats. THE JOURNAL OF PAIN 2021; 22:1283-1293. [PMID: 33887444 PMCID: PMC8500917 DOI: 10.1016/j.jpain.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Chronic Overlapping Pain Conditions, including irritable bowel syndrome (IBS) and temporomandibular disorder (TMD), represent a group of idiopathic pain conditions that likely have peripheral and central mechanisms contributing to their pathology, but are poorly understood. These conditions are exacerbated by stress and have a female predominance. The presence of one condition predicts the presence or development of additional conditions, making this a significant pain management problem. The current study was designed to determine if the duration and magnitude of peripheral sensitization and spinal central sensitization differs between restraint stress-induced visceral hypersensitivity (SIH) and chronic comorbid pain hypersensitivity (CPH; stress during pre-existing orofacial pain). SIH in female rats, as determined by the visceromotor response, persisted at least four but resolved by seven weeks. In contrast, CPH persisted at least seven weeks. Surprisingly, colonic afferents in both SIH and CPH rats were sensitized at seven weeks. CPH rats also had referred pain through seven weeks, but locally anesthetizing the colon only attenuated the referred pain through four weeks, suggesting a transition to colonic afferent independent central sensitization. Different phenotypes of dorsal horn neurons were sensitized in the CPH rats seven weeks post stress compared to four weeks or SIH rats. The current study suggests differential processing of colonic afferent input to the lumbosacral spinal cord contributes to visceral hypersensitivity during comorbid chronic pain conditions. PERSPECTIVE: Chronic Overlapping Pain Conditions represent a unique challenge in pain management. The diverse nature of peripheral organs hinders a clear understanding of underlying mechanisms accounting for the comorbidity. This study highlights a mismatch between the condition-dependent behavior and peripheral and spinal mechanisms that contribute to visceral pain hypersensitivity.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, P. R. China
| | - Bo Hu
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, P. R. China
| | - Yang Xue
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Department of Prosthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P. R. China
| | - Shelby Hanson
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland
| | - Dean Dessem
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Richard J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland.
| |
Collapse
|
17
|
Takahashi K, Khwaja IG, Schreyer JR, Bulmer D, Peiris M, Terai S, Aziz Q. Post-inflammatory Abdominal Pain in Patients with Inflammatory Bowel Disease During Remission: A Comprehensive Review. CROHN'S & COLITIS 360 2021; 3:otab073. [PMID: 36777266 PMCID: PMC9802269 DOI: 10.1093/crocol/otab073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain). Factors related to the brain-gut axis, such as peripheral and central sensitization, altered sympatho-vagal balance, hypothalamic-pituitary-adrenal axis activation, and psychosocial factors, play a significant role in the development of post-inflammatory pain. A comprehensive study investigating the interaction between multiple predisposing factors, including clinical psycho-physiological phenotypes, molecular mechanisms, and multi-omics data, is still needed to fully understand the complex mechanism of post-inflammatory pain. Furthermore, current treatment options are limited and new treatments consistent with the underlying pathophysiology are needed to improve clinical outcomes.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Iman Geelani Khwaja
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jocelyn Rachel Schreyer
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Tang HY, Jiang AJ, Wang XY, Wang H, Guan YY, Li F, Shen GM. Uncovering the pathophysiology of irritable bowel syndrome by exploring the gut-brain axis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1187. [PMID: 34430628 PMCID: PMC8350700 DOI: 10.21037/atm-21-2779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Objective To improve the pathophysiological understanding of irritable bowel syndrome (IBS) by exploring the gut-brain axis. Background Disorders of gut-brain interaction (DGBIs) are gastrointestinal (GI) disorders in which alterations in bowel functions occur. IBS, which is one of the most studied DGBIs, is linked with abdominal distress or pain without obvious structural or biochemical anomalies. Methods The etiology of IBS has not been clearly described but is known to be multifactorial, involving GI motility changes, post-infectious reactivity, visceral hypersensitivity, gut-brain interactions, microbiota dysbiosis, small intestinal bacterial overgrowth, food sensitivity, carbohydrate malabsorption, and intestinal inflammation. Conclusions One of the main features of IBS is the occurrence of structural and functional disruptions in the gut-brain axis, which alter reflective and perceptual nervous system reactions. Herein, we provide a brief summary of this topic. Furthermore, we discuss animal models, which are important in the study of IBS, especially as it is linked with stressors. These animal models cannot fully represent the human disease but serve as important tools for understanding this complicated disorder. In the future, technologies, such as organ-on-a-chip models and metabolomics, will provide novel information regarding the pathophysiology of IBS, which will play an important role in treatment development. Finally, we take a brief glance at how acupuncture treatments may hold potential for patients with IBS.
Collapse
Affiliation(s)
- He-Yong Tang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Ai-Juan Jiang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xi-Yang Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yuan-Yuan Guan
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Fei Li
- Department of Rehabilitation, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guo-Ming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
19
|
Application of Bioinformatics Methods to Identify Key Genes and Functions in Chronic Pelvic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7257405. [PMID: 34381521 PMCID: PMC8352682 DOI: 10.1155/2021/7257405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Neuropathologic pain (NPP) occurs in most patients with chronic pelvic pain (CPP), and the unique physiological characteristics of visceral sensory neurons make the current analgesic effect of CPP patients not optimistic. Therefore, this study explored the possible biological characteristics of key genes in CPP through the bioinformatics method. CPP-related dataset GSE131619 was downloaded from Gene Expression Omnibus to investigate the differentially expressed genes (DEGs) between lumbar dorsal root ganglia (DRG) and sacral DRG, and the functional enrichment analysis was performed. A protein-protein interaction (PPI) network was constructed to search subnet modules of specific biological processes, and then, the genes in the subnet were enriched by single gene set analysis. A CPP mouse model was established, and the expression of key genes were identified by qPCR. The results showed that 127 upregulated DEGs and 103 downregulated DEGs are identified. Functional enrichment analysis showed that most of the genes involved in signal transduction were involved in the pathway of receptor interaction. A subnet module related to neural signal regulation was identified in PPI, including CHRNB4, CHRNA3, and CHRNB2. All three genes were associated with neurological or inflammatory activity and are downregulated in the sacral spinal cord of CPP mice. This study provided three key candidate genes for CPP: CHRNB4, CHRNA3, and CHRNB2, which may be involved in the occurrence and development of CPP, and provided a powerful molecular target for the clinical diagnosis and treatment of CPP.
Collapse
|
20
|
Davis SM, Zuke JT, Berchulski MR, Burman MA. Amygdalar Corticotropin-Releasing Factor Signaling Is Required for Later-Life Behavioral Dysfunction Following Neonatal Pain. Front Physiol 2021; 12:660792. [PMID: 34045975 PMCID: PMC8144524 DOI: 10.3389/fphys.2021.660792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal pain such as that experienced by infants in the neonatal intensive care unit is known to produce later-life dysfunction including heightened pain sensitivity and anxiety, although the mechanisms remain unclear. Both chronic pain and stress in adult organisms are known to influence the corticotropin-releasing factor (CRF) system in the Central Nucleus of the Amygdala, making this system a likely candidate for changes following neonatal trauma. To examine this, neonatal rats were subjected to daily pain, non-painful handling or left undisturbed for the first week of life. Beginning on postnatal day, 24 male and female rats were subjected to a 4-day fear conditioning and sensory testing protocol. Some subjects received intra-amygdalar administration of either Vehicle, the CRF receptor 1 (CRF1) receptor antagonist Antalarmin, or the CRF receptor 2 (CRF2) receptor antagonist Astressin 2B prior to fear conditioning and somatosensory testing, while others had tissue collected following fear conditioning and CRF expression in the CeA and BLA was assessed using fluorescent in situ hybridization. CRF1 antagonism attenuated fear-induced hypersensitivity in neonatal pain and handled rats, while CRF2 antagonism produced a general antinociception. In addition, neonatal pain and handling produced a lateralized sex-dependent decrease in CRF expression, with males showing a diminished number of CRF-expressing cells in the right CeA and females showing a similar reduction in the number of CRF-expressing cells in the left BLA compared to undisturbed controls. These data show that the amygdalar CRF system is a likely target for alleviating dysfunction produced by early life trauma and that this system continues to play a major role in the lasting effects of such trauma into the juvenile stage of development.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jared T Zuke
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Mariah R Berchulski
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
21
|
Gigante I, Tutino V, Russo F, De Nunzio V, Coletta S, Armentano R, Crovace A, Caruso MG, Orlando A, Notarnicola M. Cannabinoid Receptors Overexpression in a Rat Model of Irritable Bowel Syndrome (IBS) after Treatment with a Ketogenic Diet. Int J Mol Sci 2021; 22:2880. [PMID: 33809047 PMCID: PMC7999285 DOI: 10.3390/ijms22062880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The administration of a ketogenic diet (KD) has been considered therapeutic in subjects with irritable bowel syndrome (IBS). This study aimed to investigate the molecular mechanisms by which a low-carbohydrate diet, such as KD, can improve gastrointestinal symptoms and functions in an animal model of IBS by evaluating possible changes in intestinal tissue expression of endocannabinoid receptors. In rats fed a KD, we detected a significant restoration of cell damage to the intestinal crypt base, a histological feature of IBS condition, and upregulation of CB1 and CB2 receptors. The diet also affected glucose metabolism and intestinal membrane permeability, with an overexpression of the glucose transporter GLUT1 and tight junction proteins in treated rats. The present data suggest that CB receptors represent one of the molecular pathways through which the KD works and support possible cannabinoid-mediated protection at the intestinal level in the IBS rats after dietary treatment.
Collapse
Affiliation(s)
- Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (F.R.); (A.O.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| | - Sergio Coletta
- Histopathology Unit, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (S.C.); (R.A.)
| | - Raffaele Armentano
- Histopathology Unit, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (S.C.); (R.A.)
| | - Alberto Crovace
- Animal Facility, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (F.R.); (A.O.)
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| |
Collapse
|
22
|
Ji NN, Du L, Wang Y, Wu K, Chen ZY, Hua R, Zhang YM. Small-Conductance Ca 2+-Activated K + Channels 2 in the Hypothalamic Paraventricular Nucleus Precipitates Visceral Hypersensitivity Induced by Neonatal Colorectal Distension in Rats. Front Pharmacol 2021; 11:605618. [PMID: 33584280 PMCID: PMC7873043 DOI: 10.3389/fphar.2020.605618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Visceral hypersensitivity is one of the pivotal pathophysiological features of visceral pain in irritable bowel syndrome (IBS). Small-conductance Ca2+-activated K+ channel (SK) is critical for a variety of functions in the central nervous system (CNS), nonetheless, whether it is involved in the pathogenesis of visceral hypersensitivity remain elusive. In this study, we examined mechanism of SK2 in hypothalamic paraventricular nucleus (PVN) in the pathogenesis of visceral hypersensitivity induced by neonatal colorectal distension (CRD). Rats undergoing neonatal CRD presented with visceral hypersensitivity as well as downregulated membrane SK2 channel and p-PKA. Intra-PVN administration of either the membrane protein transport inhibitor dynasore or the SK2 activator 1-EBIO upregulated the expression of membrane SK2 in PVN and mitigated visceral hypersensitivity. In addition, 1-EBIO administration reversed the increase in neuronal firing rates in PVN in rats undergoing neonatal CRD. On the contrary, intra-PVN administration of either the SK2 inhibitor apamin or PKA activator 8-Br-cAMP exacerbated the visceral hypersensitivity. Taken together, these findings demonstrated that visceral hypersensitivity is related to the downregulation of membrane SK2 in PVN, which may be attributed to the activation of PKA; pharmacologic activation of SK2 alleviated visceral hypersensitivity, which brings prospect of SK2 activators as a new intervention for visceral pain.
Collapse
Affiliation(s)
- Ning-Ning Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Anesthesiology Department of the Nanjing Children's Hospital, Nanjing, China
| | - Ying Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yang Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Hua
- Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Lavretsky H, Feldman PhD JL. Precision Medicine for Breath-Focused Mind-Body Therapies for Stress and Anxiety: Are We Ready Yet? Glob Adv Health Med 2021; 10:2164956120986129. [PMID: 33489480 PMCID: PMC7809295 DOI: 10.1177/2164956120986129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
In this viewpoint, we present an argument for transdisciplinary "precision medicine" approaches that combine studies of basic neurobiology of breathing in animal and human models of stress that can help characterize physiological and neural biomarkers and mechanisms of breathing control and emotion regulation in humans. Such mechanistic research is fundamental for the development of more effective and mechanism-based mind-body therapies. The potential for this research to positively impact public health is high, as breathing techniques are inexpensive, accessible, and cross-culturally accepted, with fewer complications then observed with other standard therapies for stress-related disorders.
Collapse
Affiliation(s)
- Helen Lavretsky
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California
| | | |
Collapse
|
24
|
Wiley JW, Zong Y, Zheng G, Zhu S, Hong S. Histone H3K9 methylation regulates chronic stress and IL-6-induced colon epithelial permeability and visceral pain. Neurogastroenterol Motil 2020; 32:e13941. [PMID: 32743845 PMCID: PMC8007084 DOI: 10.1111/nmo.13941] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic stress is associated with activation of the HPA axis, elevation in pro-inflammatory cytokines, decrease in intestinal epithelial cell tight junction (TJ) proteins, and enhanced visceral pain. It is unknown whether epigenetic regulatory pathways play a role in chronic stress-induced intestinal barrier dysfunction and visceral hyperalgesia. METHODS Young adult male rats were subjected to water avoidance stress ± H3K9 methylation inhibitors or siRNAs. Visceral pain response was assessed. Differentiated Caco-2/BBE cells and human colonoids were treated with cortisol or IL-6 ± antagonists. Expression of TJ, IL-6, and H3K9 methylation status at gene promoters was measured. Transepithelial electrical resistance and FITC-dextran permeability were evaluated. KEY RESULTS Chronic stress induced IL-6 up-regulation prior to a decrease in TJ proteins in the rat colon. The IL-6 level inversely correlated with occludin expression. Treatment with IL-6 decreased occludin and induced visceral hyperalgesia. Chronic stress and IL-6 increased H3K9 methylation and decreased transcriptional GR binding to the occludin gene promoter, leading to down-regulation of protein expression and increase in paracellular permeability. Intrarectal administration of a H3K9 methylation antagonist prevented chronic stress-induced visceral hyperalgesia in the rat. In a human colonoid model, cortisol decreased occludin expression, which was prevented by the GR antagonist RU486, and IL-6 increased H3K9 methylation and decreased TJ protein levels, which were prevented by inhibitors of H3K9 methylation. CONCLUSIONS & INFERENCES Our findings support a novel role for methylation of the repressive histone H3K9 to regulate chronic stress, pro-inflammatory cytokine-mediated reduction in colon TJ protein levels, and increase in paracellular permeability and visceral hyperalgesia.
Collapse
Affiliation(s)
- John W Wiley
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gen Zheng
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| |
Collapse
|
25
|
Azmy DJ, Qualia CM. Review of Abdominal Migraine in Children. Gastroenterol Hepatol (N Y) 2020; 16:632-639. [PMID: 34035698 PMCID: PMC8132691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abdominal migraine is a type of functional abdominal pain disorder that affects 0.2% to 4.1% of children. It consists of paroxysmal, recurrent, and acute abdominal pain attacks with associated symptoms, including pallor, nausea, vomiting, anorexia, headache, and photophobia. In between episodes, patients return to their baseline health. Abdominal migraine is a clinical diagnosis. Its diagnostic criteria are outlined under the Rome IV criteria and the International Classification of Headache Disorders III criteria. Hypothesized contributors to its pathophysiology include a combination of visceral hypersensitivity, gut-brain enteric nervous system alterations, and psychological factors. Treatment is focused on preventive measures and mostly includes nonpharmacologic approaches. Possible pharmacologic treatments include abortive medications used for migraine headaches such as analgesics and antiemetics. Abdominal migraine is likely underdiagnosed and is poorly understood. Individuals who have abdominal migraine report a lower quality of life, rendering it an important diagnosis. The aim of this article is to review the epidemiology, clinical presentation, pathophysiology, diagnosis, and treatment of abdominal migraine in children.
Collapse
Affiliation(s)
| | - Cary M. Qualia
- Division of Pediatric Gastroenterology, Bernard and Millie Duker Children’s Hospital, Albany Medical Center, Albany, New York
| |
Collapse
|
26
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
27
|
Effect of a Synbiotic Containing Lactobacillus paracasei and Opuntia humifusa on a Murine Model of Irritable Bowel Syndrome. Nutrients 2020; 12:nu12103205. [PMID: 33092151 PMCID: PMC7594034 DOI: 10.3390/nu12103205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The administration of a combination of probiotics and prebiotics is expected to be a promising strategy for improving irritable bowel syndrome (IBS) symptoms. This study aimed to investigate the efficacy of a synbiotic containing Lactobacillus paracasei and Opuntia humifusa extract for symptomatic improvement of IBS in a murine model and to evaluate the mechanism underlying the beneficial effects of this synbiotic. A total of 20 male Wistar rats aged 8 weeks with IBS induced by restraint stress were assigned into four groups and administered L. paracasei as a probiotic and O. humifusa extract as a prebiotic for 4 weeks. The primary outcome was stool consistency at week 4. To evaluate the mechanism underlying the beneficial effects of the synbiotic, fecal microbial analysis was conducted, and the serum corticosterone levels, tumor necrosis factor-α (TNF-α) levels in the colon tissue, and expression of tight junction proteins were investigated. All three treatment groups showed significantly lower scores for stool consistency than the control group at week 4 (all p < 0.001). When compared with the control group, the synbiotic groups showed a significantly greater abundance of L. paracasei in fecal microbial analysis, lower serum corticosterone levels, lower TNF-α levels in the colon tissue, and higher expression of tight junction proteins. This novel synbiotic containing L. paracasei and O. humifusa extract can improve the stool consistency in a murine model of IBS. It may be a promising treatment option for IBS, and human studies are warranted.
Collapse
|
28
|
Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020; 32:e13833. [PMID: 32155308 PMCID: PMC7319894 DOI: 10.1111/nmo.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress exacerbates many chronic pain syndromes including irritable bowel syndrome (IBS). Among these patient populations, many suffer from comorbid or chronic overlapping pain conditions and are predominantly female. Nevertheless, basic studies investigating chronic psychological stress-induced changes in pain sensitivity have been mostly carried out in male rodents. Our laboratory developed a model of comorbid pain hypersensitivity (CPH) (stress in the presence of preexisting orofacial pain inducing chronic visceral pain hypersensitivity that significantly outlasts transient stress-induced pain hypersensitivity (SIH)) facilitating the study of pain associated with IBS. Since CPH and SIH are phenotypically similar until SIH resolves and CPH persists, it is unclear if underlying mechanisms are similar. METHODS In the present study, the visceromotor response (VMR) to colorectal distention was recorded in the SIH and CPH models in intact females and ovariectomized rats plus estradiol replacement (OVx + E2). Over several months, rats were determined to be susceptible or resilient to stress and the role of peripheral corticotrophin-releasing factor (CRF) underlying in the pain hypersensitivity was examined. KEY RESULTS Stress alone induced transient (3-4 weeks) visceral hypersensitivity, though some rats were resilient. Comorbid conditions increased susceptibility to stress prolonging hypersensitivity beyond 13 weeks. Both models had robust peripheral components; hypersensitivity was attenuated by the CRF receptor antagonist astressin and the mast cell stabilizer disodium cromoglycate (DSCG). However, DSCG was less effective in the CPH model compared to the SIH model. CONCLUSIONS AND INFERENCES The data indicate many similarities but some differences in mechanisms contributing to comorbid pain conditions compared to transient stress-induced pain.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Bo Hu
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,Present address:
Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchXi’an Jiao Tong University College of StomatologyXi’anShaanxiChina
| | - Charles Klontz
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Jiyun Li
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Dean Dessem
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Susan G. Dorsey
- UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA,Department of Pain and Translational Symptom ScienceSchool of NursingUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Richard J. Traub
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| |
Collapse
|
29
|
DE Nunzio C, Nacchia A, Cicione A, Sica A, Baldassarri V, Voglino O, Mancini E, Guarnotta G, Trucchi A, Tubaro A. Night shift workers refer higher urinary symptoms with an impairment quality of life: a single cohort study. Minerva Urol Nephrol 2020; 73:831-835. [PMID: 32284530 DOI: 10.23736/s2724-6051.20.03735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of the present study is to assess the impact of night shift work (NSW) on urinary symptoms. METHODS Between March 2018 to October 2018, we evaluated a group of National Health care system workers. Urinary symptoms and quality of life were measured by Overactive Bladder Questionnaire Short Form (OABq-sf). Clinical variables (i.e. age, smoking status, medical history) were collected and analyzed according to be NS workers (NSWs) from subjects working at least one time from 8 pm to 8 am or from traditional workers (TWs). Univariate and multivariate analysis was performed to identify predictive variables of worse OAB outcomes (OABq-sf>30, OABq-SB≥12, OABq HRQL≥18). RESULTS A total of 136 participants (68 males and 68 females) were included in the study. On OABq-sf, total score, symptoms bother (OABq-SB) and health related quality of life (OABq-HRQL) domains were significantly (P<0.05) higher in NSWs group, respectively: 31 (IQR 26-35) vs. 19 (IQR 19-20); 11 (IQR 10-13) vs. 6 (IQR 6-7); 19 (IQR 16-22) vs. 13 (13-14). Finally, seven NSWs (10.6%) referred nocturia respect to only one (1%) TWs, (P=0.02). On multivariate analysis NSW was an independent predictor of OABq-sf>30 units (OR:30; CI: 9-111, P=0.001), OABq-SB ≥12 units (OR:16, CI: 6-43, P=0.001) and OABq HRQL≥18 units (OR:20, CI: 6-70, P=0.001). CONCLUSIONS Night shift workers presented worst OAB Score and poor QL when compared to similar traditional workers. Long-term data on NSWs patients are also needed to further clarify this relationship.
Collapse
Affiliation(s)
- Cosimo DE Nunzio
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy -
| | - Antonio Nacchia
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Antonio Cicione
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Angela Sica
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Valeria Baldassarri
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Olivia Voglino
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Elisa Mancini
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giorgio Guarnotta
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Alberto Trucchi
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| |
Collapse
|
30
|
Abstract
Gastrointestinal (GI) disturbances are common during training and competition, especially among endurance athletes. Historically, little attention has been paid to the psychobiological etiology of GI problems in sport. The aim of this review is to: (1) provide a physiological overview of how psychological stress and anxiety impact GI system function; (2) review the literature that has examined the role of stress and anxiety in GI distress in athletes; and (3) provide suggestions for future research. Animal and human studies have documented that psychological stressors reduce gastric motility and delay stomach emptying while simultaneously increasing large intestine motility. These functional changes are likely mediated through the secretion of corticotropin-releasing factor and subsequent alterations in autonomic nervous system activity, which act to reduce splanchnic blood flow and increase GI permeability. In addition, chronic stress and anxiety may worsen GI discomfort by increasing visceral hypersensitization. Still, only a couple of studies have found modest associations between stress, anxiety, and the occurrence/severity of GI distress in active populations. As such, future work should attempt to confirm that experimentally inducing psychological stress results in the aforementioned GI problems during exercise. Furthermore, studies are needed to determine how psychological stress impacts the tolerance to nutritional fueling and whether it worsens the GI permeability that normally occurs with exercise.
Collapse
|
31
|
Wang J, Zhang X, Yang C, Zhao S. Effect of monoacylglycerol lipase inhibition on intestinal permeability in chronic stress model. Biochem Biophys Res Commun 2020; 525:962-967. [PMID: 32173532 DOI: 10.1016/j.bbrc.2020.02.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is an anti-nociceptive lipid, which is inactivated through cellular uptake and subsequent catabolism by monoacylglycerol lipase (MAGL). The present study aimed to explore the effects of inhibition of MAGL on intestinal permeability. We first tested it in differentiated CaCO2 cells after 21 days' culture. The rat model of water avoidance stress (WAS) was established, and rats were divided into four groups according to intervention. Rats received intraperitoneal injection (i.p.) of an MAGL inhibitor (JZL184) alone, JZL184 and a the cannabinoid receptor 1 (CB1) receptor antagonist (SR141716A), JZL184 and a cannabinoid receptor 2 (CB2) receptor antagonist (AM630) or vehicle alone (control). We analyzed the fluorescein isothiocyanate-dextran (FD4) permeability and 2-AG level. Expression of MAGL and tight-junction-associated proteins were detected by western blot. Compared with the control group, MAGL expression was higher and 2-AG levels lower among WAS rats. Intestinal permeability was increased following administration of JZL184 which occurred due to up-regulation of tight-junction-associated proteins Claudin-1, Claudin-2, Claudin-5 and Occludin. The effects of MAGL inhibition were mediated by CB1, indicating that MAGL may represent a novel target for the treatment of reduced intestinal permeability in the context of chronic stress.
Collapse
Affiliation(s)
- Jing Wang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Rd, Jinan, 250021, China.
| | - Xiaohua Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Rd, Jinan, 250021, China.
| | - Chongmei Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Rd, Jinan, 250021, China.
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Rd, Jinan, 250021, China.
| |
Collapse
|
32
|
Gastrointestinal disorders-induced pain. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Feller L, Feller G, Ballyram T, Chandran R, Lemmer J, Khammissa RAG. Interrelations between pain, stress and executive functioning. Br J Pain 2019; 14:188-194. [PMID: 32922780 DOI: 10.1177/2049463719889380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim The purpose of this narrative review is to discuss the interrelations between pain, stress and executive functions. Implications for practice Self-regulation, through executive functioning, exerts control over cognition, emotion and behaviour. The reciprocal neural functional connectivity between the prefrontal cortex and the limbic system allows for the integration of cognitive and emotional neural pathways and then for higher-order psychological processes (reasoning, judgement etc.) to generate goal-directed adaptive behaviours and to regulate responses to psychosocial stressors and pain signals. Impairment in cognitive executive functioning may result in poor regulation of stress-, pain- and emotion-related processing of information. Conversely, adverse emotion, pain and stress impair executive functioning. The characteristic of the feedback and feedforward neural connections (quantity and quality) between the prefrontal cortex and the limbic system determine adaptive behaviour, stress response and pain experience.
Collapse
Affiliation(s)
- Liviu Feller
- Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Gal Feller
- Department of Anatomical Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Theona Ballyram
- Department of Psychiatry, University of Pretoria, Pretoria, South Africa
| | - Rakesh Chandran
- Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Johan Lemmer
- Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Razia Abdool Gafaar Khammissa
- Department of Periodontics and Oral Medicine, Oral and Dental Hospital, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Arie H, Nozu T, Miyagishi S, Ida M, Izumo T, Shibata H. Grape Seed Extract Eliminates Visceral Allodynia and Colonic Hyperpermeability Induced by Repeated Water Avoidance Stress in Rats. Nutrients 2019; 11:E2646. [PMID: 31689935 PMCID: PMC6893525 DOI: 10.3390/nu11112646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Grape seed extract (GSE) is rich in polyphenols composed mainly of proanthocyanidins, which are known to attenuate proinflammatory cytokine production. Repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via toll-like receptor 4 (TLR4) and proinflammatory cytokine pathways, which is a rat irritable bowel syndrome (IBS) model. Thus, we explored the effects of GSE on repeated WAS (1 h for 3 days)-induced visceral allodynia and colonic hyperpermeability in Sprague-Dawley rats. Paracellular permeability, as evaluated by transepithelial electrical resistance and flux of carboxyfluorescein, was analyzed in Caco-2 cell monolayers treated with interleukin-6 (IL-6) and IL-1β. WAS caused visceral allodynia and colonic hyperpermeability, and intragastric administration of GSE (100 mg/kg, once daily for 11 days) inhibited these changes. Furthermore, GSE also suppressed the elevated colonic levels of IL-6, TLR4, and claudin-2 caused by WAS. Paracellular permeability was increased in Caco-2 cell monolayers in the presence of IL-6 and IL-1β, which was inhibited by GSE. Additionally, GSE suppressed the claudin-2 expression elevated by cytokine stimulation. The effects of GSE on visceral changes appear to be evoked by suppressing colonic TLR4-cytokine signaling and maintaining tight junction integrity. GSE may be useful for treating IBS.
Collapse
Affiliation(s)
- Hideyuki Arie
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Masayuki Ida
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| |
Collapse
|
35
|
Kozakai Y, Hori K, Aye-Mon A, Okuda H, Harada SI, Hayashi K, Ozaki N. The role of peripheral corticotropin-releasing factor signaling in a rat model of stress-induced gastric hyperalgesia. Biochem Biophys Res Commun 2019; 519:797-802. [PMID: 31558322 DOI: 10.1016/j.bbrc.2019.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a common gastrointestinal disorder associated with persistent or recurrent upper gastrointestinal tract symptoms such as pain without any obvious pathological changes. Psychological and psychiatric factors might have a pathogenic role in FD. Changes in the sensation of stomach pain were determined after application of stress to adult rats. The involvement of corticotropin-releasing factor (CRF), Type 2 CRF receptor (CRF2) and inflammatory cytokine interleukin-6 (IL-6) was also investigated in the gastric hyperalgesia observed in this model. RESULTS Repeated water avoidance stress (WA-S) produced gastric hyperalgesia, with no obvious lesions in the gastric mucosa. Gastric hyperalgesia was inhibited by CRF and CRF2 antagonists, suggesting their involvement in gastric hyperalgesia observed after application of stress. Gastric hyperalgesia was inhibited by IL-6 neutralizing antibody. Immunofluorescence staining demonstrated CRF, CRF2, urocortin (Ucn)1, and Ucn2-positive cells in the gastric mucosa. CRF2-positive cells increased after WA-S, compared to sham stress. CRF2 and Ucn2 were expressed in the mast cells in the gastric mucosa. CONCLUSIONS CRF2 plays an important role in gastric hyperalgesia produced by stress. CRF2 signaling may be a useful therapeutic target for functional dyspepsia.
Collapse
Affiliation(s)
- Yu Kozakai
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Aye Aye-Mon
- Department of Anatomy, University of Medicine (1), Yangon, Myanmar
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Shin-Ichi Harada
- Department of Biochemistry and Center for Biomedical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Koei Hayashi
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Japan.
| |
Collapse
|
36
|
O'Brien R, Buckley MM, Kelliher A, O'Malley D. PI 3-kinase- and ERK-MAPK-dependent mechanisms underlie Glucagon-Like Peptide-1-mediated activation of Sprague Dawley colonic myenteric neurons. Neurogastroenterol Motil 2019; 31:e13631. [PMID: 31121089 DOI: 10.1111/nmo.13631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glucagon-like peptide (GLP-1) can modify colonic function, with beneficial effects reported in the functional bowel disorder, irritable bowel syndrome (IBS). IBS pathophysiology is characterized by hyper-activation of the hypothalamic-pituitary-adrenal stress axis and altered microbial profiles. This study aims to characterize the neuronal and functional effects of GLP-1 in healthy rat colons to aid understanding of its beneficial effects in moderating bowel dysfunction. METHODS Immunofluorescent and calcium imaging of myenteric neurons prepared from Sprague Dawley rat colons was carried out to elucidate the neuromodulatory actions of the GLP-1 receptor agonist, exendin-4 (Ex-4). Colonic contractile activity was assessed using organ bath physiological recordings. KEY RESULTS Ex-4 induced an elevation of intracellular calcium arising from store release and influx via voltage-gated calcium channels. Ex-4 activated both ERK-MAPK and PI 3-kinase signaling cascades. Neuronal activation was found to underlie suppression of contractile activity in colonic circular muscle. Although the stress hormone, corticotropin-releasing factor (CRF) potentiated the neuronal response to Ex-4, and the functional effects of Ex-4 on colonic circular muscle activity were not altered. CONCLUSIONS AND INFERENCES Ex-4 evoked neurally regulated suppression of rat colonic circular muscle activity. In myenteric neurons, the neurostimulatory effects of Ex-4 were dependent upon activation of PI 3-kinase and ERK-MAPK signaling cascades. No further change in circular muscle function was noted in the presence of CRF suggesting that stress does not impact on colonic function in health. Further studies in a model of IBS are needed to determine whether mechanisms are modified in the context of bowel dysfunction.
Collapse
Affiliation(s)
- Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Amy Kelliher
- Department of Physiology, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Abstract
Beyond their well-known role in embryonic development of the central and peripheral nervous system, neurotrophins, particularly nerve growth factor and brain-derived neurotrophic factor, exert an essential role in pain production and sensitization. This has mainly been studied within the framework of somatic pain, and even antibodies (tanezumab and fasinumab) have recently been developed for their use in chronic somatic painful conditions, such as osteoarthritis or low back pain. However, data suggest that neurotrophins also exert an important role in the occurrence of visceral pain and visceral sensitization. Visceral pain is a distressing symptom that prompts many consultations and is typically encountered in both 'organic' (generally inflammatory) and 'functional' (displaying no obvious structural changes in routine clinical evaluations) disorders of the gut, such as inflammatory bowel disease and irritable bowel syndrome, respectively. The present review provides a summary of neurotrophins as a molecular family and their role in pain in general and addresses recent investigations of the involvement of nerve growth factor and brain-derived neurotrophic factor in visceral pain, particularly that associated with inflammatory bowel disease and irritable bowel syndrome.
Collapse
|
38
|
Chen W, Taché Y, Marvizón JC. Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 2019; 381:149-158. [PMID: 29776484 DOI: 10.1016/j.neuroscience.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. The i.c.v. injection of CRF (0.6 μg, 10 μl), but not saline, induced bilateral mechanical hyperalgesia in rats with latent sensitization. In contrast, CRF i.c.v. did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). To determine whether descending pain inhibition mediates the suppression of hyperalgesia in latent sensitization, rats with CFA-induced latent sensitization received an intrathecal injection of lidocaine (10%, 1 μl) at the cervical-thoracic spinal cord to produce a spinal block. Lidocaine-injected rats, but not rats injected intrathecally with saline, developed bilateral mechanical hyperalgesia. Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Yvette Taché
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
39
|
O'Malley D. Endocrine regulation of gut function - a role for glucagon-like peptide-1 in the pathophysiology of irritable bowel syndrome. Exp Physiol 2018; 104:3-10. [PMID: 30444291 DOI: 10.1113/ep087443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the topic of this review? Pathophysiological changes linked to irritable bowel syndrome (IBS) include stress and immune activation, changes in gastrointestinal microbial and bile acid profiles and sensitization of extrinsic and intrinsic gut neurons. This review explores the potential role for L-cells in these pathophysiological changes. What advances does it highlight? L-cells, which secrete glucagon-like peptide-1 in response to nutrients, microbial factors, bile acids and short-chain fatty acids, may sense IBS-related changes in the luminal environment. Glucagon-like peptide-1 can act as a hormone, a paracrine factor or a neuromodulatory factor and, through its actions on central or peripheral neurons, may play a role in gastrointestinal dysfunction. ABSTRACT The prevalent and debilitating functional bowel disorder, irritable bowel syndrome (IBS), is characterized by symptoms that include abdominal pain, bloating, diarrhoea and/or constipation. The heterogeneity of IBS underscores a complex multifactorial pathophysiology, which is not completely understood but involves dysfunction of the bi-directional signalling axis between the brain and the gut. This axis incorporates efferent and afferent branches of the autonomic nervous system, circulating endocrine hormones and immune factors, local paracrine and neurocrine factors and microbial metabolites. L-cells, which are electrically excitable biosensors embedded in the gastrointestinal epithelium, secrete glucagon-like peptide-1 (GLP-1) in response to nutrients in the small intestine. However, they appear to function in a different manner more distally in the gastrointestinal tract, where they are activated by luminal factors including short-chain fatty acids, bile acids and microbial metabolic products, all of which are altered in IBS patients. Glucagon-like peptide-1 can also interact with the hypothalamic-pituitary-adrenal stress axis and the immune system, both of which are activated in IBS. Given that a GLP-1 mimetic has been found to alleviate acute pain symptoms in IBS patients, GLP-1 might be important in the manifestation of IBS symptoms. This review assesses the current knowledge about the role of GLP-1 in IBS pathophysiology and its potential role as a signal transducer in the microbiome-gut-brain signalling axis.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Pioglitazone improves visceral sensation and colonic permeability in a rat model of irritable bowel syndrome. J Pharmacol Sci 2018; 139:46-49. [PMID: 30522964 DOI: 10.1016/j.jphs.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/16/2023] Open
Abstract
Visceral hypersensitivity and impaired gut barrier with minor inflammation are considered to play an important role in the pathophysiology of irritable bowel syndrome (IBS). Since pioglitazone is known to have anti-inflammatory property, we hypothesized that pioglitazone is beneficial for treating IBS. In this study, the effect was tested in rat IBS models such as lipopolysaccharide or repeated water avoidance stress-induced visceral allodynia and increased colonic permeability. Pioglitazone blocked these visceral changes, and GW9662, a peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist fully reversed the effect by pioglitazone. These results suggest that PPAR-γ activation by pioglitazone may be useful for IBS treatment.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
41
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Altered colonic sensory and barrier functions by CRF: roles of TLR4 and IL-1. J Endocrinol 2018; 239:241-252. [PMID: 30139928 DOI: 10.1530/joe-18-0441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Visceral allodynia and increased colonic permeability are considered to be crucial pathophysiology of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and immune-mediated mechanisms have been proposed to contribute to these changes in IBS, but the precise roles have not been determined. We explored these issues in rats in vivo. The threshold of visceromotor response, i.e., abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal injection of CRF increased the permeability, which was blocked by astressin, a non-selective CRF receptor antagonist, but astressin2-B, a selective CRF receptor subtype 2 (CRF2) antagonist did not modify it. Urocortin 2, a selective CRF2 agonist inhibited the increased permeability by CRF. Eritoran, a toll-like receptor 4 (TLR4) antagonist or anakinra, an interleukin-1 receptor antagonist blocked the visceral allodynia and the increased gut permeability induced by CRF. Subcutaneous injection of lipopolysaccharide (immune stress) or repeated water avoidance stress (WAS, psychological stress), 1 h daily for 3 days induced visceral allodynia and increased gut permeability (animal IBS models), which were also blocked by astressin, eritoran or anakinra. In conclusion, stress-induced visceral allodynia and increased colonic permeability were mediated via peripheral CRF receptors. CRF induced these visceral changes via TLR4 and cytokine system, which were CRF1 dependent, and activation of CRF2 inhibited these CRF1-triggered responses. CRF may modulate immune system to alter visceral changes, which are considered to be pivotal pathophysiology of IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
42
|
Xu Y, Jia J, Xie C, Wu Y, Tu W. Transient Receptor Potential Ankyrin 1 and Substance P Mediate the Development of Gastric Mucosal Lesions in a Water Immersion Restraint Stress Rat Model. Digestion 2018; 97:228-239. [PMID: 29428952 DOI: 10.1159/000484980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/04/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Activation of substance P (SP) contributes to the development and maintenance of gastric lesions, but the mechanisms underlying the release of SP and SP-mediated damage to the gastric mucosa remain unknown. Transient receptor potential ankyrin 1 (TRPA1) is expressed in SP-positive neurons in the dorsal root ganglion (DRG) and stomach of rats. We hypothesized that water immersion restraint stress (WIRS) may activate and sensitize TRPA1 in DRG neurons, subsequently inducing the release of SP from DRG and stomach cells, causing the development of acute gastric mucosal lesions (AGML). METHODS Changes in TRPA1 and SP expression in T8-11 DRG sensory neurons and the stomach in an AGML rat model were determined by reverse transcription polymerase chain reaction, western blotting and immunohistochemistry. The SP levels of serum and gastric mucosa were measured by using an enzyme-linked immunosorbent assay (ELISA). Gastric lesions were evaluated by histopathological changes. The TRPA1 antagonist HC-030031 and TRPA1 agonists allyl isothiocyanate were used to verify effect of TRPA1 and SP on AGML. RESULTS SP and TRPA1 in the DRG and stomach were upregulated, and the serum and gastric mucosa levels of SP were increased after WIRS, which are closely associated with AGML. The release of SP was suppressed and AGML were alleviated following a selective TRPA1 antagonist HC-030031. TRPA1 agonists AITC increased release of SP and led to moderate gastric lesions. We confirmed that WIRS induced the release of SP in the DRG, stomach, serum and gastric mucosa, and in a TRPA1-dependent manner. CONCLUSIONS Upregulated SP and TRPA1 in the DRG and stomach and increased serum and gastric mucosa SP levels may contribute to stress-induced AGML. TRPA1 is a potential drug target to reduce stress-induced AGML development in patients with acute critical illnesses. This study may contribute to the discovery of drugs for AGML treatment.
Collapse
Affiliation(s)
- Yan Xu
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China.,Department of Anesthesiology, the 173rd Clinical Department of PLA, 421rd Hospital, Huizhou, China
| | - Ji Jia
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| | - Chuangbo Xie
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| | - Youping Wu
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| | - Weifeng Tu
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| |
Collapse
|
43
|
Zhao L, Wang Y, Zhang Y. Microstructural changes in the brain in elderly patients with irritable bowel syndrome. Aging Med (Milton) 2018; 1:141-148. [PMID: 31942491 PMCID: PMC6880712 DOI: 10.1002/agm2.12034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE It is unclear how alterations in gray matter volume and white matter density affect elderly patients with irritable bowel syndrome (IBS). This study aimed to investigate the relationship between structural changes in the brain and psychological stress in elderly IBS patients. METHODS Eighteen IBS patients and 12 healthy controls underwent structural magnetic resonance imaging. Voxel-based morphometry and diffusion tensor imaging analysis were used to identify abnormalities in cortical regions and white matter, respectively. RESULTS The IBS group showed a significant GMV reduction in the cingulate gyrus, occipital lobe, hippocampus, frontal lobe, medial frontal gyrus, superior frontal gyrus, and limbic lobe as well as a higher GMV in the insula, superior temporal gyrus, angular gyrus, and supramarginal gyrus. Diffusion tensor imaging indicated that the IBS group had lower fractional anisotropy in the corpus callosum, upper corona, fornix, internal capsule, and brainstem. Additionally, IBS patients showed higher mean diffusivity in the cingulate gyrus, corpus callosum, upper corona, internal capsule, external capsule, fornix, and superior longitudinal fasciculus. CONCLUSION Structural changes in the brain play a role in the condition of elderly IBS patients. Psychological stress is an important factor for developing IBS via the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Lanlan Zhao
- Department of GerontologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuezhi Wang
- Department of GerontologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Zhang
- Department of GerontologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
44
|
Song Y, Zhu JS, Hua R, Du L, Huang ST, Stackman RW, Zhang G, Zhang YM. Small-Conductance Ca 2+-Activated K + Channel 2 in the Dorsal Horn of Spinal Cord Participates in Visceral Hypersensitivity in Rats. Front Pharmacol 2018; 9:840. [PMID: 30123129 PMCID: PMC6085475 DOI: 10.3389/fphar.2018.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Visceral hypersensitivity is a highly complex and subjective phenomenon associated with multiple levels of the nervous system and a wide range of neurotransmission. The dorsal horn (DH) in spinal cord relays the peripheral sensory information into the brain. Small conductance Ca2+-activated K+ (SK) channels regulate neuronal excitability and firing by allowing K+ to efflux in response to increase in the intracellular Ca2+ level. In this study, we examined the influence of SK2 channels in the spinal DH on the pathogenesis of visceral hypersensitivity induced by colorectal distension (CRD) in rats. Electrophysiological results showed that rats with visceral hypersensitivity presented a decrease in the SK channel-mediated afterhyperpolarization current (IAHP), and an increase in neuronal firing rates and c-Fos positive staining in the spinal DH. Western blot data revealed a decrease in the SK2 channel protein in the membrane fraction. Moreover, intrathecal administration of the SK2 channel activator 1-EBIO or CyPPA alleviated visceral hypersensitivity, reversed the decrease in IAHP and the increase in neuronal firing rates in spinal DH in rats that experienced CRD. 1-EBIO or CyPPA effect could be prevented by SK2 channel blocker apamin. CRD induced an increase in c-Fos protein expression in the spinal DH, which was prevented by 1-EBIO. Together, these data suggest that visceral hypersensitivity and pain is associated with a decrease in the number and function of membrane SK2 channels in the spinal DH. Pharmacological manipulation of SK2 channels may open a new avenue for the treatment of visceral hypersensitivity and pain. Highlights:Neonatal colorectal distension induced visceral hypersensitivity in rats. Visceral hypersensitivity rats presented a decrease in afterhyperpolarization current (IAHP) and membrane SK2 channel protein in the spinal dorsal horn. Visceral hypersensitivity rats presented an increase in neuronal firing rate in the spinal dorsal horn. Intrathecal administration of SK2 channel activator 1-EBIO or CyPPA prevented visceral hypersensitivity and decrease in IAHP.
Collapse
Affiliation(s)
- Yu Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Sheng Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Emergency Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Si-Ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Robert W Stackman
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Gongliang Zhang
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States.,College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Todorov P, Peneva P, Pechlivanova D, Georgieva S, Dzhambazova E. Synthesis, characterization and nociceptive screening of new VV-hemorphin-5 analogues. Bioorg Med Chem Lett 2018; 28:3073-3079. [PMID: 30078474 DOI: 10.1016/j.bmcl.2018.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022]
Abstract
In the present study, some new analogues of VV-hemorphin-5, modified at position 1 and 7 by the non-proteinogenic and/or natural amino acids followed the structures Xxx-Val-Val-Tyr-Pro-Trp-Thr-Gln-NH2 and Val-Val-Tyr-Pro-Trp-Thr-Yyy-NH2, where Xxx is Ile or Aib and Yyy is Lys/Orn/Dap/Dab were synthesized to investigate their potential antinociceptive activities. We report also the redox potentials and the acid/base properties as pKa values of these peptide analogues which were compared toward electrochemical behaviour of tryptophan containing peptides. All analogues showed a short lasting initial antinociceptive effect, however H2 hemorphin analogue is characterized with prolong and strong antinociceptive effect, while the other peptide analogues exerted more variable effects on the visceral nociception depending on the dose or time after the intracerebral injection.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | | | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Elena Dzhambazova
- Department of Chemistry, Biochemistry, Physiology and Pathophysiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria
| |
Collapse
|
46
|
Wang YT, Xu WX. Role of stress in pathophysiology of irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2018; 26:1064-1070. [DOI: 10.11569/wcjd.v26.i17.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS), one of the most common functional gastrointestinal disorders in the world, is characterized by chronic intermittent abdominal discomfort and colon dysmotility with altered bowel habits, significantly impacting patients' quality of life. The pathophysiology of IBS remains incompletely understood although some contributing factors have been identified. Increased visceral sensitivity and intestinal permeability may play an important role in the pathophysiology of IBS. Psychological factors, especially stress, play an important role in the occurrence, development, and regulation of IBS. To facilitate further research of IBS, this review focuses on the relationship between stress and IBS in animal models, as well as the role of stress in increased visceral sensitivity and intestinal permeability in IBS.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Wen-Xie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
47
|
Yakabi S, Wang L, Karasawa H, Yuan PQ, Koike K, Yakabi K, Taché Y. VIP is involved in peripheral CRF-induced stimulation of propulsive colonic motor function and diarrhea in male rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G610-G622. [PMID: 29420068 PMCID: PMC6008061 DOI: 10.1152/ajpgi.00308.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 01/31/2023]
Abstract
We investigated whether vasoactive intestinal peptide (VIP) and/or prostaglandins contribute to peripheral corticotropin-releasing factor (CRF)-induced CRF1 receptor-mediated stimulation of colonic motor function and diarrhea in rats. The VIP antagonist, [4Cl-D-Phe6, Leu17]VIP injected intraperitoneally completely prevented CRF (10 µg/kg ip)-induced fecal output and diarrhea occurring within the first hour after injection, whereas pretreatment with the prostaglandins synthesis inhibitor, indomethacin, had no effect. In submucosal plexus neurons, CRF induced significant c-Fos expression most prominently in the terminal ileum compared with duodenum and jejunum, whereas no c-Fos was observed in the proximal colon. c-Fos expression in ileal submucosa was colocalized in 93.4% of VIP-positive neurons and 31.1% of non-VIP-labeled neurons. CRF1 receptor immunoreactivity was found on the VIP neurons. In myenteric neurons, CRF induced only a few c-Fos-positive neurons in the ileum and a robust expression in the proximal colon (17.5 ± 2.4 vs. 0.4 ± 0.3 cells/ganglion in vehicle). The VIP antagonist prevented intraperitoneal CRF-induced c-Fos induction in the ileal submucosal plexus and proximal colon myenteric plexus. At 60 min after injection, CRF decreased VIP levels in the terminal ileum compared with saline (0.8 ± 0.3 vs. 2.5 ± 0.7 ng/g), whereas VIP mRNA level detected by qPCR was not changed. These data indicate that intraperitoneal CRF activates intestinal submucosal VIP neurons most prominently in the ileum and myenteric neurons in the colon. It also implicates VIP signaling as part of underlying mechanisms driving the acute colonic secretomotor response to a peripheral injection of CRF, whereas prostaglandins do not play a role. NEW & NOTEWORTHY Corticotropin-releasing factor (CRF) in the gut plays a physiological role in the stimulation of lower gut secretomotor function induced by stress. We showed that vasoactive intestinal peptide (VIP)-immunoreactive neurons in the ileal submucosal plexus expressed CRF1 receptor and were prominently activated by CRF, unlike colonic submucosal neurons. VIP antagonist abrogated CRF-induced ileal submucosal and colonic myenteric activation along with functional responses (defecation and diarrhea). These data point to VIP signaling in ileum and colon as downstream effectors of CRF.
Collapse
Affiliation(s)
- Seiichi Yakabi
- CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Lixin Wang
- CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Hiroshi Karasawa
- CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Pu-Qing Yuan
- CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University , Saitama , Japan
| | - Yvette Taché
- CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
48
|
Nakamori H, Naitou K, Sano Y, Shimaoka H, Shiina T, Shimizu Y. Exogenous serotonin regulates colorectal motility via the 5-HT 2 and 5-HT 3 receptors in the spinal cord of rats. Neurogastroenterol Motil 2018; 30. [PMID: 28795477 DOI: 10.1111/nmo.13183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND We previously reported that intrathecal injection of noradrenaline or dopamine causes enhancement of colorectal motility. As these monoamines are neurotransmitters of descending pain inhibitory pathways in the spinal cord, we hypothesized that serotonin, which is one of the neurotransmitters involved in descending pain inhibition, also influences the lumbosacral defecation center. Therefore, we examined whether serotonin acting on the spinal defecation center enhances colorectal motility. METHODS Colorectal intraluminal pressure and propelled liquid volume were recorded in vivo in anesthetized rats. KEY RESULTS Intrathecal injection of serotonin into the L6-S1 spinal cord elicited periodic increases in colorectal intraluminal pressure, being associated with increases in liquid output. Pharmacological experiments revealed that the effect of serotonin is mediated by both 5-HT2 and 5-HT3 receptors. The serotonin-induced enhancement of colorectal motility was unaffected even after disconnection of the defecation center from supraspinal regions by cutting the T8 spinal cord, while transection of the parasympathetic pelvic nerves prevented the colokinetic effect of serotonin. Finally, we investigated interactions among serotonin, noradrenaline and dopamine. Simultaneous administration of sub-effective doses of these monoamine neurotransmitters into the spinal cord caused propulsive colorectal motility slightly but substantially. CONCLUSIONS AND INFERENCES These results demonstrate that exogenous serotonin acts on 5-HT2 and 5-HT3 receptors in the lumbosacral defecation center and activates the parasympathetic nervous system to enhance colorectal motility in cooperation with noradrenaline and dopamine.
Collapse
Affiliation(s)
- H Nakamori
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - K Naitou
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Sano
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - H Shimaoka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - T Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
49
|
Chang L, Di Lorenzo C, Farrugia G, Hamilton FA, Mawe GM, Pasricha PJ, Wiley JW. Functional Bowel Disorders: A Roadmap to Guide the Next Generation of Research. Gastroenterology 2018; 154:723-735. [PMID: 29288656 DOI: 10.1053/j.gastro.2017.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In June 2016, the National Institutes of Health hosted a workshop on functional bowel disorders (FBDs), particularly irritable bowel syndrome, with the objective of elucidating gaps in current knowledge and recommending strategies to address these gaps. The workshop aimed to provide a roadmap to help strategically guide research efforts during the next decade. Attendees were a diverse group of internationally recognized leaders in basic and clinical FBD research. This document summarizes the results of their deliberations, including the following general conclusions and recommendations. First, the high prevalence, economic burden, and impact on quality of life associated with FBDs necessitate an urgent need for improved understanding of FBDs. Second, preclinical discoveries are at a point that they can be realistically translated into novel diagnostic tests and treatments. Third, FBDs are broadly accepted as bidirectional disorders of the brain-gut axis, differentially affecting individuals throughout life. Research must integrate each component of the brain-gut axis and the influence of biological sex, early-life stressors, and genetic and epigenetic factors in individual patients. Fourth, research priorities to improve diagnostic and management paradigms include enhancement of the provider-patient relationship, longitudinal studies to identify risk and protective factors of FBDs, identification of biomarkers and endophenotypes in symptom severity and treatment response, and incorporation of emerging "-omics" discoveries. These paradigms can be applied by well-trained clinicians who are familiar with multimodal treatments. Fifth, essential components of a successful program will include the generation of a large, validated, broadly accessible database that is rigorously phenotyped; a parallel, linkable biorepository; dedicated resources to support peer-reviewed, hypothesis-driven research; access to dedicated bioinformatics expertise; and oversight by funding agencies to review priorities, progress, and potential synergies with relevant stakeholders.
Collapse
Affiliation(s)
- Lin Chang
- Division of Gastroenterology, Oppenheimer Center for Neurobiology of Stress and Resilience at University of California, Los Angeles, California
| | - Carlo Di Lorenzo
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Frank A Hamilton
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gary M Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | | | - John W Wiley
- Department Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
50
|
Zhao YJ, Li JH, Hu B, Wang Y, Chang XF, Traub RJ, Cao DY. Extracellular signal-regulated kinase activation in the spinal cord contributes to visceral hypersensitivity induced by craniofacial injury followed by stress. Neurogastroenterol Motil 2018; 30. [PMID: 28730748 DOI: 10.1111/nmo.13161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND We previously developed an animal model to examine mechanisms that underlie the emergence of visceral hypersensitivity modeling pain characteristics of temporomandibular disorder (TMD) patients with comorbid irritable bowel syndrome (IBS). In ovariectomized (OVx) rats with estradiol (E2) replacement, visceral hypersensitivity developed subsequent to masseter muscle inflammation followed by repeated forced swim (FS) stress. The purpose of this study was to investigate whether activation of extracellular signal-regulated kinase (ERK) in the spinal cord contributes to visceral hypersensitivity in this overlapping pain model. METHODS In OVx with E2 replacement rats masseter muscle inflammation was followed by 3 day FS (comorbid condition). Depression-like behaviors were assessed by sucrose preference and in the elevated plus maze, and visceral sensitivity was measured by the visceromotor response (VMR) to colorectal distention. The protein level of ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in the L6-S2 dorsal spinal cord was analyzed by western blot. KEY RESULTS FS stress decreased sucrose consumption in E2 replaced rats in sucrose preference test. The expression of p-ERK1/2 in the L6-S2 dorsal spinal cord increased significantly in E2 with comorbid rats. Intrathecal injection of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 blocked the visceral hypersensitivity induced by masseter muscle inflammation combined with FS stress. CONCLUSIONS & INFERENCES These data indicate that ERK1/2 activation contributes to the visceral hypersensitivity evoked by craniofacial inflammation pain combined with stress. The results may provide a new therapeutic avenue for alleviating overlapping pain conditions.
Collapse
Affiliation(s)
- Y-J Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - J-H Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - B Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Y Wang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - X-F Chang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - R J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - D-Y Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| |
Collapse
|