1
|
Rana S, Thakre PP, Fuller DD. Ampakines increase diaphragm activation following mid-cervical contusion injury in rats. Exp Neurol 2024; 376:114769. [PMID: 38582278 DOI: 10.1016/j.expneurol.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Ampakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes. Rats received a 150 kDyn C4 unilateral contusion (C4Ct). At 4- and 14-days following C4Ct, rats were given an intravenous bolus of ampakine CX717 (5 mg/kg, n = 10) or vehicle (2-hydroxypropyl-beta-cyclodextrin; HPCD; n = 10). Diaphragm EMG was recorded while breathing was assessed using whole-body plethysmography. At 4-days, ampakine administration caused an immediate and sustained increase in bilateral peak inspiratory diaphragm EMG bursting and ventilation. The vehicle had no impact on EMG bursting. CX717 treated rats were able to increase EMG activity during a respiratory challenge to a greater extent vs. vehicle treated. Rats showed a considerable degree of spontaneous recovery of EMG bursting by 14 days, and the impact of CX717 delivery was blunted as compared to 4-days. Direct recordings from the phrenic nerve at 21-24 days following C4Ct confirmed that ampakines stimulated bilateral phrenic neural output in injured rats. We conclude that low-dose intravenous treatment with a low-impact ampakine can enhance diaphragm activation shortly following mid-cervical contusion injury, when deficits in diaphragm activation are prominent.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, Gainesville, FL 32610, United States of America
| | - Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, Gainesville, FL 32610, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, Gainesville, FL 32610, United States of America.
| |
Collapse
|
2
|
Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, Smuder AJ, Fuller DD. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation 2023; 20:303. [PMID: 38110993 PMCID: PMC10729514 DOI: 10.1186/s12974-023-02985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.
Collapse
Affiliation(s)
- Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Victoria E Bindi
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Franccesco P Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Ashley J Smuder
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Michel-Flutot P, Lane MA, Lepore AC, Vinit S. Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation. Cells 2023; 12:1519. [PMID: 37296640 PMCID: PMC10252981 DOI: 10.3390/cells12111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
High spinal cord injuries (SCIs) lead to permanent functional deficits, including respiratory dysfunction. Patients living with such conditions often rely on ventilatory assistance to survive, and even those that can be weaned continue to suffer life-threatening impairments. There is currently no treatment for SCI that is capable of providing complete recovery of diaphragm activity and respiratory function. The diaphragm is the main inspiratory muscle, and its activity is controlled by phrenic motoneurons (phMNs) located in the cervical (C3-C5) spinal cord. Preserving and/or restoring phMN activity following a high SCI is essential for achieving voluntary control of breathing. In this review, we will highlight (1) the current knowledge of inflammatory and spontaneous pro-regenerative processes occurring after SCI, (2) key therapeutics developed to date, and (3) how these can be harnessed to drive respiratory recovery following SCIs. These therapeutic approaches are typically first developed and tested in relevant preclinical models, with some of them having been translated into clinical studies. A better understanding of inflammatory and pro-regenerative processes, as well as how they can be therapeutically manipulated, will be the key to achieving optimal functional recovery following SCIs.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Michael A. Lane
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Angelo C. Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
4
|
Locke KC, Randelman ML, Hoh DJ, Zholudeva LV, Lane MA. Respiratory plasticity following spinal cord injury: perspectives from mouse to man. Neural Regen Res 2022; 17:2141-2148. [PMID: 35259820 PMCID: PMC9083159 DOI: 10.4103/1673-5374.335839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury. This field of research is highly clinically relevant. People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation. Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy. Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials. Despite how widely researched this injury is in animal models, relatively few treatments have broken through the preclinical barrier. The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury, discuss plasticity models of spinal cord injury used in research, and explore the shift from preclinical to clinical research. By investigating current targets of respiratory plasticity research, we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.
Collapse
Affiliation(s)
- Katherine C. Locke
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Margo L. Randelman
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Daniel J. Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lyandysha V. Zholudeva
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
- Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Michael A. Lane
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| |
Collapse
|
5
|
Bajjig A, Michel-Flutot P, Migevent T, Cayetanot F, Bodineau L, Vinit S, Vivodtzev I. Diaphragmatic Activity and Respiratory Function Following C3 or C6 Unilateral Spinal Cord Contusion in Mice. BIOLOGY 2022; 11:biology11040558. [PMID: 35453757 PMCID: PMC9031817 DOI: 10.3390/biology11040558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/12/2023]
Abstract
The majority of spinal cord injuries (SCIs) are cervical (cSCI), leading to a marked reduction in respiratory capacity. We aimed to investigate the effect of hemicontusion models of cSCI on both diaphragm activity and respiratory function to serve as preclinical models of cervical SCI. Since phrenic motoneuron pools are located at the C3-C5 spinal level, we investigated two models of preclinical cSCI mimicking human forms of injury, namely, one above (C3 hemicontusion-C3HC) and one below phrenic motoneuron pools (C6HC) in wild-type swiss OF-1 mice, and we compared their effects on respiratory function using whole-body plethysmography and on diaphragm activity using electromyography (EMG). At 7 days post-surgery, both C3HC and C6HC damaged spinal cord integrity above the lesion level, suggesting that C6HC potentially alters C5 motoneurons. Although both models led to decreased diaphragmatic EMG activity in the injured hemidiaphragm compared to the intact one (-46% and -26% in C3HC and C6HC, respectively, both p = 0.02), only C3HC led to a significant reduction in tidal volume and minute ventilation compared to sham surgery (-25% and -20% vs. baseline). Moreover, changes in EMG amplitude between respiratory bursts were observed post-C3HC, reflecting a change in phrenic motoneuronal excitability. Hence, C3HC and C6HC models induced alteration in respiratory function proportionally to injury level, and the C3HC model is a more appropriate model for interventional studies aiming to restore respiratory function in cSCI.
Collapse
Affiliation(s)
- Afaf Bajjig
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, 75013 Paris, France; (A.B.); (T.M.); (F.C.); (L.B.)
| | - Pauline Michel-Flutot
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000 Versailles, France; (P.M.-F.); (S.V.)
| | - Tiffany Migevent
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, 75013 Paris, France; (A.B.); (T.M.); (F.C.); (L.B.)
| | - Florence Cayetanot
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, 75013 Paris, France; (A.B.); (T.M.); (F.C.); (L.B.)
| | - Laurence Bodineau
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, 75013 Paris, France; (A.B.); (T.M.); (F.C.); (L.B.)
| | - Stéphane Vinit
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000 Versailles, France; (P.M.-F.); (S.V.)
| | - Isabelle Vivodtzev
- Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, 75013 Paris, France; (A.B.); (T.M.); (F.C.); (L.B.)
| |
Collapse
|
6
|
Anatomical and behavioral outcomes following a graded hemi-contusive cervical spinal cord injury model in mice. Behav Brain Res 2022; 419:113698. [PMID: 34856301 DOI: 10.1016/j.bbr.2021.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND A graded hemi-contusion spinal cord injury produces complex anatomical deformation of the spinal cord parenchyma. The relationship between lesion severity and behavioral consequences in a novel contusion mouse model remains unknown. PURPOSE We aimed to establish a graded cervical hemi-contusion spinal cord injury model in mice and investigate the correlation between graded anatomical damage to the spinal cord and resulting behavioral impairments. METHODS Thirty-two mice were divided into groups of 1.2 mm, 1.5 mm and sham. The tip of an impactor with a diameter of 1 mm was utilized to compress the left dorsal cord of C5 by 1.2 mm or 1.5 mm at a speed of 300 mm/s. Forelimb motor function was evaluated using rearing, grooming and grip-strength tests before and after the injuries. Histologically the area of white matter sparing, gray matter sparing and lesion area were quantified at 6-week-post-injury. RESULTS Behavioral assessments showed a more severe forelimb functional deficit in 1.5 mm contusion displacements relative to 1.2 mm contusion displacements after injury. The 1.2 mm hemi-contusion mainly caused damage to the dorsal fasciculus, ventral and dorsal horn, while the 1.5 mm hemi-contusion lead to additional damage extending to ventral fasciculus. Sparing of the gray and white matter at the epicenter was 36.8 ± 2.4% and 12.4 ± 2.6% in the 1.2 mm group, and 27.6 ± 4.0% and 4.1 ± 2.2% in the 1.5 mm group, respectively. Furthermore, the lesion area was 20.8 ± 3.0% and 36.0 ± 2.1% in the 1.2 mm and 1.5 mm groups, respectively. There was a significant correlation between the performance in the grooming test and white matter sparing, and between grip-test strength and gray matter sparing. CONCLUSION The present study demonstrates that a hemi-contusion cervical spinal cord injury in mice can be graded by contusion displacement and that there is a correlation between anatomical and behavioral outcomes. This study provides a means for determining the severity of lesions in a contusion mouse model.
Collapse
|
7
|
Chiu TT, Lee KZ. Impact of cervical spinal cord injury on the relationship between the metabolism and ventilation in rats. J Appl Physiol (1985) 2021; 131:1799-1814. [PMID: 34647826 DOI: 10.1152/japplphysiol.00472.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cervical spinal cord injury typically results in respiratory impairments. Clinical and animal studies have demonstrated that respiratory function can spontaneously and partially recover over time after injury. However, it remains unclear whether respiratory recovery is associated with alterations in metabolism. The present study was designed to comprehensively examine ventilation and metabolism in a rat model of spinal cord injury. Adult male rats received sham (i.e., laminectomy) or unilateral mid-cervical contusion injury (height of impact rod: 6.25 or 12.5 mm). Breathing patterns and whole body metabolism (O2 consumption and CO2 production) were measured using a whole body plethysmography system conjugated with flow controllers and gas analyzer at the acute (1 day postinjury), subchronic (2 wk postinjury), and chronic (8 wk postinjury) injury stages. The results demonstrated that mid-cervical contusion caused a significant reduction in the tidal volume. Although the tidal volume of contused animals can gradually recover, it remains lower than that of uninjured animals at the chronic injury stage. Although O2 consumption and CO2 production were similar between uninjured and contused animals at the acute injury stage, these two metabolic parameters were significantly reduced in contused animals at the subchronic to chronic injury stages. Additionally, the relationships between ventilation, metabolism, and body temperature were altered by cervical spinal cord injury. These results suggest that cervical spinal cord injury causes a complicated reconfiguration of ventilation and metabolism that may enable injured animals to maintain a suitable homeostasis for adapting to the pathophysiological consequences of injury.NEW & NOTEWORTHY Ventilation and metabolism are tightly coupled to maintain appropriate energy expenditure under physiological conditions. Our findings demonstrate that cervical spinal cord injury results in the differential reduction of ventilation and metabolism at the various injury stages and leads to alterations in the relationship between ventilation and metabolism. These results from an animal model provide fundamental knowledge for understanding how cervical spinal cord injury impacts energy homeostasis.
Collapse
Affiliation(s)
- Tzu-Ting Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
9
|
Fogarty MJ, Sieck GC. Spinal cord injury and diaphragm neuromotor control. Expert Rev Respir Med 2020; 14:453-464. [PMID: 32077350 PMCID: PMC7176525 DOI: 10.1080/17476348.2020.1732822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
Introduction: Neuromotor control of diaphragm muscle and the recovery of diaphragm activity following spinal cord injury have been narrowly focused on ventilation. By contrast, the understanding of neuromotor control for non-ventilatory expulsive/straining maneuvers (including coughing, defecation, and parturition) is relatively impoverished. This variety of behaviors are achieved via the recruitment of the diverse array of motor units that comprise the diaphragm muscle.Areas covered: The neuromotor control of ventilatory and non-ventilatory behaviors in health and in the context of spinal cord injury is explored. Particular attention is played to the neuroplasticity of phrenic motor neurons in various models of cervical spinal cord injury.Expert opinion: There is a remarkable paucity in our understanding of neuromotor control of maneuvers in spinal cord injury patients. Dysfunction of these expulsive/straining maneuvers reduces patient quality of life and contributes to severe morbidity and mortality. As spinal cord injury patient life expectancies continue to climb steadily, a nexus of spinal cord injury and age-associated comorbidities are likely to occur. While current research remains concerned only with the minutiae of ventilation, the major functional deficits of this clinical cohort will persist intractably. We posit some future research directions to avoid this scenario.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
10
|
Warren PM, Alilain WJ. Plasticity Induced Recovery of Breathing Occurs at Chronic Stages after Cervical Contusion. J Neurotrauma 2019; 36:1985-1999. [PMID: 30565484 DOI: 10.1089/neu.2018.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Severe midcervical contusion injury causes profound deficits throughout the respiratory motor system that last from acute to chronic time points post-injury. We use chondroitinase ABC (ChABC) to digest chondroitin sulphate proteoglycans within the extracellular matrix (ECM) surrounding the respiratory system at both acute and chronic time points post-injury to explore whether augmentation of plasticity can recover normal motor function. We demonstrate that, regardless of time post-injury or treatment application, the lesion cavity remains consistent, showing little regeneration or neuroprotection within our model. Through electromyography (EMG) recordings of multiple inspiratory muscles, however, we show that application of the enzyme at chronic time points post-injury initiates the recovery of normal breathing in previously paralyzed respiratory muscles. This reduced the need for compensatory activity throughout the motor system. Application of ChABC at acute time points recovered only modest amounts of respiratory function. To further understand this effect, we assessed the anatomical mechanism of this recovery. Increased EMG activity in previously paralyzed muscles was brought about by activation of spared bulbospinal pathways through the site of injury and/or sprouting of spared serotonergic fibers from the contralateral side of the cord. Accordingly, we demonstrate that alterations to the ECM and augmentation of plasticity at chronic time points post-cervical contusion can cause functional recovery of the respiratory motor system and reveal mechanistic evidence of the pathways that govern this effect.
Collapse
Affiliation(s)
- Philippa Mary Warren
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,2 King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, United Kingdom
| | - Warren Joseph Alilain
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,3 Department of Neuroscience, Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Seven YB, Mitchell GS. Mechanisms of compensatory plasticity for respiratory motor neuron death. Respir Physiol Neurobiol 2019; 265:32-39. [PMID: 30625378 DOI: 10.1016/j.resp.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Respiratory motor neuron death arises from multiple neurodegenerative and traumatic neuromuscular disorders. Despite motor neuron death, compensatory mechanisms minimize its functional impact by harnessing intrinsic mechanisms of compensatory respiratory plasticity. However, the capacity for compensation eventually reaches limits and pathology ensues. Initially, challenges to the system such as increased metabolic demand reveal sub-clinical pathology. With greater motor neuron loss, the eventual result is de-compensation, ventilatory failure, ventilator dependence and then death. In this brief review, we discuss recent advances in our understanding of mechanisms giving rise to compensatory respiratory plasticity in response to respiratory motor neuron death including: 1) increased central respiratory drive, 2) plasticity in synapses on spared phrenic motor neurons, 3) enhanced neuromuscular transmission and 4) shifts in respiratory muscle utilization from more affected to less affected motor pools. Some of these compensatory mechanisms may prolong breathing function, but hasten the demise of surviving motor neurons. Improved understanding of these mechanisms and their impact on survival of spared motor neurons will guide future efforts to develop therapeutic interventions that preserve respiratory function with neuromuscular injury/disease.
Collapse
Affiliation(s)
- Yasin B Seven
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Khurram OU, Fogarty MJ, Rana S, Vang P, Sieck GC, Mantilla CB. Diaphragm muscle function following midcervical contusion injury in rats. J Appl Physiol (1985) 2018; 126:221-230. [PMID: 30236045 DOI: 10.1152/japplphysiol.00481.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Midcervical spinal cord contusion injury results in tissue damage, disruption of spinal pathways, and motor neuron loss. Unilateral C4 contusion results in loss of 40%-50% of phrenic motor neurons ipsilateral to the injury (~25% of the total phrenic motor neuron pool). Over time after unilateral C4 contusion injury, diaphragm muscle (DIAm) electromyogram activity increases both contralateral and ipsilateral to the side of injury in rats, suggesting compensation because of increased activation of the surviving motor neurons. However, the impact of contusion injury on DIAm force generation is less clear. Transdiaphragmatic pressure (Pdi) was measured across motor behaviors over time after unilateral C4 contusion injury in adult male Sprague-Dawley rats. Maximum Pdi (Pdimax) was elicited by bilateral phrenic nerve stimulation at 7 days postinjury. We hypothesized that Pdimax is reduced following unilateral C4 contusion injury, whereas ventilatory behaviors of the DIAm are unimpaired. In support of our hypothesis, Pdimax was reduced by ~25% after unilateral C4 contusion, consistent with the extent of phrenic motor neuron loss following contusion injury. One day after contusion injury, the Pdi amplitude during airway occlusion was reduced from ~30 to ~20 cmH2O, but this reduction was completely reversed by 7 days postinjury. Ventilatory behaviors (~10 cmH2O), DIAm-specific force, and muscle fiber cross-sectional area did not differ between the laminectomy and contusion groups. These results indicate that the large reserve capacity for DIAm force generation allows for higher-force motor behaviors to be accomplished despite motor neuron loss, likely reflecting changes in motor unit recruitment. NEW & NOTEWORTHY Respiratory muscles such as the diaphragm generate the pressures necessary to accomplish a variety of motor behaviors ranging from ventilation to near-maximal expulsive behaviors. However, the impact of contusion injury on diaphragm pressure generation across behaviors is not clear. The present study shows that contusion injury impairs maximal pressure generation while preserving the ability of the diaphragm to accomplish lower-force motor behaviors, likely reflecting changes in diaphragm motor unit recruitment.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,School of Biomedical Sciences, The University of Queensland , St. Lucia, QLD , Australia
| | - Sabhya Rana
- Department of Neurobiology of Disease, Mayo Clinic , Rochester, Minnesota
| | - Pangdra Vang
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
13
|
Huxtable AG, Peterson TJ, Ouellette JN, Watters JJ, Mitchell GS. Spinal protein phosphatase 1 constrains respiratory plasticity after sustained hypoxia. J Appl Physiol (1985) 2018; 125:1440-1446. [PMID: 30161006 DOI: 10.1152/japplphysiol.00641.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity is an important aspect of the neural control of breathing. One well-studied form of respiratory plasticity is phrenic long-term facilitation (pLTF) induced by acute intermittent but not sustained hypoxia. Okadaic acid-sensitive protein phosphatases (PPs) differentially regulate phrenic nerve activity with intermittent vs. sustained hypoxia, at least partially accounting for pLTF pattern sensitivity. However, okadaic acid inhibits multiple serine/threonine phosphatases, and the relevant phosphatase (PP1, PP2A, PP5) for pLTF pattern sensitivity has not been identified. Here, we demonstrate that sustained hypoxia (25 min, 9-10.5% O2) elicits phrenic motor facilitation in rats pretreated with bilateral intrapleural injections of small interfering RNAs (siRNAs; Accell-modified to preferentially transfect neurons, 3.33 μM, 3 days) targeting PP1 mRNA (48 ± 14% change from baseline, n = 6) but not PP2A (14 ± 9% baseline, n = 6) or nontargeting siRNAs (4 ± 10% baseline, n = 7). In time control rats (no hypoxia) treated with siRNAs ( n = 6), no facilitation was evident (-9 ± 9% baseline). siRNAs had no effect on the hypoxic phrenic response. Immunohistochemistry revealed PP1 and PP2A protein in identified phrenic motoneurons. Although PP1 and PP2A siRNAs significantly decreased PP1 and PP2A mRNA in PC12 cell cultures, we were not able to verify "knockdown" in vivo after siRNA treatment. On the other hand, PP1 and PP2A siRNAs significantly decreased PP1 and PP2A mRNA in PC12 cell cultures, verifying the intended siRNA effects. In conclusion, PP1 (not PP2A) is the relevant okadaic acid-sensitive phosphatase constraining phrenic motor facilitation after sustained hypoxia and likely contributing to pLTF pattern sensitivity. NEW & NOTEWORTHY This study demonstrates that the relevant okadaic acid-sensitive Ser/Thr protein phosphatase (PP) constraining facilitation after sustained hypoxia is PP1 and not PP2A. It suggests that PP1 may be critical in the pattern sensitivity of hypoxia-induced phrenic motor plasticity.
Collapse
Affiliation(s)
- Adrianne G Huxtable
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Timothy J Peterson
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Jonathan N Ouellette
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Center for Respiratory Research and Rehabilitation, McKnight Brain Institute, Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
14
|
Zholudeva LV, Iyer N, Qiang L, Spruance VM, Randelman ML, White NW, Bezdudnaya T, Fischer I, Sakiyama-Elbert SE, Lane MA. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury. J Neurotrauma 2018; 35:2883-2903. [PMID: 29873284 DOI: 10.1089/neu.2017.5439] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. The present work begins to address these issues by harnessing ventrally derived excitatory pre-motor V2a spinal interneurons (SpINs) to repair the phrenic motor circuit after cervical SCI. Recent studies have demonstrated that Chx10-positive V2a SpINs contribute to anatomical plasticity within the phrenic circuitry after cervical SCI, thus identifying them as a therapeutic candidate. Building upon this discovery, the present work tests the hypothesis that transplantation of neural progenitor cells (NPCs) enriched with V2a INs can contribute to neural networks that promote repair and enhance respiratory plasticity after cervical SCI. Cultured NPCs (neuronal and glial restricted progenitor cells) isolated from E13.5 Green fluorescent protein rats were aggregated with TdTomato-mouse embryonic stem cell-derived V2a INs in vitro, then transplanted into the injured cervical (C3-4) spinal cord. Donor cells survive, differentiate and integrate with the host spinal cord. Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nisha Iyer
- 3 Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | - Liang Qiang
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Victoria M Spruance
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Margo L Randelman
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nicholas W White
- 4 Department of Biomedical Engineering, University of Texas, Austin, Texas
| | - Tatiana Bezdudnaya
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Warren PM, Campanaro C, Jacono FJ, Alilain WJ. Mid-cervical spinal cord contusion causes robust deficits in respiratory parameters and pattern variability. Exp Neurol 2018; 306:122-131. [PMID: 29653187 PMCID: PMC6333202 DOI: 10.1016/j.expneurol.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Mid-cervical spinal cord contusion disrupts both the pathways and motoneurons vital to the activity of inspiratory muscles. The present study was designed to determine if a rat contusion model could result in a measurable deficit to both ventilatory and respiratory motor function under “normal” breathing conditions at acute to chronic stages post trauma. Through whole body plethysmography and electromyography we assessed respiratory output from three days to twelve weeks after a cervical level 3 (C3) contusion. Contused animals showed significant deficits in both tidal and minute volumes which were sustained from acute to chronic time points. We also examined the degree to which the contusion injury impacted ventilatory pattern variability through assessment of Mutual Information and Sample Entropy. Mid-cervical contusion significantly and robustly decreased the variability of ventilatory patterns. The enduring deficit to the respiratory motor system caused by contusion was further confirmed through electromyography recordings in multiple respiratory muscles. When isolated via a lesion, these contused pathways were insufficient to maintain respiratory activity at all time points post injury. Collectively these data illustrate that, counter to the prevailing literature, a profound and lasting ventilatory and respiratory motor deficit may be modelled and measured through multiple physiological assessments at all time points after cervical contusion injury.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Cara Campanaro
- Division of Pulmonary Critical Care and Sleep Medicine and Louis Stokes VA Medical Center, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Frank J Jacono
- Division of Pulmonary Critical Care and Sleep Medicine and Louis Stokes VA Medical Center, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Warren J Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
16
|
Wen MH, Lee KZ. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat. J Neurotrauma 2018; 35:533-547. [DOI: 10.1089/neu.2017.5128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ming-Han Wen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia. Respir Physiol Neurobiol 2017; 256:21-28. [PMID: 29233741 DOI: 10.1016/j.resp.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 11/21/2022]
Abstract
Although inflammation is prevalent in many clinical disorders challenging breathing, we are only beginning to understand the impact of inflammation on neural mechanisms of respiratory control. We recently demonstrated one form of respiratory motor plasticity is extremely sensitive to even mild inflammation induced by a single night (8 h) of intermittent hypoxia (IH-1), mimicking aspects of obstructive sleep apnea. Specifically, phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (AIH) is abolished by IH-1, but restored by high doses of the non-steroidal anti-inflammatory drug, ketoprofen. Since a major target of ketoprofen is cyclooxygenase (COX) enzymes, we tested the involvement of COX in IH-1 suppression of pLTF using the selective COX inhibitor NS-398. Systemic COX inhibition (3 mg/kg, i.p., 3 h before AIH) had no effect on pLTF in normoxia treated rats (76 ± 40% change from baseline, n = 6), and did not restore pLTF in IH-1 treated rats (-9 ± 7% baseline, n = 6). Similarly, spinal COX inhibition (27 mM, 12 μl, i.t.) had no effect on pLTF in normoxic rats (76 ± 34% baseline, n = 7), and did not significantly restore pLTF after IH-1 (37 ± 18% baseline, n = 7). COX-2 protein is expressed in identified phrenic motor neurons of both normoxia and IH-1 exposed rats, but immunolabeling was minimal in surrounding microglia; IH-1 had no discernable effect on COX-2 immunoreactivity. We conclude that the inflammatory impairment of pLTF by IH-1 is independent of COX enzyme activity or upregulated COX-2 expression.
Collapse
|
18
|
Vagal Control of Breathing Pattern after Midcervical Contusion in Rats. J Neurotrauma 2017; 34:734-745. [DOI: 10.1089/neu.2016.4645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Hormigo KM, Zholudeva LV, Spruance VM, Marchenko V, Cote MP, Vinit S, Giszter S, Bezdudnaya T, Lane MA. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp Neurol 2017; 287:276-287. [PMID: 27582085 PMCID: PMC5121051 DOI: 10.1016/j.expneurol.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/20/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research.
Collapse
Affiliation(s)
- Kristiina M Hormigo
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Lyandysha V Zholudeva
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Victoria M Spruance
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Vitaliy Marchenko
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Marie-Pascale Cote
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Stephane Vinit
- Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179 End:icap, UFR des Sciences de la Santé - Simone Veil, Montigny-le-Bretonneux, France
| | - Simon Giszter
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Tatiana Bezdudnaya
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Michael A Lane
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Navarrete-Opazo A, Dougherty BJ, Mitchell GS. Enhanced recovery of breathing capacity from combined adenosine 2A receptor inhibition and daily acute intermittent hypoxia after chronic cervical spinal injury. Exp Neurol 2017; 287:93-101. [PMID: 27079999 PMCID: PMC5193117 DOI: 10.1016/j.expneurol.2016.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/29/2016] [Accepted: 03/31/2016] [Indexed: 01/16/2023]
Abstract
Daily acute intermittent hypoxia (dAIH) improves breathing capacity after C2 spinal hemisection (C2HS) in rats. Since C2HS disrupts spinal serotonergic innervation below the injury, adenosine-dependent mechanisms underlie dAIH-induced functional recovery 2weeks post-injury. We hypothesized that dAIH-induced functional recovery converts from an adenosine-dependent to a serotonin-dependent, adenosine-constrained mechanism with chronic injury. Eight weeks post-C2HS, rats began dAIH (10, 5-min episodes, 10.5% O2; 5-min intervals; 7days) followed by AIH 3× per week (3×wAIH) for 8 additional weeks with/without systemic A2A receptor inhibition (KW6002) on each AIH exposure day. Tidal volume (VT) and bilateral diaphragm (Dia) and T2 external intercostal motor activity were assessed in unanesthetized rats breathing air and during maximum chemoreflex stimulation (MCS: 7% CO2, 10.5% O2). Nine weeks post-C2HS, dAIH increased VT versus time controls (p<0.05), an effect enhanced by KW6002 (p<0.05). dAIH increased bilateral Dia activity (p<0.05), and KW6002 enhanced this effect in contralateral (p<0.05) and ipsilateral Dia activity (p<0.001), but not T2 inspiratory activity. Functional benefits of combined AIH plus systemic A2A receptor inhibition were maintained for 4weeks. Thus, in rats with chronic injuries: 1) dAIH improves VT and bilateral diaphragm activity; 2) VT recovery is enhanced by A2A receptor inhibition; and 3) functional recovery with A2A receptor inhibition and AIH "reminders" last 4weeks. Combined dAIH and A2A receptor inhibition may be a simple, safe, and effective strategy to accelerate/enhance functional recovery of breathing capacity in patients with respiratory impairment from chronic spinal injury.
Collapse
Affiliation(s)
- A Navarrete-Opazo
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA; Teletón Children Rehabilitation Institute, Alameda 4620, Santiago, Chile
| | - B J Dougherty
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - G S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA; Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Respiratory neuroplasticity – Overview, significance and future directions. Exp Neurol 2017; 287:144-152. [DOI: 10.1016/j.expneurol.2016.05.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
|
22
|
Abstract
The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the "crossed phrenic phenomenon", wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury.
Collapse
|
23
|
Lee KZ, Chiang SC, Li YJ. Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion. Neurorehabil Neural Repair 2016; 31:364-375. [DOI: 10.1177/1545968316680494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Mild intermittent hypoxia has been considered a potential approach to induce respiratory neuroplasticity. Objective. The purpose of the present study was to investigate whether mild acute intermittent hypoxia can improve breathing function in a clinically relevant spinal cord injury animal model. Methods. Adult male rats received laminectomy or unilateral contusion at the C3-C4 spinal cord using a MASCIS Impactor (height: 6.25 or 12.5 mm). At 4 weeks postinjury, the breathing patterns of unanesthetized rats were measured by whole body plethysmography before, during and after 10 episodes of 5 minutes of hypoxia (10% O2, 4% CO2, balance N2) with 5 minutes of normoxia intervals. Results. The results demonstrated that cervical contusion resulted in reduction in breathing capacity and number of phrenic motoneurons. Acute hypoxia induced significant increases in frequency and tidal volume in sham surgery and contused animals. In addition, there was a progressive decline in the magnitude of hypoxic ventilatory response during intermittent hypoxia. Further, the tidal volume was significantly enhanced in contused but not sham surgery rats at 15 and 30 minutes postintermittent hypoxia, suggesting intermittent hypoxia can bring about long-term facilitation of tidal volume following cervical spinal contusion. Conclusions. These results suggest that mild acute intermittent hypoxia can elicit differential forms of respiratory plasticity in sham surgery versus contused animals, and may be a promising neurorehabilitation approach to improve respiratory function after cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Jie Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Rana S, Sieck GC, Mantilla CB. Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats. J Neurophysiol 2016; 117:545-555. [PMID: 27832610 DOI: 10.1152/jn.00727.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Contusion-type injuries to the spinal cord are characterized by tissue loss and disruption of spinal pathways. Midcervical spinal cord injuries impair the function of respiratory muscles and may contribute to significant respiratory complications. This study systematically assessed the impact of a 100-kDy unilateral C4 contusion injury on diaphragm muscle activity across a range of motor behaviors in rats. Chronic diaphragm electromyography (EMG) was recorded before injury and at 1 and 7 days postinjury (DPI). Histological analyses assessed the extent of perineuronal net formation, white-matter sparing, and phrenic motoneuron loss. At 7 DPI, ∼45% of phrenic motoneurons were lost ipsilaterally. Relative diaphragm root mean square (RMS) EMG activity increased bilaterally across a range of motor behaviors by 7 DPI. The increase in diaphragm RMS EMG activity was associated with an increase in neural drive (RMS value at 75 ms after the onset of diaphragm activity) and was more pronounced during higher force, nonventilatory motor behaviors. Animals in the contusion group displayed a transient decrease in respiratory rate and an increase in burst duration at 1 DPI. By 7 days, following midcervical contusion, there was significant perineuronal net formation and white-matter loss that spanned 1 mm around the injury epicenter. Taken together, these findings are consistent with increased recruitment of remaining motor units, including more fatigable, high-threshold motor units, during higher force, nonventilatory behaviors. Changes in diaphragm EMG activity following midcervical contusion injury reflect complex adaptations in neuromotor control that may increase the risk of motor-unit fatigue and compromise the ability to sustain higher force diaphragm efforts. NEW & NOTEWORTHY The present study shows that unilateral contusion injury at C4 results in substantial loss of phrenic motoneurons but increased diaphragm muscle activity across a range of ventilatory and higher force, nonventilatory behaviors. Measures of neural drive indicate increased descending input to phrenic motoneurons that was more pronounced during higher force, nonventilatory behaviors. These findings reveal novel, complex adaptations in neuromotor control following injury, suggestive of increased recruitment of more fatigable, high-threshold motor units.
Collapse
Affiliation(s)
- Sabhya Rana
- Departments of Physiology & Biomedical Engineering and Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Departments of Physiology & Biomedical Engineering and Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Departments of Physiology & Biomedical Engineering and Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Reduced respiratory neural activity elicits a long-lasting decrease in the CO 2 threshold for apnea in anesthetized rats. Exp Neurol 2016; 287:235-242. [PMID: 27474512 DOI: 10.1016/j.expneurol.2016.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
Abstract
Two critical parameters that influence breathing stability are the levels of arterial pCO2 at which breathing ceases and subsequently resumes - termed the apneic and recruitment thresholds (AT and RT, respectively). Reduced respiratory neural activity elicits a chemoreflex-independent, long-lasting increase in phrenic burst amplitude, a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF). The physiological significance of iPMF is unknown. To determine if iPMF and neural apnea have long-lasting physiological effects on breathing, we tested the hypothesis that patterns of neural apnea that induce iPMF also elicit changes in the AT and RT. Phrenic nerve activity and end-tidal CO2 were recorded in urethane-anesthetized, ventilated rats to quantify phrenic nerve burst amplitude and the AT and RT before and after three patterns of neural apnea that differed in their duration and ability to elicit iPMF: brief intermittent neural apneas, a single brief "massed" neural apnea, or a prolonged neural apnea. Consistent with our hypothesis, we found that patterns of neural apnea that elicited iPMF also resulted in changes in the AT and RT. Specifically, intermittent neural apneas progressively decreased the AT with each subsequent neural apnea, which persisted for at least 60min. Similarly, a prolonged neural apnea elicited a long-lasting decrease in the AT. In both cases, the magnitude of the AT decrease was proportional to iPMF. In contrast, the RT was transiently decreased following prolonged neural apnea, and was not proportional to iPMF. No changes in the AT or RT were observed following a single brief neural apnea. Our results indicate that the AT and RT are differentially altered by neural apnea and suggest that specific patterns of neural apnea that elicit plasticity may stabilize breathing via a decrease in the AT.
Collapse
|
26
|
Braegelmann KM, Streeter KA, Fields DP, Baker TL. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control? Exp Neurol 2016; 287:225-234. [PMID: 27456270 DOI: 10.1016/j.expneurol.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.
Collapse
Affiliation(s)
- K M Braegelmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - D P Fields
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - T L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
27
|
Alvarez-Argote S, Gransee HM, Mora JC, Stowe JM, Jorgenson AJ, Sieck GC, Mantilla CB. The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function. J Neurotrauma 2015; 33:500-9. [PMID: 26413840 DOI: 10.1089/neu.2015.4054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Midcervical contusion injuries disrupt descending ipsilateral excitatory bulbospinal projections to phrenic motoneurons, compromising ventilation. We hypothesized that a unilateral contusion injury at C3 versus C5 would differentially impact phrenic activity reflecting more prominent disruption of ipsilateral descending excitatory drive to more caudal segments of the phrenic motor pool with more cranial injuries. Phrenic motoneuron counts and evidence of diaphragm muscle denervation at individual neuromuscular junctions (NMJ) were evaluated at 14 days post-injury after unilateral contusion injury (100 kDynes). Whole body plethysmography and chronic diaphragm EMG were measured before the injury and at 3, 7, and 14 days post-injury. Contusion injuries at either level resulted in a similarly sized cavity. C3 contusion resulted in loss of 39 ± 13% of ipsilateral phrenic motoneurons compared with 13 ± 21% after C5 contusion (p = 0.003). Cervical contusion injuries resulted in diaphragm muscle denervation (C3 contusion: 17 ± 4%; C5 contusion: 7 ± 4%; p = 0.047). The pattern of denervation revealed segmental innervation of the diaphragm muscle, with greater denervation ventrally after C3 contusion and dorsally after C5 contusion. Overall, diaphragm root mean square electromyography activity did not change ipsilaterally after C3 or C5 contusion, but increased contralaterally (∼ 11%) after C3 contusion only on the first day post-injury (p = 0.026). Similarly, there were no significant changes in breathing parameters during eupnea or exposure to hypoxia (10% O2) - hypercapnia (5% CO2) at any time post-injury. Unilateral midcervical contusions minimally impair ventilatory behaviors despite phrenic motoneuron loss and diaphragm muscle denervation.
Collapse
Affiliation(s)
| | - Heather M Gransee
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Juan C Mora
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jessica M Stowe
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Amy J Jorgenson
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,2 Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,2 Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
28
|
Gill LC, Gransee HM, Sieck GC, Mantilla CB. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons. Respir Physiol Neurobiol 2015; 226:128-36. [PMID: 26506253 DOI: 10.1016/j.resp.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 11/19/2022]
Abstract
Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed.
Collapse
Affiliation(s)
- Luther C Gill
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States
| | - Heather M Gransee
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55906, United States
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55906, United States.
| |
Collapse
|
29
|
Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism. J Neurosci 2015; 35:6871-80. [PMID: 25926462 DOI: 10.1523/jneurosci.4539-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation (pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced systemic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF by a p38 MAP kinase-dependent mechanism. pLTF and spinal inflammation were assessed in anesthetized rats pretreated with IH-1 (2 min hypoxia, 2 min normoxia; 8 h) or sham normoxia and allowed 16 h for recovery. IH-1 (1) transiently increased IL-6 (1.5 ± 0.2-fold; p = 0.02) and inducible nitric oxide synthase (iNOS) (2.4 ± 0.4-fold; p = 0.01) mRNA in cervical spinal homogenates, (2) elicited a sustained increase in IL-1β mRNA (2.4 ± 0.2-fold; p < 0.001) in isolated cervical spinal microglia, and (3) abolished pLTF (-1 ± 5% vs 56 ± 10% in controls; p < 0.001). pLTF was restored after IH-1 by systemic NSAID administration (ketoprofen; 55 ± 9%; p < 0.001) or spinal p38 MAP kinase inhibition (58 ± 2%; p < 0.001). IH-1 increased phosphorylated (activated) p38 MAP kinase immunofluorescence in identified phrenic motoneurons and adjacent microglia. In conclusion, IH-1 elicits spinal inflammation and impairs pLTF by a spinal p38 MAP kinase-dependent mechanism. By targeting inflammation, we may develop strategies to manipulate respiratory motor plasticity for therapeutic advantage when the respiratory control system is compromised (e.g., sleep apnea, apnea of prematurity, spinal injury, or motor neuron disease).
Collapse
|
30
|
Hoy KC, Alilain WJ. Acute theophylline exposure modulates breathing activity through a cervical contusion. Exp Neurol 2015; 271:72-6. [PMID: 25979115 DOI: 10.1016/j.expneurol.2015.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 01/25/2023]
Abstract
Cervical spinal contusion injuries are the most common form of spinal cord injury (>50%) observed in humans. These injuries can result in the impaired ability to breathe. In this study we examine the role of theophylline in the rescue of breathing behavior after a cervical spinal contusion. Previous research in the C2 hemisection model has shown that acute administration of theophylline can rescue phrenic nerve activity and diaphragmatic EMG on the side ipsilateral to injury. However, this effect is dependent on intact and uninjured pathways. In this study we utilized a cervical contusion injury model that more closely mimics the human condition. This injury model can determine the effectiveness of therapeutic interventions, in this case theophylline, on the isolated contused pathways of the spinal cord. Three weeks after a 150 kD C3/4 unilateral contusion subjects received a 15 mg/kg dose of theophylline prior to a contralateral C2 hemisection. Subjects that received theophylline were able to effectively utilize damaged pathways to breathe for up to 2 min, while subjects treated with saline were unable to support ventilation. Through these experiments, we demonstrate that theophylline can make injured pathways that mediate breathing more effective and therefore, suggest a potential therapeutic role in the critical time points immediately after injury.
Collapse
Affiliation(s)
- Kevin C Hoy
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Warren J Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA.
| |
Collapse
|
31
|
Navarrete-Opazo A, Vinit S, Dougherty BJ, Mitchell GS. Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury. Exp Neurol 2015; 266:1-10. [PMID: 25687551 PMCID: PMC4716671 DOI: 10.1016/j.expneurol.2015.02.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 01/31/2023]
Abstract
A major cause of mortality after spinal cord injury is respiratory failure. In normal rats, acute intermittent hypoxia (AIH) induces respiratory motor plasticity, expressed as diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF). Dia (not T2 EIC) LTF is enhanced by systemic adenosine 2A (A2A) receptor inhibition in normal rats. We investigated the respective contributions of Dia and T2 EIC to daily AIH-induced functional recovery of breathing capacity with/without A2A receptor antagonist (KW6002, i.p.) following C2 hemisection (C2HS). Rats received daily AIH (dAIH: 10, 5-min episodes, 10.5% O2; 5-min normoxic intervals; 7 successive days beginning 7days post-C2HS) or daily normoxia (dNx) with/without KW6002, followed by weekly (reminder) presentations for 8weeks. Ventilation and EMGs from bilateral diaphragm and T2 EIC muscles were measured with room air breathing (21% O2) and maximum chemoreceptor stimulation ( MCS 7% CO2, 10.5% O2). dAIH increased tidal volume (VT) in C2HS rats breathing room air (dAIH+vehicle: 0.47±0.02, dNx+vehicle: 0.40±0.01ml/100g; p<0.05) and MCS (dAIH+vehicle: 0.83±0.01, dNx+vehicle: 0.73±0.01ml/100g; p<0.001); KW6002 had no significant effect. dAIH enhanced contralateral (uninjured) diaphragm EMG activity, an effect attenuated by KW6002, during room air breathing and MCS (p<0.05). Although dAIH enhanced contralateral T2 EIC EMG activity during room air breathing, KW6002 had no effect. dAIH had no statistically significant effects on diaphragm or T2 EIC EMG activity ipsilateral to injury. Thus, two weeks post-C2HS: 1) dAIH enhances breathing capacity by effects on contralateral diaphragm and T2 EIC activity; and 2) dAIH-induced recovery is A2A dependent in diaphragm, but not T2 EIC. Daily AIH may be a useful in promoting functional recovery of breathing capacity after cervical spinal injury, but A2A receptor antagonists (e.g. caffeine) may undermine its effectiveness shortly after injury.
Collapse
Affiliation(s)
- A Navarrete-Opazo
- Department of Comparative Biosciences University of Wisconsin-Madison, Madison, WI 53706, USA
| | - S Vinit
- Department of Comparative Biosciences University of Wisconsin-Madison, Madison, WI 53706, USA
| | - B J Dougherty
- Department of Comparative Biosciences University of Wisconsin-Madison, Madison, WI 53706, USA
| | - G S Mitchell
- Department of Comparative Biosciences University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
32
|
Bonay M, Vinit S. New perspectives for investigating respiratory failure induced by cervical spinal cord injury. Neural Regen Res 2015; 9:1949-51. [PMID: 25598774 PMCID: PMC4283274 DOI: 10.4103/1673-5374.145367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 01/31/2023] Open
Affiliation(s)
- Marcel Bonay
- Université de Versailles Saint-Quentin-en-Yvelines, Unité End:icap, UFR des Sciences de la Santé - Simone Veil, 78180 Montigny-le-Bretonneux, France ; Service de Physiologie-Explorations Fonctionnelles; Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Paris Ile-de-France Ouest, 92104 Boulogne- Billancourt, France
| | - Stéphane Vinit
- Université de Versailles Saint-Quentin-en-Yvelines, Unité End:icap, UFR des Sciences de la Santé - Simone Veil, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
33
|
Warren PM, Awad BI, Alilain WJ. Reprint of "Drawing breath without the command of effectors: the control of respiration following spinal cord injury". Respir Physiol Neurobiol 2014; 204:120-30. [PMID: 25266395 DOI: 10.1016/j.resp.2014.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The maintenance of blood gas and pH homeostasis is essential to life. As such breathing, and the mechanisms which control ventilation, must be tightly regulated yet highly plastic and dynamic. However, injury to the spinal cord prevents the medullary areas which control respiration from connecting to respiratory effectors and feedback mechanisms below the level of the lesion. This trauma typically leads to severe and permanent functional deficits in the respiratory motor system. However, endogenous mechanisms of plasticity occur following spinal cord injury to facilitate respiration and help recover pulmonary ventilation. These mechanisms include the activation of spared or latent pathways, endogenous sprouting or synaptogenesis, and the possible formation of new respiratory control centres. Acting in combination, these processes provide a means to facilitate respiratory support following spinal cord trauma. However, they are by no means sufficient to return pulmonary function to pre-injury levels. A major challenge in the study of spinal cord injury is to understand and enhance the systems of endogenous plasticity which arise to facilitate respiration to mediate effective treatments for pulmonary dysfunction.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Basem I Awad
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA; Department of Neurological Surgery, Mansoura University School of Medicine, Mansoura, Egypt
| | - Warren J Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA.
| |
Collapse
|
34
|
Keomani E, Deramaudt TB, Petitjean M, Bonay M, Lofaso F, Vinit S. A murine model of cervical spinal cord injury to study post-lesional respiratory neuroplasticity. J Vis Exp 2014. [PMID: 24894020 DOI: 10.3791/51235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A cervical spinal cord injury induces permanent paralysis, and often leads to respiratory distress. To date, no efficient therapeutics have been developed to improve/ameliorate the respiratory failure following high cervical spinal cord injury (SCI). Here we propose a murine pre-clinical model of high SCI at the cervical 2 (C2) metameric level to study diverse post-lesional respiratory neuroplasticity. The technique consists of a surgical partial injury at the C2 level, which will induce a hemiparalysis of the diaphragm due to a deafferentation of the phrenic motoneurons from the respiratory centers located in the brainstem. The contralateral side of the injury remains intact and allows the animal recovery. Unlike other SCIs which affect the locomotor function (at the thoracic and lumbar level), the respiratory function does not require animal motivation and the quantification of the deficit/recovery can be easily performed (diaphragm and phrenic nerve recordings, whole body ventilation). This pre-clinical C2 SCI model is a powerful, useful, and reliable pre-clinical model to study various respiratory and non-respiratory neuroplasticity events at different levels (molecular to physiology) and to test diverse putative therapeutic strategies which might improve the respiration in SCI patients.
Collapse
Affiliation(s)
- Emilie Keomani
- UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines
| | - Thérèse B Deramaudt
- UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines
| | - Michel Petitjean
- UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines; Service de Physiologie - Explorations fonctionnelles, Hôpital Ambroise Paré
| | - Marcel Bonay
- UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines; Service de Physiologie - Explorations fonctionnelles, Hôpital Ambroise Paré
| | - Frédéric Lofaso
- UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines; Services de Physiologie, Explorations Fonctionnelles, Réanimation Médicale et Centre d'Investigation Clinique et d'Innovation Technologique (Unité Inserm 805), Université de Versailles Saint-Quentin-en-Yvelines
| | - Stéphane Vinit
- UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines;
| |
Collapse
|
35
|
Tsai IL, Lee KZ. Attenuation of the pulmonary chemoreflex following acute cervical spinal cord injury. J Appl Physiol (1985) 2014; 116:757-66. [DOI: 10.1152/japplphysiol.01370.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary C fibers are the primary chemosensitive afferents in the lung. The activation of bronchopulmonary C fibers evokes the pulmonary chemoreflex, which is characterized by apnea, hypotension, and bradycardia and is a critical reflex that modulates cardiorespiratory responses under physiological and pathological conditions. The present study was designed to investigate whether the pulmonary chemoreflex is altered following acute cervical spinal injury. A unilateral hemisection (Hx) or laminectomy (uninjured) in the second cervical spinal cord was performed in adult male Sprague-Dawley rats. The pulmonary chemoreflex induced by intrajugular capsaicin administration was evaluated by measuring respiratory airflow in spontaneously breathing rats and phrenic nerve activity in mechanically ventilated rats. Capsaicin treatment evoked a cessation of respiratory airflow and phrenic bursting in uninjured animals, but not in C2Hx animals. To clarify whether the attenuation of the pulmonary chemoreflex in C2Hx animals is restricted to capsaicin-induced stimuli, or generally applied to other stimuli that excite bronchopulmonary C fibers, another bronchopulmonary C-fiber stimulant (phenylbiguanide) was used to evoke the pulmonary chemoreflex in spontaneously breathing rats. We observed that phenylbiguanide-induced apnea was also blunted in C2Hx animals, suggesting that the respiratory response induced by bronchopulmonary C-fiber activation was attenuated following acute cervical spinal Hx. The blunted inhibitory respiratory response may represent a compensatory respiratory plasticity to preserve the breathing capacity and may also reduce the capability of preventing inhaled irritants in this injured condition.
Collapse
Affiliation(s)
- I-Lun Tsai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; and
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Streeter KA, Baker-Herman TL. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation. Exp Neurol 2014; 256:46-56. [PMID: 24681155 DOI: 10.1016/j.expneurol.2014.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022]
Abstract
Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life.
Collapse
Affiliation(s)
- K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - T L Baker-Herman
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Lee KZ, Huang YJ, Tsai IL. Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat. J Appl Physiol (1985) 2014; 116:395-405. [DOI: 10.1152/japplphysiol.01001.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The present study was designed to investigate the impact of midcervical spinal cord injury on respiratory outputs and compare respiratory recovery following high- vs. midcervical spinal injury. A unilateral hemisection (Hx) in the spinal cord at C2 or C4 was performed in adult rats. Respiratory behaviors of unanesthetized animals were measured at normoxic baseline and hypercapnia by whole body plethysmography at 1 day and 1, 2, 4, and 8 wk after spinal injury. C2Hx and C4Hx induced a similar rapid shallow breathing pattern at 1 day postinjury. The respiratory frequency of C4Hx animals gradually returned to normal, but the tidal volume from 1 to 8 wk postinjury remained lower than that of the control animals. Linear regression analyses indicated that the tidal volume recovery was greater in the C4Hx animals than in the C2Hx animals at the baseline, but not at hypercapnia. The bilateral phrenic nerve activity was recorded in anesthetized animals under different respiratory drives at 8–9 wk postinjury. The phrenic burst amplitude ipsilateral to the lesion reduced following both high- and midcervical Hx; however, the ability to increase activity was lower in the C4Hx animals than in the C2Hx animals. When the data were normalized by the maximal inspiratory effort during asphyxia, the phrenic burst amplitude enhanced in the C4Hx animals, but reduced in the C2Hx animals compared with the control animals. These results suggest that respiratory deficits are evident following midcervical Hx, and that respiratory recovery and neuroplasticity of phrenic outputs are different following high- vs. midcervical spinal injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Jia Huang
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Lun Tsai
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
38
|
Nicaise C, Frank DM, Hala TJ, Authelet M, Pochet R, Adriaens D, Brion JP, Wright MC, Lepore AC. Early phrenic motor neuron loss and transient respiratory abnormalities after unilateral cervical spinal cord contusion. J Neurotrauma 2014; 30:1092-9. [PMID: 23534670 DOI: 10.1089/neu.2012.2728] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Contusion-type cervical spinal cord injury (SCI) is one of the most common forms of SCI observed in patients. In particular, injuries targeting the C3-C5 region affect the pool of phrenic motor neurons (PhMNs) that innervates the diaphragm, resulting in significant and often chronic respiratory dysfunction. Using a previously described rat model of unilateral midcervical C4 contusion with the Infinite Horizon Impactor, we have characterized the early time course of PhMN degeneration and consequent respiratory deficits following injury, as this knowledge is important for designing relevant treatment strategies targeting protection and plasticity of PhMN circuitry. PhMN loss (48% of the ipsilateral pool) occurred almost entirely during the first 24 h post-injury, resulting in persistent phrenic nerve axonal degeneration and denervation at the diaphragm neuromuscular junction (NMJ). Reduced diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation were observed as early as the first day post-injury (30% of pre-injury maximum amplitude), with slow functional improvement over time that was associated with partial reinnervation at the diaphragm NMJ. Consistent with ipsilateral diaphragmatic compromise, the injury resulted in rapid, yet only transient, changes in overall ventilatory parameters measured via whole-body plethysmography, including increased respiratory rate, decreased tidal volume, and decreased peak inspiratory flow. Despite significant ipsilateral PhMN loss, the respiratory system has the capacity to quickly compensate for partially impaired hemidiaphragm function, suggesting that C4 hemicontusion in rats is a model of SCI that manifests subacute respiratory abnormalities. Collectively, these findings demonstrate significant and persistent diaphragm compromise in a clinically relevant model of midcervical contusion SCI; however, the therapeutic window for PhMN protection is restricted to early time points post-injury. On the contrary, preventing loss of innervation by PhMNs and/or inducing plasticity in spared PhMN axons at the diaphragm NMJ are relevant long-term targets.
Collapse
Affiliation(s)
- Charles Nicaise
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
41
|
Hoh DJ, Mercier LM, Hussey SP, Lane MA. Respiration following spinal cord injury: evidence for human neuroplasticity. Respir Physiol Neurobiol 2013; 189:450-64. [PMID: 23891679 DOI: 10.1016/j.resp.2013.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022]
Abstract
Respiratory dysfunction is one of the most devastating consequences of cervical spinal cord injury (SCI) with impaired breathing being a leading cause of morbidity and mortality in this population. However, there is mounting experimental and clinical evidence for moderate spontaneous respiratory recovery, or "plasticity", after some spinal cord injuries. Pre-clinical models of respiratory dysfunction following SCI have demonstrated plasticity at neural and behavioral levels that result in progressive recovery of function. Temporal changes in respiration after human SCI have revealed some functional improvements suggesting plasticity paralleling that seen in experimental models-a concept that has been previously under-appreciated. While the extent of spontaneous recovery remains limited, it is possible that enhancing or facilitating neuroplastic mechanisms may have significant therapeutic potential. The next generation of treatment strategies for SCI and related respiratory dysfunction should aim to optimize these recovery processes of the injured spinal cord for lasting functional restoration.
Collapse
Affiliation(s)
- Daniel J Hoh
- Department of Neuroscience, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL 32611, USA; Neurological Surgery, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32611, USA
| | | | | | | |
Collapse
|
42
|
Awad BI, Warren PM, Steinmetz MP, Alilain WJ. The role of the crossed phrenic pathway after cervical contusion injury and a new model to evaluate therapeutic interventions. Exp Neurol 2013; 248:398-405. [PMID: 23886671 DOI: 10.1016/j.expneurol.2013.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
More than 50% of all spinal cord injury (SCI) cases are at the cervical level and usually result in the impaired ability to breathe. This is caused by damage to descending bulbospinal inspiratory tracts and the phrenic motor neurons which innervate the diaphragm. Most investigations have utilized a lateral C2 hemisection model of cervical SCI to study the resulting respiratory motor deficits and potential therapies. However, recent studies have emerged which incorporate experimental contusion injuries at the cervical level of the spinal cord to more closely reflect the type of trauma encountered in humans. Nonetheless, a common deficit observed in these contused animals is the inability to increase diaphragm motor activity in the face of respiratory challenge. In this report we tested the hypothesis that, following cervical contusion, all remaining tracts to the phrenic nucleus are active, including the crossed phrenic pathway (CPP). Additionally, we investigated the potential function these spared tracts might possess after injury. We find that, following a lateral C3/4 contusion injury, not all remaining pathways are actively exciting downstream phrenic motor neurons. However, removing some of these pathways through contralateral hemisection results in a cessation of all activity ipsilateral to the contusion. This suggests an important modulatory role for these pathways. Additionally, we conclude that this dual injury, hemi-contusion and post contra-hemisection, is a more effective and relevant model of cervical SCI as it results in a more direct compromise of diaphragmatic motor activity. This model can thus be used to test potential therapies with greater accuracy and clinical relevance than cervical contusion models currently allow.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurological Surgery, Mansoura University School of Medicine, Mansoura, Egypt
| | | | | | | |
Collapse
|
43
|
Strey KA, Baertsch NA, Baker-Herman TL. Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity. Respir Physiol Neurobiol 2013; 189:384-94. [PMID: 23816599 DOI: 10.1016/j.resp.2013.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/04/2013] [Accepted: 06/24/2013] [Indexed: 12/25/2022]
Abstract
Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity.
Collapse
Affiliation(s)
- K A Strey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
44
|
Fuller DD, Lee KZ, Tester NJ. The impact of spinal cord injury on breathing during sleep. Respir Physiol Neurobiol 2013; 188:344-54. [PMID: 23791824 DOI: 10.1016/j.resp.2013.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 01/07/2023]
Abstract
The prevalence of sleep disordered breathing (SDB) following spinal cord injury (SCI) is considerably greater than in the general population. While the literature on this topic is still relatively small, and in some cases contradictory, a few general conclusions can be drawn. First, while both central and obstructive sleep apnea (OSA) has been reported after SCI, OSA appears to be more common. Second, SDB after SCI likely reflects a complex interplay between multiple factors including body mass, lung volume, autonomic function, sleep position, and respiratory neuroplasticity. It is not yet possible to pinpoint a "primary factor" which will predispose an individual with SCI to SDB, and the underlying mechanisms may change during progression from acute to chronic injury. Given the prevalence and potential health implications of SDB in the SCI population, we suggest that additional studies aimed at defining the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| | | | | |
Collapse
|
45
|
Nicaise C, Putatunda R, Hala TJ, Regan KA, Frank DM, Brion JP, Leroy K, Pochet R, Wright MC, Lepore AC. Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice. J Neurotrauma 2012; 29:2748-60. [PMID: 23176637 DOI: 10.1089/neu.2012.2467] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A primary cause of morbidity and mortality following cervical spinal cord injury (SCI) is respiratory compromise, regardless of the level of trauma. In particular, SCI at mid-cervical regions targets degeneration of both descending bulbospinal respiratory axons and cell bodies of phrenic motor neurons, resulting in deficits in the function of the diaphragm, the primary muscle of inspiration. Contusion-type trauma to the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron-diaphragm circuitry. We have generated a mouse model of cervical contusion SCI that unilaterally targets both C4 and C5 levels, the location of the phrenic motor neuron pool, and have examined histological and functional outcomes for up to 6 weeks post-injury. We report that phrenic motor neuron loss in cervical spinal cord, phrenic nerve axonal degeneration, and denervation at diaphragm neuromuscular junctions (NMJ) resulted in compromised ipsilateral diaphragm function, as demonstrated by persistent reduction in diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation and abnormalities in spontaneous diaphragm electromyography (EMG) recordings. This injury paradigm is reproducible, does not require ventilatory assistance, and provides proof-of-principle that generation of unilateral cervical contusion is a feasible strategy for modeling diaphragmatic/respiratory deficits in mice. This study and its accompanying analyses pave the way for using transgenic mouse technology to explore the function of specific genes in the pathophysiology of phrenic motor neuron degeneration and respiratory dysfunction following cervical SCI.
Collapse
Affiliation(s)
- Charles Nicaise
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nichols NL, Punzo AM, Duncan ID, Mitchell GS, Johnson RA. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats. Neuroscience 2012; 229:77-87. [PMID: 23159317 DOI: 10.1016/j.neuroscience.2012.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor functions are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by significant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14-day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease.
Collapse
Affiliation(s)
- N L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States.
| | | | | | | | | |
Collapse
|
47
|
Nicaise C, Hala TJ, Frank DM, Parker JL, Authelet M, Leroy K, Brion JP, Wright MC, Lepore AC. Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury. Exp Neurol 2012; 235:539-52. [PMID: 22465264 DOI: 10.1016/j.expneurol.2012.03.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/15/2012] [Indexed: 12/23/2022]
Abstract
Respiratory dysfunction is the leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). Injuries targeting mid-cervical spinal cord regions affect the phrenic motor neuron pool that innervates the diaphragm, the primary respiratory muscle of inspiration. Contusion-type injury in the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron-diaphragm circuitry. In an attempt to target the phrenic motor neuron pool, two unilateral contusion injury paradigms were tested, a single injury at level C4 and a double injury both at levels C3 and C4, and animals were followed for up to 6 weeks post-injury. Both unilateral cervical injury paradigms are reproducible with no mortality or need for breathing assistance, and are accompanied by phrenic motor neuron loss, phrenic nerve axon degeneration, diaphragm atrophy, denervation and subsequent partial reinnervation at the diaphragm neuromuscular junction, changes in spontaneous diaphragm EMG recordings, and reduction in phrenic nerve compound muscle action potential amplitude. These findings demonstrate significant and chronically persistent respiratory compromise following mid-cervical SCI due to phrenic motor neuron degeneration. These injury paradigms and accompanying analyses provide important tools both for understanding mechanisms of phrenic motor neuron and diaphragm pathology following SCI and for evaluating therapeutic strategies in clinically relevant cervical SCI models.
Collapse
Affiliation(s)
- Charles Nicaise
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, Philadelphia, PA, 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Treatments to restore respiratory function after spinal cord injury and their implications for regeneration, plasticity and adaptation. Exp Neurol 2011; 235:18-25. [PMID: 22200541 DOI: 10.1016/j.expneurol.2011.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 11/18/2011] [Accepted: 12/09/2011] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often leads to impaired breathing. In most cases, such severe respiratory complications lead to morbidity and death. However, in the last few years there has been extensive work examining ways to restore this vital function after experimental spinal cord injury. In addition to finding strategies to rescue breathing activity, many of these experiments have also yielded a great deal of information about the innate plasticity and capacity for adaptation in the respiratory system and its associated circuitry in the spinal cord. This review article will highlight experimental SCI resulting in compromised breathing, the various methods of restoring function after such injury, and some recent findings from our own laboratory. Additionally, it will discuss findings about motor and CNS respiratory plasticity and adaptation with potential clinical and translational implications.
Collapse
|
49
|
Lane MA. Spinal respiratory motoneurons and interneurons. Respir Physiol Neurobiol 2011; 179:3-13. [DOI: 10.1016/j.resp.2011.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/03/2011] [Accepted: 07/07/2011] [Indexed: 01/30/2023]
|
50
|
Respiratory function following bilateral mid-cervical contusion injury in the adult rat. Exp Neurol 2011; 235:197-210. [PMID: 21963673 DOI: 10.1016/j.expneurol.2011.09.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/27/2011] [Accepted: 09/13/2011] [Indexed: 11/22/2022]
Abstract
The consequences of spinal cord injury (SCI) are often viewed as the result of white matter damage. However, injuries occurring at any spinal level, especially in cervical and lumbar enlargement regions, also entail segmental neuronal loss. Yet, the contributions of gray matter injury and plasticity to functional outcomes are poorly understood. The present study addressed this issue by investigating changes in respiratory function following bilateral C(3)/C(4) contusion injuries at the level of the phrenic motoneuron (PhMN) pool which in the adult rat extends from C(3) to C(5/6) and provides innervation to the diaphragm. Despite extensive white and gray matter pathology associated with two magnitudes of injury severity, ventilation was relatively unaffected during both quiet breathing and respiratory challenge (hypercapnia). On the other hand, bilateral diaphragm EMG recordings revealed that the ability to increase diaphragm activity during respiratory challenge was substantially, and chronically, impaired. This deficit has not been seen following predominantly white matter lesions at higher cervical levels. Thus, the impact of gray matter damage relative to PhMNs and/or interneurons becomes evident during conditions associated with increased respiratory drive. Unaltered ventilatory behavior, despite significant deficits in diaphragm function, suggests compensatory neuroplasticity involving recruitment of other spinal respiratory networks which may entail remodeling of connections. Transynaptic tracing, using pseudorabies virus (PRV), revealed changes in PhMN-related interneuronal labeling rostral to the site of injury, thus offering insight into the potential anatomical reorganization and spinal plasticity following cervical contusion.
Collapse
|