1
|
Horwitz JK, Bin S, Fairchild RL, Keslar KS, Yi Z, Zhang W, Pavlov VI, Li Y, Madsen JC, Cravedi P, Heeger PS. Linking erythropoietin to regulatory T-cell-dependent allograft survival through myeloid cells. JCI Insight 2022; 7:158856. [PMID: 35389892 PMCID: PMC9220923 DOI: 10.1172/jci.insight.158856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (EPO) has multiple nonerythropoietic functions, including immune modulation, but EPO’s effects in transplantation remain incompletely understood. We tested the mechanisms linking EPO administration to prolongation of murine heterotopic heart transplantation using WT and conditional EPO receptor–knockout (EPOR-knockout) mice as recipients. In WT controls, peritransplant administration of EPO synergized with CTLA4-Ig to prolong allograft survival (P < 0.001), reduce frequencies of donor-reactive effector CD8+ T cells in the spleen (P < 0.001) and in the graft (P < 0.05), and increase frequencies and total numbers of donor-reactive Tregs (P < 0.01 for each) versus CTLA4-Ig alone. Studies performed in conditional EPOR-knockout recipients showed that each of these differences required EPOR expression in myeloid cells but not in T cells. Analysis of mRNA isolated from spleen monocytes showed that EPO/EPOR ligation upregulated macrophage-expressed, antiinflammatory, regulatory, and pro-efferocytosis genes and downregulated selected proinflammatory genes. Taken together, the data support the conclusion that EPO promotes Treg-dependent murine cardiac allograft survival by crucially altering the phenotype and function of macrophages. Coupled with our previous documentation that EPO promotes Treg expansion in humans, the data support the need for testing the addition of EPO to costimulatory blockade-containing immunosuppression regimens in an effort to prolong human transplant survival.
Collapse
Affiliation(s)
- Julian K Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Sofia Bin
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Robert L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Karen S Keslar
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Zhengzi Yi
- Translational Transplant Research Center, Icahn School of medicine at Mount Sinai, New York, United States of America
| | - Weijia Zhang
- Translational Transplant Research Center, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Vasile I Pavlov
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Yansui Li
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Joren C Madsen
- Department of Surgery, Massachusetts General Hospital, Boston, United States of America
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
2
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Zhang L, Zheng XC, Huang YY, Ge YP, Sun M, Chen WL, Liu WB, Li XF. Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109003. [PMID: 33617998 DOI: 10.1016/j.cbpc.2021.109003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Carbonylcyanide-3-chlorophenylhydrazone (CCCP) is a protonophore, which causes uncoupling of proton gradient in the inner mitochondrial membrane, thus inhibiting the rate of ATP synthesis. However, this information is manly derived from mammals, while its effects on the mitochondrial homeostasis of aquatic animals are largely unknown. In this study, the mitochondrial homeostasis of a carp fish Megalobrama amblycephala was investigated systematically in a time-course manner by using CCCP. Fish was injected intraperitoneally with CCCP (1.8 mg/kg per body weight) and DMSO (control), respectively. The results showed that CCCP treatment induced hepatic mitochondrial oxidative stress, as was evidenced by the significantly increased MDA and PC contents coupled with the decreased SOD and MnSOD activities. Meanwhile, mitochondrial fission was up-regulated remarkably characterized by the increased transcriptions of Drp-1, Fis-1 and Mff. However, the opposite was true for mitochondrial fusion, as was indicative of the decreased transcriptions of Mfn-1, Mfn-2 and Opa-1. This consequently triggered mitophagy, as was supported by the accumulated mitochondrial autophagosomes and the increased protein levels of PINK1, Parkin, LC3-II and P62 accompanied by the increased LC3-II/LC3-I ratio. Mitochondrial biogenesis and function both decreased significantly addressed by the decreased activities of CS, SDH and complex I, IV and V, as well as the protein levels of PGC-1β coupled with the decreased transcriptions of TFAM, COX-1, COX-2 and ATP-6. Unlikely, DMSO treatment exerted little influence. Overall, CCCP treatment resulted in the imbalance of mitochondrial homeostasis in Megalobrama amblycephala by promoting mitochondrial oxidative stress, fission and mitophagy, but depressing mitochondrial fusion, biogenesis and function.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiao-Chuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Ya-Ping Ge
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Miao Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
4
|
Huang CC, Sun J, Ji H, Kaneko G, Xie XD, Chang ZG, Deng W. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1631-1644. [PMID: 32651854 DOI: 10.1007/s10695-020-00795-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Considering the excessive lipid accumulation status caused by the increased dietary lipid intake in farmed fish, this study aimed to investigate the systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish. A total of 540 male zebrafish (0.17 g) were fed with normal (CT) and high lipid level (HL) diets for 6 weeks, then fed on 1000 mg/kg α-lipoic acid supplementation diets for the second 6 weeks. HL diets did not affect whole fish protein content, but increased ASNS expression (P < 0.05). Dietary α-lipoic acid increased whole fish protein content, and decreased the expressions of protein catabolism-related genes in muscle of high lipid level groups (P < 0.05). Furthermore, HL diets increased the whole fish lipid content and the expressions of gluconeogenesis and lipogenesis-related genes (P < 0.05), and α-lipoic acid counteracted these effects and decreased the whole fish triglyceride and cholesterol contents and expressions of lipogenesis-related genes, with the enhanced expressions of lipolytic genes, especially in high lipid groups (P < 0.05). HL diets did not affect hepatocyte mitochondrial quantity or the mRNA expressions of mitochondrial biogenesis and electron transport chain-related genes; they were significantly increased by dietary α-lipoic acid (P < 0.05). These results indicated that high dietary lipid promotes lipid accumulation, while α-lipoic acid increases protein content in association of enhanced lipid catabolism. Thus, dietary α-lipoic acid supplementation could reduce lipid accumulation under high lipid, which provides a promising new approach in solving the problem of lipid accumulation in farmed fish.
Collapse
Affiliation(s)
- Chen-Cui Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, 3007, North Ben Wilson, Victoria, TX, 77901, USA
| | - Xing-da Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhi-Guang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
5
|
Peptide Derivatives of Erythropoietin in the Treatment of Neuroinflammation and Neurodegeneration. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:309-357. [DOI: 10.1016/bs.apcsb.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Bitto A, Irrera N, Pizzino G, Pallio G, Mannino F, Vaccaro M, Arcoraci V, Aliquò F, Minutoli L, Colonna MR, Galeano MR, Brines M, De Ponte C, Collino M, Squadrito F, Altavilla D. Activation of the EPOR-β common receptor complex by cibinetide ameliorates impaired wound healing in mice with genetic diabetes. Biochim Biophys Acta Mol Basis Dis 2017; 1864:632-639. [PMID: 29223734 DOI: 10.1016/j.bbadis.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db+/db+) and compared to the normal wild-type. Animals were treated daily with cibinetide (30μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing.
Collapse
Affiliation(s)
- Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Federica Aliquò
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | | | | | | | - Chiara De Ponte
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
7
|
Guilford BL, Ryals JM, Lezi E, Swerdlow RH, Wright DE. Dorsal Root Ganglia Mitochondrial Biochemical Changes in Non-diabetic and Streptozotocin-Induced Diabetic Mice Fed with a Standard or High-Fat Diet. ACTA ACUST UNITED AC 2017; 8. [PMID: 28775932 DOI: 10.21767/2171-6625.1000180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is purported as a contributory mechanism underlying diabetic neuropathy, but a defined role for damaged mitochondria in diabetic nerves remains unclear, particularly in standard diabetes models. Experiments here used a high-fat diet in attempt to exacerbate the severity of diabetes and expedite the time-course in which mitochondrial dysfunction may occur. We hypothesized a high-fat diet in addition to diabetes would increase stress on sensory neurons and worsen mitochondrial dysfunction. METHODS Oxidative phosphorylation proteins and proteins associated with mitochondrial function were quantified in lumbar dorsal root ganglia. Comparisons were made between non-diabetic and streptozotocin-induced (STZ) C57Bl/6 mice fed a standard or high-fat diet for 8 weeks. RESULTS Complex III subunit Core-2 and voltage dependent anion channel were increased (by 36% and 28% respectively, p<0.05) in diabetic mice compared to nondiabetic mice fed the standard diet. There were no differences among groups in UCP2, PGC-1α, PGC-1β levels or Akt, mTor, or AMPK activation. These data suggest compensatory mitochondrial biogenesis occurs to offset potential mitochondrial dysfunction after 8 weeks of STZ-induced diabetes, but a high-fat diet does not alter these parameters. CONCLUSION Our results indicate mitochondrial protein changes early in STZ-induced diabetes. Interestingly, a high-fat diet does not appear to affect mitochondrial proteins in either nondiabetic or STZ- diabetic mice.
Collapse
Affiliation(s)
- B L Guilford
- Department of Applied Health, Southern Illinois University, Edwardsville, Illinois, USA
| | - J M Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - E Lezi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - R H Swerdlow
- Department of Molecular and Integrative Physiology and Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - D E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Targeting the innate repair receptor to treat neuropathy. Pain Rep 2016; 1:e566. [PMID: 29392190 PMCID: PMC5741312 DOI: 10.1097/pr9.0000000000000566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 11/26/2022] Open
Abstract
The innate repair receptor (IRR) is a heteromer of the erythropoietin receptor and the β-common (CD131) receptor, which simultaneously activates anti-inflammatory and tissue repair pathways. Experimental data suggest that after peripheral nerve injury, the IRR is upregulated in the spinal cord and modulates the neurogenic inflammatory response. The recently introduced selective IRR agonist ARA290 is an 11-amino acid peptide initially tested in animal models of neuropathy. After sciatic nerve injury, ARA290 produced a rapid and long-term relief of mechanical and cold allodynia in normal mice, but not in animals with a β-common receptor knockout phenotype. In humans, ARA290 has been evaluated in patients with small fiber neuropathy associated with sarcoidosis or type 2 diabetes (T2D) mellitus. In patients with sarcoidosis, ARA290 significantly improved neuropathic and autonomic symptoms, as well as quality of life as assessed by the small fiber neuropathy screening list questionnaire. In addition, ARA290 treatment for 28 days initiated a regrowth of small nerve fibers in the cornea, but not in the epidermis. In patients with T2D, the results were similar to those observed in patients with sarcoidosis along with an improved metabolic profile. In both populations, ARA290 lacked significant adverse effects. These experimental and clinical studies show that ARA290 effectively reprograms a proinflammatory, tissue-damaging milieu into one of healing and tissue repair. Further clinical trials with long-term treatment and follow-up are needed to assess the full potential of IRR activation by ARA290 as a disease-modifying therapy in neuropathy of various etiologies.
Collapse
|
9
|
Xie J, Xiao D, Zhao J, Hu N, Bao Q, Jiang L, Yu L. Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy. Adv Healthc Mater 2016; 5:1213-21. [PMID: 27028159 DOI: 10.1002/adhm.201500996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Indexed: 12/20/2022]
Abstract
The long-term use of potent analgesics is often needed to treat chronic pain. However, it has been greatly hindered by their side effects such as addiction and withdrawal reactions. The study seeks to circumvent these drawbacks by taking advantage of a multifunctional delivery system based on nanoparticles to target on pathological neuroinflammation. A drug delivery system is designed and generated using mesoporous silica nanoparticles (MSNs) that are loaded with Δ9-THC (Δ9-tetrahydrocannabinol, a cannabinoid) and ARA290 (an erythropoietin-derived polypeptide), both of which possess analgesic and anti-inflammatory functions. The actions of such THC-MSN-ARA290 nanocomplexes depend on the enhanced permeability and retention of THC through nanosized carriers, and a redox-sensitive release of conjugated ARA290 peptide into the local inflammatory milieu. The biosafety and anti-inflammatory effects of the nanocomplexes are first evaluated in primary microglia in vitro, and further in a mouse model of chronic constriction injury. It is found that the nanocomplexes attenuate in vitro and in vivo inflammation, and achieve a sustained relief of neuropathic pain in injured animals induced by both thermal hyperalgesia and mechanical allodynia. Thus, a nanoparticle-based carrier system can be useful for the amelioration of chronic neuropathic pain through combinatorial drug delivery.
Collapse
Affiliation(s)
- Junran Xie
- Department of Anesthesiology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; 31006 Zhejiang Hangzhou P. R. China
| | - Dongju Xiao
- Jiangsu Province Key Laboratory of Anesthesiology; Xuzhou Medical College; Xuzhou 221004 P. R. China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology; Xuzhou 221004 P. R. China
| | - Jinning Zhao
- Department of Anesthesiology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; 31006 Zhejiang Hangzhou P. R. China
| | - Nianqiang Hu
- Department of Anesthesiology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; 31006 Zhejiang Hangzhou P. R. China
| | - Qi Bao
- Department of Anesthesiology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; 31006 Zhejiang Hangzhou P. R. China
| | - Li Jiang
- Department of Anesthesiology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; 31006 Zhejiang Hangzhou P. R. China
| | - Lina Yu
- Department of Anesthesiology; Second Affiliated Hospital; School of Medicine; Zhejiang University; 88 Jiefang Road Zhejiang Hangzhou 310009 P. R. China
| |
Collapse
|
10
|
Zhang W, Yu G, Zhang M. ARA 290 relieves pathophysiological pain by targeting TRPV1 channel: Integration between immune system and nociception. Peptides 2016; 76:73-9. [PMID: 26774587 DOI: 10.1016/j.peptides.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/26/2015] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
Abstract
ARA 290 is an erythropoietin-derived polypeptide that possesses analgesic and tissue protective effect in many diseases such as diabetes and cancer. The analgesic effect of ARA 290 is mediated by its anti-inflammatory and immunomodulatory functions, or more specifically, by targeting the innate repair receptor (IRR) to down-regulate inflammation to alleviate neuropathic pain. However, whether other mechanisms or pathways are involved in ARA 290-mediated analgesic effect remains elusive. In this study, we are particularly interested in whether ARA 290 could directly target peripheral nociceptors by blocking or influencing receptors in pain sensation. Using calcium imaging, cell culture and behavioral tests, we demonstrated that ARA 290 was able to specifically inhibit TRPV1 channel activity, and relieve the mechanical hypersensitivity induced by capsaicin. Our study suggested that ARA 290 could potentially function as a novel antagonist for TRPV1 channel. This finding would not only contribute to the development of new pain treatment using ARA 290, but also help to improve our understanding of the integration between the immune system and the peripheral nervous system.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology, Provincial Hospital Affiliated to Shandong University, 324# Jingwu Road, Jinan 250021, Shandong, China
| | - Guanling Yu
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 157# Jingliu Road, Jinan 250021, Shandong, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Provincial Hospital Affiliated to Shandong University, 324# Jingwu Road, Jinan 250021, Shandong, China.
| |
Collapse
|
11
|
Collino M, Thiemermann C, Cerami A, Brines M. Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol Ther 2015; 151:32-40. [DOI: 10.1016/j.pharmthera.2015.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 01/25/2023]
|
12
|
Brines M, Dunne AN, van Velzen M, Proto PL, Ostenson CG, Kirk RI, Petropoulos IN, Javed S, Malik RA, Cerami A, Dahan A. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med 2015; 20:658-66. [PMID: 25387363 DOI: 10.2119/molmed.2014.00215] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 12/14/2022] Open
Abstract
Although erythropoietin ameliorates experimental type 2 diabetes with neuropathy, serious side effects limit its potential clinical use. ARA 290, a nonhematopoietic peptide designed from the structure of erythropoietin, interacts selectively with the innate repair receptor that mediates tissue protection. ARA 290 has shown efficacy in preclinical and clinical studies of metabolic control and neuropathy. To evaluate the potential activity of ARA 290 in type 2 diabetes and painful neuropathy, subjects were enrolled in this phase 2 study. ARA 290 (4 mg) or placebo were self-administered subcutaneously daily for 28 d and the subjects followed for an additional month without further treatment. No potential safety issues were identified. Subjects receiving ARA 290 exhibited an improvement in hemoglobin A(1c) (Hb A(1c)) and lipid profiles throughout the 56 d observation period. Neuropathic symptoms as assessed by the PainDetect questionnaire improved significantly in the ARA 290 group. Mean corneal nerve fiber density (CNFD) was reduced significantly compared with normal controls and subjects with a mean CNFD >1 standard deviation from normal showed a significant increase in CNFD compared with no change in the placebo group. These observations suggest that ARA 290 may benefit both metabolic control and neuropathy in subjects with type 2 diabetes and deserves continued clinical evaluation.
Collapse
Affiliation(s)
- Michael Brines
- Araim Pharmaceuticals, Tarrytown, New York, United States of America
| | - Ann N Dunne
- Araim Pharmaceuticals, Tarrytown, New York, United States of America
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paolo L Proto
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rita I Kirk
- Araim Pharmaceuticals, Tarrytown, New York, United States of America
| | - Ioannis N Petropoulos
- Centre for Diabetes and Endocrinology, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar
| | - Saad Javed
- Centre for Diabetes and Endocrinology, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rayaz A Malik
- Centre for Diabetes and Endocrinology, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar
| | - Anthony Cerami
- Araim Pharmaceuticals, Tarrytown, New York, United States of America
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies.
Collapse
|
14
|
Brines M. Discovery of a master regulator of injury and healing: tipping the outcome from damage toward repair. Mol Med 2014; 20 Suppl 1:S10-6. [PMID: 25549226 DOI: 10.2119/molmed.2014.00167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
Disease processes provoke a balancing act between tissue damage and repair. In the 1980s, the discovery that tumor necrosis factor (TNF)-α is a general mediator of disease-related injury led to the development of novel therapeutics to neutralize its activity. In contrast, identification of potential mediator(s) of tissue repair remained elusive. Studies performed over the last 15 years have documented that the type 1 cytokine erythropoietin (EPO), produced by cells within surrounding regions subjected to injury, acts as a master regulator, controlling both damage and repair. The transducer of these activities is the previously unrecognized innate repair receptor (IRR), which is comprised of the EPO receptor and β common receptor subunits. Notably, although proinflammatory cytokines upregulate the IRR, EPO and proinflammatory cytokines inhibit each other's production, resulting in a relative underproduction of EPO. Although exogenous EPO attenuates disease activity in many preclinical models, its clinical utility is limited by serious hematopoietic and thrombotic adverse effects. To circumvent this problem, novel compounds engineered from the structure of EPO have been developed as selective ligands of the IRR. These compounds possess no hematopoietic activity, yet are fully tissue-protective and reparative. The lead molecule of this development effort (the 11-amino acid peptide ARA290) tips the balance toward healing in diverse preclinical models of disease and is currently under evaluation in advanced clinical trials as a disease-modifying agent in painful neuropathy and diabetes.
Collapse
|
15
|
Collino M, Benetti E, Rogazzo M, Chiazza F, Mastrocola R, Nigro D, Cutrin JC, Aragno M, Fantozzi R, Minetto MA, Thiemermann C. A non-erythropoietic peptide derivative of erythropoietin decreases susceptibility to diet-induced insulin resistance in mice. Br J Pharmacol 2014; 171:5802-15. [PMID: 25164531 PMCID: PMC4290718 DOI: 10.1111/bph.12888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The haematopoietic activity of erythropoietin (EPO) is mediated by the classic EPO receptor (EpoR) homodimer, whereas tissue-protective effects are mediated by a heterocomplex between EpoR and the β-common receptor (βcR). Here, we investigated the effects of a novel, selective ligand of this heterocomplex - pyroglutamate helix B surface peptide (pHBSP) - in mice fed a diet enriched in sugars and saturated fats. EXPERIMENTAL APPROACH Male C57BL/6J mice were fed a high-fat high-sucrose diet (HFHS) for 22 weeks. pHBSP (30 μg·kg(-1) s.c.) was administered for the last 11 weeks. Biochemical assays, histopathological and immunohistochemical examinations and Western blotting were performed on serum and target organs (liver, kidney and skeletal muscle). KEY RESULTS Mice fed with HFHS diet exhibited insulin resistance, hyperlipidaemia, hepatic lipid accumulation and kidney dysfunction. In gastrocnemius muscle, HFHS impaired the insulin signalling pathway and reduced membrane translocation of glucose transporter type 4 and glycogen content. Treatment with pHBSP ameliorated renal function, reduced hepatic lipid deposition, and normalized serum glucose and lipid profiles. These effects were associated with an improvement in insulin sensitivity and glucose uptake in skeletal muscle. Diet-induced overproduction of the myokines IL-6 and fibroblast growth factor-21 were attenuated by pHBSP and, most importantly, pHBSP markedly enhanced mitochondrial biogenesis in skeletal muscle. CONCLUSIONS AND IMPLICATIONS Chronic treatment of mice with an EPO derivative, devoid of haematopoietic effects, improved metabolic abnormalities induced by a high-fat high-sucrose diet, by affecting several levels of the insulin signalling and inflammatory cascades within skeletal muscle, while enhancing mitochondrial biogenesis.
Collapse
Affiliation(s)
- M Collino
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - E Benetti
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - M Rogazzo
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - F Chiazza
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - R Mastrocola
- Department of Clinical and Biological Sciences, University of TurinTurin, Italy
| | - D Nigro
- Department of Clinical and Biological Sciences, University of TurinTurin, Italy
| | - J C Cutrin
- Department of Biotechnology and Sciences for the Health, University of TurinItaly
- Instituto de Investigaciones Cardiológicas, ININCA-CONICETBuenos Aires, Argentina
| | - M Aragno
- Department of Clinical and Biological Sciences, University of TurinTurin, Italy
| | - R Fantozzi
- Department of Drug Science and Technology, University of TurinTurin, Italy
| | - M A Minetto
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of TurinTurin, Italy
| | - C Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| |
Collapse
|
16
|
Yang C, Xu Z, Zhao Z, Li L, Zhao T, Peng D, Xu M, Rong R, Long YQ, Zhu T. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2306-17. [PMID: 25220479 DOI: 10.1016/j.bbadis.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/14/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Helix B surface peptide (HBSP), derived from erythropoietin, displays powerful tissue protection during kidney ischemia reperfusion (IR) injury without erythropoietic side effects. We employed cyclization strategy for the first time, and synthesized thioether-cyclized helix B peptide (CHBP) to improve metabolic stability and renoprotective effect. LC-MS/MS analysis was adopted to examine the stability of CHBP in vitro and in vivo. The renoprotective effect of CHBP in terms of renal function, apoptosis, inflammation, extracellular matrix deposition, and histological injury was also detected in vivo and in vitro. Antibody array and western blot were performed to analyze the signal pathway of involvement by CHBP in the IR model and renal tubular epithelial cells. In this study, thioether-cyclized peptide was significantly stable in vivo and in vitro. One dose of 8nmol/kg CHBP administered intraperitoneally at the onset of reperfusion improved renal protection compared with three doses of 8nmol/kg linear HBSP in a 48h murine IR model. In a one-week model, the one dose CHBP-treated group exhibited remarkably improved renal function over the IR group, and attenuated kidney injury, including reduced inflammation and apoptosis. Interestingly, we found that the phosphorylation of autophagy protein mTORC1 was dramatically reduced upon CHBP treatment. We also demonstrated that CHBP induced autophagy via inhibition of mTORC1 and activation of mTORC2, leading to renoprotective effects on IR. Our results indicate that the novel metabolically stable CHBP is a promising therapeutic medicine for kidney IR injury treatment.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhongliang Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Dian Peng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Abstract
Autonomic neuropathy complicates diabetes by increasing patient morbidity and mortality. Surprisingly, considering its importance, development and exploitation of animal models has lagged behind the wealth of information collected for somatic symmetrical sensory neuropathy. Nonetheless, animal studies have resulted in a variety of insights into the pathogenesis, neuropathology, and pathophysiology of diabetic autonomic neuropathy (DAN) with significant and, in some cases, remarkable correspondence between rodent models and human disease. Particularly in the study of alimentary dysfunction, findings in intrinsic intramural ganglia, interstitial cells of Cajal and the extrinsic parasympathetic and sympathetic ganglia serving the bowel vie for recognition as the chief mechanism. A body of work focused on neuropathologic findings in experimental animals and human subjects has demonstrated that axonal and dendritic pathology in sympathetic ganglia with relative neuron preservation represents one of the neuropathologic hallmarks of DAN but it is unlikely to represent the entire story. There is a surprising selectivity of the diabetic process for subpopulations of neurons and nerve terminals within intramural, parasympathetic, and sympathetic ganglia and innervation of end organs, afflicting some while sparing others, and differing between vascular and other targets within individual end organs. Rather than resulting from a simple deficit in one limb of an effector pathway, autonomic dysfunction may proceed from the inability to integrate portions of several complex pathways. The selectivity of the diabetic process appears to confound a simple global explanation (e.g., ischemia) of DAN. Although the search for a single unifying pathogenetic hypothesis continues, it is possible that autonomic neuropathy will have multiple pathogenetic mechanisms whose interplay may require therapies consisting of a cocktail of drugs. The role of multiple neurotrophic substances, antioxidants (general or pathway specific), inhibitors of formation of advanced glycosylation end products and drugs affecting the polyol pathway may be complex and therapeutic elements may have both salutary and untoward effects. This review has attempted to present the background and current findings and hypotheses, focusing on autonomic elements including and beyond the typical parasympathetic and sympathetic nervous systems to include visceral sensory and enteric nervous systems.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
18
|
van Rijt WG, van Goor H, Ploeg RJ, Leuvenink HGD. Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events. Transpl Int 2013; 27:241-8. [PMID: 23964738 DOI: 10.1111/tri.12174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 04/29/2013] [Accepted: 07/27/2013] [Indexed: 11/30/2022]
Abstract
The protective, nonerythropoietic effects of erythropoietin (EPO) have become evident in preclinical models in renal ischaemia/reperfusion injury and kidney transplantation. However, four recently published clinical trials using high-dose EPO treatment following renal transplantation did not reveal any protective effect for short-term renal function and even reported an increased risk of thrombosis. This review focusses on the current status of protective pathways mediated by EPO, the safety concerns using high EPO dosage and discusses the discrepancies between pre-clinical and clinical studies. The protective effects are mediated by binding of EPO to a heteromeric receptor complex consisting of two β-common receptors and two EPO receptors. An important role for the activation of endothelial nitric oxide synthase is proposed. EPO-mediated cytoprotection still has enormous potential. However, only nonerythropoietic EPO derivatives may induce protection without increasing the risk of cardiovascular events. In preclinical models, nonerythropoietic EPO derivatives, such as carbamoylated EPO and ARA290, have been tested. These EPO derivatives improve renal function and do not affect erythropoiesis. Therefore, nonerythropoietic EPO derivatives may be able to render EPO-mediated cytoprotection useful and beneficial for clinical transplantation.
Collapse
Affiliation(s)
- Willem G van Rijt
- Department of Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
20
|
Heij L, Niesters M, Swartjes M, Hoitsma E, Drent M, Dunne A, Grutters JC, Vogels O, Brines M, Cerami A, Dahan A. Safety and efficacy of ARA 290 in sarcoidosis patients with symptoms of small fiber neuropathy: a randomized, double-blind pilot study. Mol Med 2012; 18:1430-6. [PMID: 23168581 DOI: 10.2119/molmed.2012.00332] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
ARA 290 (a peptide designed to activate the innate repair receptor that arrests injury and initiates cytoprotection, antiinflammation and healing) reduces allodynia in preclinical neuropathy models. We studied the safety and efficacy of ARA 290 to reduce symptoms of small fiber neuropathy (SFN) in patients with sarcoidosis. A total of 22 patients diagnosed with sarcoidosis and symptoms of SFN were enrolled in a double-blind, placebo-controlled exploratory trial consisting of three times weekly intravenous dosing of ARA 290 (2 mg; n = 12) or placebo (n = 10) for 4 wks. Inclusion criteria were a diagnosis of neuropathy and a spontaneous pain score of ≥5 (Brief Pain Inventory [BPI]). Endpoints assessed were changes in pain intensity and the small fiber neuropathy screening list (SFNSL) score, quality of life (SF-36), depressive symptoms (Inventory of Depressive Symptomatology [IDS]) and fatigue (Fatigue Assessment Scale [FAS]). No safety concerns were raised by clinical or laboratory assessments. The ARA 290 group showed significant (p < 0.05) improvement at wk 4 in SFNSL score compared with placebo (Δ -11.5 ± 3.04 versus Δ -2.9 ± 3.34 [standard error of the mean]). Additionally, the ARA 290 group showed a significant change from baseline in the pain and physical functioning dimensions of the SF-36 (Δ -23.4 ± 5.5 and Δ -14.6 ± 3.9, respectively). The mean BPI and FAS scores improved significantly but equivalently in both patient groups. No change was observed in the IDS. ARA 290 appears to be safe in patients with sarcoidosis and can reduce neuropathic symptoms.
Collapse
Affiliation(s)
- Lara Heij
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Patel NSA, Kerr-Peterson HL, Brines M, Collino M, Rogazzo M, Fantozzi R, Wood EG, Johnson FL, Yaqoob MM, Cerami A, Thiemermann C. Delayed administration of pyroglutamate helix B surface peptide (pHBSP), a novel nonerythropoietic analog of erythropoietin, attenuates acute kidney injury. Mol Med 2012; 18:719-27. [PMID: 22415011 DOI: 10.2119/molmed.2012.00093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 11/06/2022] Open
Abstract
In preclinical studies, erythropoietin (EPO) reduces ischemia-reperfusion-associated tissue injury (for example, stroke, myocardial infarction, acute kidney injury, hemorrhagic shock and liver ischemia). It has been proposed that the erythropoietic effects of EPO are mediated by the classic EPO receptor homodimer, whereas the tissue-protective effects are mediated by a hetero-complex between the EPO receptor monomer and the β-common receptor (termed "tissue-protective receptor"). Here, we investigate the effects of a novel, selective-ligand of the tissue-protective receptor (pyroglutamate helix B surface peptide [pHBSP]) in a rodent model of acute kidney injury/dysfunction. Administration of pHBSP (10 μg/kg intraperitoneally [i.p.] 6 h into reperfusion) or EPO (1,000 IU/kg i.p. 4 h into reperfusion) to rats subjected to 30 min ischemia and 48 h reperfusion resulted in significant attenuation of renal and tubular dysfunction. Both pHBSP and EPO enhanced the phosphorylation of Akt (activation) and glycogen synthase kinase 3β (inhibition) in the rat kidney after ischemia-reperfusion, resulting in prevention of the activation of nuclear factor-κB (reduction in nuclear translocation of p65). Interestingly, the phosphorylation of endothelial nitric oxide synthase was enhanced by EPO and, to a much lesser extent, by pHBSP, suggesting that the signaling pathways activated by EPO and pHBSP may not be identical.
Collapse
Affiliation(s)
- Nimesh S A Patel
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, The William Harvey Research Institute, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Peripheral neuropathies are common neurological diseases, and various animal models have been developed to study disease pathogenesis and test potential therapeutic drugs. Three commonly studied disease models with huge public health impact are diabetic peripheral neuropathy, chemotherapy-induced peripheral neuropathy, and human immunodeficiency virus-associated sensory neuropathies. A common theme in these animal models is the comprehensive use of pathological, electrophysiological, and behavioral outcome measures that mimic the human disease. In recent years, the focus has shifted to the use of outcome measures that are also available in clinical use and can be done in a blinded and quantitative manner. One such evaluation tool is the evaluation of epidermal innervation with a simple skin biopsy. Future clinical trials will be needed to validate the translational usefulness of this outcome measure and validation against accepted outcome measures that rely on clinical symptoms or examination findings in patients.
Collapse
Affiliation(s)
- Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Chowdhury SKR, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2012; 51:56-65. [PMID: 22446165 DOI: 10.1016/j.nbd.2012.03.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich ataxia, Charcot-Marie-Tooth disease type 2 and human immunodeficiency virus-associated distal-symmetric neuropathy.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | |
Collapse
|