1
|
Sun F, Zhou J, Chen X, Yang T, Wang G, Ge J, Zhang Z, Mei Z. No-reflow after recanalization in ischemic stroke: From pathomechanisms to therapeutic strategies. J Cereb Blood Flow Metab 2024; 44:857-880. [PMID: 38420850 PMCID: PMC11318407 DOI: 10.1177/0271678x241237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.
Collapse
Affiliation(s)
- Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
2
|
Jia M, Jin F, Li S, Ren C, Ruchi M, Ding Y, Zhao W, Ji X. No-reflow after stroke reperfusion therapy: An emerging phenomenon to be explored. CNS Neurosci Ther 2024; 30:e14631. [PMID: 38358074 PMCID: PMC10867879 DOI: 10.1111/cns.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
In the field of stroke thrombectomy, ineffective clinical and angiographic reperfusion after successful recanalization has drawn attention. Partial or complete microcirculatory reperfusion failure after the achievement of full patency of a former obstructed large vessel, known as the "no-reflow phenomenon" or "microvascular obstruction," was first reported in the 1960s and was later detected in both experimental models and patients with stroke. The no-reflow phenomenon (NRP) was reported to result from intraluminal occlusions formed by blood components and extraluminal constriction exerted by the surrounding structures of the vessel wall. More recently, an emerging number of clinical studies have estimated the prevalence of the NRP in stroke patients following reperfusion therapy, ranging from 3.3% to 63% depending on its evaluation methods or study population. Studies also demonstrated its detrimental effects on infarction progress and neurological outcomes. In this review, we discuss the research advances, underlying pathogenesis, diagnostic techniques, and management approaches concerning the no-reflow phenomenon in the stroke population to provide a comprehensive understanding of this phenomenon and offer references for future investigations.
Collapse
Affiliation(s)
- Milan Jia
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Feiyang Jin
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Sijie Li
- Department of Emergency, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Mangal Ruchi
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Wenbo Zhao
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Zhang Y, Jiang M, Gao Y, Zhao W, Wu C, Li C, Li M, Wu D, Wang W, Ji X. "No-reflow" phenomenon in acute ischemic stroke. J Cereb Blood Flow Metab 2024; 44:19-37. [PMID: 37855115 PMCID: PMC10905637 DOI: 10.1177/0271678x231208476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
Acute ischemic stroke (AIS) afflicts millions of individuals worldwide. Despite the advancements in thrombolysis and thrombectomy facilitating proximal large artery recanalization, the resultant distal hypoperfusion, referred to "no-reflow" phenomenon, often impedes the neurological function restoration in patients. Over half a century of scientific inquiry has validated the existence of cerebral "no-reflow" in both animal models and human subjects. Furthermore, the correlation between "no-reflow" and adverse clinical outcomes underscores the necessity to address this phenomenon as a pivotal strategy for enhancing AIS prognoses. The underlying mechanisms of "no-reflow" are multifaceted, encompassing the formation of microemboli, microvascular compression and contraction. Moreover, a myriad of complex mechanisms warrant further investigation. Insights gleaned from mechanistic exploration have prompted advancements in "no-reflow" treatment, including microthrombosis therapy, which has demonstrated clinical efficacy in improving patient prognoses. The stagnation in current "no-reflow" diagnostic methods imposes limitations on the timely application of combined therapy on "no-reflow" post-recanalization. This narrative review will traverse the historical journey of the "no-reflow" phenomenon, delve into its underpinnings in AIS, and elucidate potential therapeutic and diagnostic strategies. Our aim is to equip readers with a swift comprehension of the "no-reflow" phenomenon and highlight critical points for future research endeavors.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanhui Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Deng G, Chu YH, Xiao J, Shang K, Zhou LQ, Qin C, Tian DS. Risk Factors, Pathophysiologic Mechanisms, and Potential Treatment Strategies of Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke. Aging Dis 2023; 14:2096-2112. [PMID: 37199580 PMCID: PMC10676786 DOI: 10.14336/ad.2023.0321-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/22/2023] [Indexed: 05/19/2023] Open
Abstract
Endovascular therapy is the first-line treatment for acute ischemic stroke. However, studies have shown that, even with the timely opening of occluded blood vessels, nearly half of all patients treated with endovascular therapy for acute ischemic stroke still have poor functional recovery, a phenomenon called "futile recanalization.". The pathophysiology of futile recanalization is complex and may include tissue no-reflow (microcirculation reperfusion failure despite recanalization of the occluded large artery), early arterial reocclusion (reocclusion of the recanalized artery 24-48 hours post endovascular therapy), poor collateral circulation, hemorrhagic transformation (cerebral bleeding following primary ischemic stroke), impaired cerebrovascular autoregulation, and large hypoperfusion volume. Therapeutic strategies targeting these mechanisms have been attempted in preclinical research; however, translation to the bedside remains to be explored. This review summarizes the risk factors, pathophysiological mechanisms, and targeted therapy strategies of futile recanalization, focusing on the mechanisms and targeted therapy strategies of no-reflow to deepen the understanding of this phenomenon and provide new translational research ideas and potential intervention targets for improving the efficacy of endovascular therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Saito S, Suzuki K, Ohtani R, Maki T, Kowa H, Tachibana H, Washida K, Kawabata N, Mizuno T, Kanki R, Sudoh S, Kitaguchi H, Shindo K, Shindo A, Oka N, Yamamoto K, Yasuno F, Kakuta C, Kakuta R, Yamamoto Y, Hattori Y, Takahashi Y, Nakaoku Y, Tonomura S, Oishi N, Aso T, Taguchi A, Kagimura T, Kojima S, Taketsuna M, Tomimoto H, Takahashi R, Fukuyama H, Nagatsuka K, Yamamoto H, Fukushima M, Ihara M. Efficacy and Safety of Cilostazol in Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2344938. [PMID: 38048134 PMCID: PMC10696485 DOI: 10.1001/jamanetworkopen.2023.44938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 12/05/2023] Open
Abstract
Importance Recent evidence indicates the efficacy of β-amyloid immunotherapy for the treatment of Alzheimer disease, highlighting the need to promote β-amyloid removal from the brain. Cilostazol, a selective type 3 phosphodiesterase inhibitor, promotes such clearance by facilitating intramural periarterial drainage. Objective To determine the safety and efficacy of cilostazol in mild cognitive impairment. Design, Setting, and Participants The COMCID trial (A Trial of Cilostazol for Prevention of Conversion from Mild Cognitive Impairment to Dementia) was an investigator-initiated, double-blind, phase 2 randomized clinical trial. Adult participants were registered between May 25, 2015, and March 31, 2018, and received placebo or cilostazol for up to 96 weeks. Participants were treated in the National Cerebral and Cardiovascular Center and 14 other regional core hospitals in Japan. Patients with mild cognitive impairment with Mini-Mental State Examination (MMSE) scores of 22 to 28 points (on a scale of 0 to 30, with lower scores indicating greater cognitive impairment) and Clinical Dementia Rating scores of 0.5 points (on a scale of 0, 0.5, 1, 2, and 3, with higher scores indicating more severe dementia) were enrolled. The data were analyzed from May 1, 2020, to December 1, 2020. Interventions The participants were treated with placebo, 1 tablet twice daily, or cilostazol, 50 mg twice daily, for up to 96 weeks. Main Outcomes and Measures The primary end point was the change in the total MMSE score from baseline to the final observation. Safety analyses included all adverse events. Results The full analysis set included 159 patients (66 [41.5%] male; mean [SD] age, 75.6 [5.2] years) who received placebo or cilostazol at least once. There was no statistically significant difference between the placebo and cilostazol groups for the primary outcome. The least-squares mean (SE) changes in the MMSE scores among patients receiving placebo were -0.1 (0.3) at the 24-week visit, -0.8 (0.3) at 48 weeks, -1.2 (0.4) at 72 weeks, and -1.3 (0.4) at 96 weeks. Among those receiving cilostazol, the least-squares mean (SE) changes in MMSE scores were -0.6 (0.3) at 24 weeks, -1.0 (0.3) at 48 weeks, -1.1 (0.4) at 72 weeks, and -1.8 (0.4) at 96 weeks. Two patients (2.5%) in the placebo group and 3 patients (3.8%) in the cilostazol group withdrew owing to adverse effects. There was 1 case of subdural hematoma in the cilostazol group, which may have been related to the cilostazol treatment; the patient was successfully treated surgically. Conclusions and Relevance In this randomized clinical trial, cilostazol was well tolerated, although it did not prevent cognitive decline. The efficacy of cilostazol should be tested in future trials. Trial Registration ClinicalTrials.gov Identifier: NCT02491268.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryo Ohtani
- Department of Neurology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisatomo Kowa
- Division of Neurology, Kobe University Hospital, Kobe, Japan
| | | | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rie Kanki
- Department of Neurology, Osaka City General Hospital, Osaka, Japan
| | - Shinji Sudoh
- Department of Neurology, National Hospital Organization, Utano National Hospital, Kyoto, Japan
| | - Hiroshi Kitaguchi
- Department of Neurology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Katsuro Shindo
- Department of Neurology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Akihiro Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Nobuyuki Oka
- Department of Neurology, National Hospital Organization Minami Kyoto Hospital, Joyo, Japan
| | - Keiichi Yamamoto
- Internal Medicine and Neurology, Nara Midori Clinic, Nara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Chikage Kakuta
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ryosuke Kakuta
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukako Takahashi
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuriko Nakaoku
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Tonomura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Tatsuo Kagimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Shinsuke Kojima
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Masanori Taketsuna
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University, Kyoto, Japan
| | - Kazuyuki Nagatsuka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Haruko Yamamoto
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
7
|
Liu S, Zhang Z, He Y, Kong L, Jin Q, Qi X, Qi D, Gao Y. Inhibiting leukocyte-endothelial cell interactions by Chinese medicine Tongxinluo capsule alleviates no-reflow after arterial recanalization in ischemic stroke. CNS Neurosci Ther 2023; 29:3014-3030. [PMID: 37122157 PMCID: PMC10493667 DOI: 10.1111/cns.14242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
AIMS Despite successful vascular recanalization in stroke, one-fourth of patients have an unfavorable outcome due to no-reflow. The pathogenesis of no-reflow is fully unclear, and therapeutic strategies are lacking. Upon traditional Chinese medicine, Tongxinluo capsule (TXL) is a potential therapeutic agent for no-reflow. Thus, this study is aimed to investigate the pathogenesis of no-reflow in stroke, and whether TXL could alleviate no-reflow as well as its potential mechanisms of action. METHODS Mice were orally administered with TXL (3.0 g/kg/d) after transient middle cerebral artery occlusion. We examined the following parameters: neurological function, no-reflow, leukocyte-endothelial cell interactions, HE staining, leukocyte subtypes, adhesion molecules, and chemokines. RESULTS Our results showed stroke caused neurological deficits, neuron death, and no-reflow. Adherent and aggregated leukocytes obstructed microvessels as well as leukocyte infiltration in ischemic brain. Leukocyte subtypes changed after stroke mainly including neutrophils, lymphocytes, regulatory T cells, suppressor T cells, helper T type 1 (Th1) cells, Th2 cells, B cells, macrophages, natural killer cells, and dendritic cells. Stroke resulted in upregulated expression of adhesion molecules (P-selectin, E-selectin, and ICAM-1) and chemokines (CC-chemokine ligand (CCL)-2, CCL-3, CCL-4, CCL-5, and chemokine C-X-C ligand 1 (CXCL-1)). Notably, TXL improved neurological deficits, protected neurons, alleviated no-reflow and leukocyte-endothelial cell interactions, regulated multiple leukocyte subtypes, and inhibited the expression of various inflammatory mediators. CONCLUSION Leukocyte-endothelial cell interactions mediated by multiple inflammatory factors are an important cause of no-reflow in stroke. Accordingly, TXL could alleviate no-reflow via suppressing the interactions through modulating various leukocyte subtypes and inhibiting the expression of multiple inflammatory mediators.
Collapse
Affiliation(s)
- Shen Liu
- Department of Neurology of TCM, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
| | - Zhaoxu Zhang
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Yannan He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Lingbo Kong
- Department of Neurology of TCM, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xiangjia Qi
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
| | - Dahe Qi
- Department of Neurology of TCM, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Ying Gao
- Department of Neurology of TCM, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
- Institute for Brain Disorders, Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
8
|
Gao Y, Zhang Z, Qi D, Liu S. Ischemic Stroke Shifts the Protein and Metabolite Profiles of Colon in Mice. Neuroscience 2023; 526:237-245. [PMID: 37419408 DOI: 10.1016/j.neuroscience.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Over half of all stroke patients present gastrointestinal complications. It has been speculated that there is an intriguing brain-gut connection. However, molecular mechanisms of the connection remain poorly illuminated. Thus, this study is aimed to investigate molecular alternations regarding proteins and metabolites in the colon upon ischemic stroke using multi-omics analyses. Here, stroke mouse model was induced by means of transient middle cerebral artery occlusion. After the confirmation of successful model evaluated as evidenced by neurological deficit and cerebral blood flow decrease, the proteins and metabolites of colon and brain were respectively measured using multiple omics. Functional analysis of differentially expressed proteins (DEPs) and differential metabolites was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. There were 434 common DEPs in the colon and brain after stroke. The DEPs in the two tissues displayed common enrichment in several pathways upon GO/KEGG analyses. The common KEGG pathways of DEPs were mainly linked to the inflammation and immune network. Although there was no common differential metabolite and its corresponding pathway in the two tissues, several metabolism pathways in the colon were also changed after stroke. In conclusion, we have demonstrated that the proteins and metabolites in the colon are significantly changed after ischemic stroke, which provides molecular-level evidence regarding the brain-gut connection. In this light, several common enriched pathways of DEPs may become potential therapeutic targets for stroke upon the brain-gut axis. Notably, we have discovered a promising colon-derived metabolite enterolactone possibly beneficial for tackling stroke.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology of Traditional Chinese Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoxu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Dahe Qi
- Department of Neurology of Traditional Chinese Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shen Liu
- Department of Neurology of Traditional Chinese Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
9
|
Qureshi AI, Akhtar IN, Ma X, Lodhi A, Bhatti I, Beall J, Broderick JP, Cassarly CN, Martin RH, Sharma R, Thakkar M, Suarez JI. Effect of Cilostazol in Animal Models of Cerebral Ischemia and Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Neurocrit Care 2023; 38:698-713. [PMID: 36450971 DOI: 10.1007/s12028-022-01637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cilostazol, a phosphodiesterase III inhibitor, appears to be a promising agent for preventing cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Here, the authors perform a systematic review and meta-analysis to quantitatively assess the effects of cilostazol on brain structural and functional outcomes in animal models of cerebral ischemia and subarachnoid hemorrhage-induced cerebral vasospasm. METHODS By using the PRISMA guidelines, a search of the PubMed, Scopus, and Web of Science was conducted to identify relevant studies. Study quality of each included study for both systematic reviews were scored by using an adapted 15-item checklist from the Collaborative Approach to Meta-Analysis of Animal Data from Experimental Studies. We calculated a standardized mean difference as effect size for each comparison. For each outcome, comparisons were combined by using random-effects modeling to account for heterogeneity, with a restricted maximum likelihood estimate of between-study variance. RESULTS A total of 22 (median [Q1, Q3] quality score of 7 [5, 8]) and 6 (median [Q1, Q3] quality score of 6 [6, 6]) studies were identified for cerebral ischemia and subarachnoid hemorrhage-induced cerebral vasospasm, respectively. Cilostazol significantly reduced the infarct volume in cerebral ischemia models with a pooled standardized mean difference estimate of - 0.88 (95% confidence interval [CI] [- 1.07 to - 0.70], p < 0.0001). Cilostazol significantly reduced neurofunctional deficits in cerebral ischemia models with a pooled standardized mean difference estimate of - 0.66 (95% CI [- 1.06 to - 0.28], p < 0.0001). Cilostazol significantly improved the basilar artery diameter in subarachnoid hemorrhage-induced cerebral vasospasm with a pooled standardized mean difference estimate of 2.30 (95% CI [0.94 to 3.67], p = 0.001). Cilostazol also significantly improved the basilar artery cross-section area with a pooled standardized mean estimate of 1.88 (95% CI [0.33 to 3.43], p < 0.05). Overall, there was between-study heterogeneity and asymmetry in the funnel plot observed in all comparisons. CONCLUSIONS Published animal data support the overall efficacy of cilostazol in reducing infarct volume and neurofunctional deficits in cerebral ischemia models and cerebral vasospasm in subarachnoid hemorrhage models.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA.
| | - Iqra N Akhtar
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Xiaoyu Ma
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Abdullah Lodhi
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Ibrahim Bhatti
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Christy N Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Renee H Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rishi Sharma
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Mahesh Thakkar
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Li J, Li C, Subedi P, Tian X, Lu X, Miriyala S, Panchatcharam M, Sun H. Light Alcohol Consumption Promotes Early Neurogenesis Following Ischemic Stroke in Adult C57BL/6J Mice. Biomedicines 2023; 11:biomedicines11041074. [PMID: 37189692 DOI: 10.3390/biomedicines11041074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Neurogenesis plays a crucial role in postischemic functional recovery. Alcohol dose-dependently affects the prognosis of ischemic stroke. We investigated the impact of light alcohol consumption (LAC) on neurogenesis under physiological conditions and following ischemic stroke. C57BL/6J mice (three months old) were fed with 0.7 g/kg/day ethanol (designed as LAC) or volume-matched water (designed as control) daily for eight weeks. To evaluate neurogenesis, the numbers of 5-bromo-2-deoxyuridine (BrdU)+/doublecortin (DCX)+ and BrdU+/NeuN+ neurons were assessed in the subventricular zone (SVZ), dentate gyrus (DG), ischemic cortex, and ischemic striatum. The locomotor activity was determined by the accelerating rotarod and open field tests. LAC significantly increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the SVZ under physiological conditions. Ischemic stroke dramatically increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the DG, SVZ, ischemic cortex, and ischemic striatum. The increase in BrdU+/DCX+ cells was significantly greater in LAC mice compared to the control mice. In addition, LAC significantly increased BrdU+/NeuN+ cells by about three folds in the DG, SVZ, and ischemic cortex. Furthermore, LAC reduced ischemic brain damage and improved locomotor activity. Therefore, LAC may protect the brain against ischemic stroke by promoting neurogenesis.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Chun Li
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Pushpa Subedi
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Xinli Tian
- Department of Pharmacology, Toxicology & Neuroscience, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Xiaohong Lu
- Department of Pharmacology, Toxicology & Neuroscience, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | | | - Hong Sun
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
11
|
Coenen DM, Heinzmann ACA, Oggero S, Albers HJ, Nagy M, Hagué P, Kuijpers MJE, Vanderwinden JM, van der Meer AD, Perretti M, Koenen RR, Cosemans JMEM. Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells 2021; 10:1998. [PMID: 34440764 PMCID: PMC8392606 DOI: 10.3390/cells10081998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE platelets possess not only haemostatic but also inflammatory properties, which combined are thought to play a detrimental role in thromboinflammatory diseases such as acute coronary syndromes and stroke. Phosphodiesterase (PDE) 3 and -5 inhibitors have demonstrated efficacy in secondary prevention of arterial thrombosis, partially mediated by their antiplatelet action. Yet it is unclear whether such inhibitors also affect platelets' inflammatory functions. Here, we aimed to examine the effect of the PDE3A inhibitor cilostazol and the PDE5 inhibitor tadalafil on platelet function in various aspects of thromboinflammation. Approach and results: cilostazol, but not tadalafil, delayed ex vivo platelet-dependent fibrin formation under whole blood flow over type I collagen at 1000 s-1. Similar results were obtained with blood from Pde3a deficient mice, indicating that cilostazol effects are mediated via PDE3A. Interestingly, cilostazol specifically reduced the release of phosphatidylserine-positive extracellular vesicles (EVs) from human platelets while not affecting total EV release. Both cilostazol and tadalafil reduced the interaction of human platelets with inflamed endothelium under arterial flow and the release of the chemokines CCL5 and CXCL4 from platelets. Moreover, cilostazol, but not tadalafil, reduced monocyte recruitment and platelet-monocyte interaction in vitro. CONCLUSIONS this study demonstrated yet unrecognised roles for platelet PDE3A and platelet PDE5 in platelet procoagulant and proinflammatory responses.
Collapse
Affiliation(s)
- Daniëlle M. Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Alexandra C. A. Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Silvia Oggero
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK; (S.O.); (M.P.)
| | - Hugo J. Albers
- BIOS Lab-on-a-Chip Group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands;
- Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Perrine Hagué
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, B-1070 Brussels, Belgium; (P.H.); (J.-M.V.)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Jean-Marie Vanderwinden
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, B-1070 Brussels, Belgium; (P.H.); (J.-M.V.)
| | - Andries D. van der Meer
- Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Mauro Perretti
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK; (S.O.); (M.P.)
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Judith M. E. M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| |
Collapse
|
12
|
Grosse GM, Werlein C, Blume N, Abu-Fares O, Götz F, Gabriel MM, Ernst J, Leotescu A, Worthmann H, Kühnel MP, Jonigk DD, Falk CS, Weissenborn K, Schuppner R. Circulating Cytokines and Growth Factors in Acute Cerebral Large Vessel Occlusion-Association with Success of Endovascular Treatment. Thromb Haemost 2021; 122:623-632. [PMID: 34225367 PMCID: PMC9142215 DOI: 10.1055/a-1544-5431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanical thrombectomy (MT) is a highly efficient treatment in patients with acute ischemic stroke due to large vessel occlusion (LVO). However, in a relevant proportion of LVO, no sufficient recanalization can be achieved. The composition of cerebral thrombi is highly heterogeneous and may constitute a relevant factor for insufficient reperfusion. We hypothesized that circulating cytokines and growth factors involved in thromboinflammation and platelet activation may be associated with reperfusion status and thrombus composition in patients undergoing MT. An according biomarker panel was measured in plasma specimens taken prior to MT and at a 7-day follow-up. The reperfusion status was categorized into sufficient or insufficient. The composition of retrieved thrombi was histologically analyzed. Differences of baseline biomarker concentrations between insufficient and sufficient reperfusions were highest for interferon (IFN)-γ, epidermal growth factor, platelet-derived growth factor (PDGF)-AB/BB, and IFN-γ-induced protein 10 (IP-10/CXCL10). After applying correction for multiple comparisons and logistic regression analysis adjusting for stroke etiology, intravenous thrombolysis, and vascular risk factors, PDGF-AB/BB was identified as an independent predictor of reperfusion status (odds ratio: 0.403; 95% confidence interval: 0.199-0.819). Histological analysis revealed that the majority of thrombi had a mixed composition. In conclusion, this study provides the first evidence that cytokines and growth factors are potential effectors in patients undergoing MT for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Gerrit M. Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany,Address for correspondence Gerrit M. Grosse, MD Department of Neurology, Hannover Medical SchoolCarl-Neuberg-Str. 1, 30625 HannoverGermany
| | | | - Nicole Blume
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Omar Abu-Fares
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Friedrich Götz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Maria M. Gabriel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrei Leotescu
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Mark P. Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany,Member of the German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny D. Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany,Member of the German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Cilostazol is an effective causal therapy for preventing paclitaxel-induced peripheral neuropathy by suppression of Schwann cell dedifferentiation. Neuropharmacology 2021; 188:108514. [PMID: 33684416 DOI: 10.1016/j.neuropharm.2021.108514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) can lead to discontinuation of chemotherapy and is consequently a serious impediment to effective cancer treatment. Due to our limited understanding of mechanisms underlying the pathogenesis of CIPN, no causal therapy has been approved for relief of this condition. We previously demonstrated that taxanes (paclitaxel and docetaxel) induce Schwann cell dedifferentiation, characterized by increased expression of p75 and galectin-3, ultimately leading to demyelination. These changes appear to be responsible for CIPN pathogenesis. This study was designed to identify a novel candidate therapeutic for CIPN with the ability to suppress paclitaxel-induced Schwann cell dedifferentiation. Given that elevation of cyclic adenosine monophosphate (cAMP) signaling participates in Schwann cell differentiation, we performed immunocytochemical screening of phosphodiesterase (PDE) inhibitors. We found that the PDE3 inhibitor cilostazol strongly promoted differentiation of primary cultures of rat Schwann cells via a mechanism involving cAMP/exchange protein directly activated by cAMP (Epac) signaling. Co-treatment with cilostazol prevented paclitaxel-induced dedifferentiation of Schwann cell cultures and demyelination in a mixed culture of Schwann cells and dorsal root ganglia neurons. Notably, continuous oral administration of cilostazol suppressed Schwann cell dedifferentiation within the sciatic nerve and the development of mechanical hypersensitivity in a mouse model of paclitaxel-related CIPN. Importantly, cilostazol potentiated, rather than inhibited, the anti-cancer effect of paclitaxel on the human breast cancer cell line MDA-MB-231. These findings highlight the potential utility of cilostazol as a causal therapeutic that avoids the development of paclitaxel-related CIPN without compromising anti-cancer properties.
Collapse
|
14
|
Blanco-Rivero J, Xavier FE. Therapeutic Potential of Phosphodiesterase Inhibitors for Endothelial Dysfunction- Related Diseases. Curr Pharm Des 2021; 26:3633-3651. [PMID: 32242780 DOI: 10.2174/1381612826666200403172736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases (CVD) are considered a major health problem worldwide, being the main cause of mortality in developing and developed countries. Endothelial dysfunction, characterized by a decline in nitric oxide production and/or bioavailability, increased oxidative stress, decreased prostacyclin levels, and a reduction of endothelium-derived hyperpolarizing factor is considered an important prognostic indicator of various CVD. Changes in cyclic nucleotides production and/ or signalling, such as guanosine 3', 5'-monophosphate (cGMP) and adenosine 3', 5'-monophosphate (cAMP), also accompany many vascular disorders that course with altered endothelial function. Phosphodiesterases (PDE) are metallophosphohydrolases that catalyse cAMP and cGMP hydrolysis, thereby terminating the cyclic nucleotide-dependent signalling. The development of drugs that selectively block the activity of specific PDE families remains of great interest to the research, clinical and pharmaceutical industries. In the present review, we will discuss the effects of PDE inhibitors on CVD related to altered endothelial function, such as atherosclerosis, diabetes mellitus, arterial hypertension, stroke, aging and cirrhosis. Multiple evidences suggest that PDEs inhibition represents an attractive medical approach for the treatment of endothelial dysfunction-related diseases. Selective PDE inhibitors, especially PDE3 and PDE5 inhibitors are proposed to increase vascular NO levels by increasing antioxidant status or endothelial nitric oxide synthase expression and activation and to improve the morphological architecture of the endothelial surface. Thereby, selective PDE inhibitors can improve the endothelial function in various CVD, increasing the evidence that these drugs are potential treatment strategies for vascular dysfunction and reinforcing their potential role as an adjuvant in the pharmacotherapy of CVD.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Fabiano E Xavier
- Departamento de Fisiologia e Farmacologia, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Ye Y, Zhang FT, Wang XY, Tong HX, Zhu YT. Antithrombotic Agents for tPA-Induced Cerebral Hemorrhage: A Systematic Review and Meta-Analysis of Preclinical Studies. J Am Heart Assoc 2020; 9:e017876. [PMID: 33283576 PMCID: PMC7955384 DOI: 10.1161/jaha.120.017876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background tPA (tissue‐type plasminogen activator) remains the only approved drug for acute ischemic stroke, with a potentially serious adverse effect: hemorrhagic transformation. The effects of antithrombotic agents on tPA‐induced hemorrhagic transformation after ischemic stroke are not clearly defined. We performed a systematic review and meta‐analysis in preclinical studies aiming to evaluate the efficacy of antithrombotic agents on tPA‐induced hemorrhagic transformation after ischemic stroke. Methods and Results We conducted a systematic review and meta‐analysis of studies testing antithrombotic agents in animal models of tPA‐induced hemorrhagic transformation. The pooled effects were calculated using random‐effects models, and heterogeneity was explored through meta‐regression and subgroup analyses. Publication bias was assessed using trim and fill method and the Egger test. The efficacy of 18 distinct interventions was described in 22 publications. The pooled data showed a significant improvement in cerebral hemorrhage, infarct size, and neurobehavioral outcome in treated compared with control animals (standardized mean difference, 0.45 [95% CI, 0.11–0.78]; standardized mean difference, 1.18 [95% CI, 0.73–1.64]; and standardized mean difference, 0.91 [95% CI, 0.49–1.32], respectively). Subgroup analysis indicated that quality score, random allocation, control of temperature, anesthetic used, stroke model used, route of drug delivery, time of drug administration, and time of assessment were significant factors that influenced the effects of interventions. Conclusions Administration with antiplatelet agents revealed statistically significant improvement in all the outcomes. Anticoagulant agents showed significant effects in infarct size and neurobehavioral score, but fibrinolytic agents did not show any significant improvement in all the outcomes. The conclusions should be interpreted cautiously given the heterogeneity and publication bias identified in this analysis.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine School of Basic Medical Sciences Peking University Beijing China.,Tasly Microcirculation Research Center Peking University Health Science Center Beijing China
| | - Fu-Tao Zhang
- University of Chinese Academy of Sciences Beijing China.,Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Harbin China.,National Engineering Laboratory for Improving Quality of Arable Land Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine School of Basic Medical Sciences Peking University Beijing China.,Tasly Microcirculation Research Center Peking University Health Science Center Beijing China
| | - Hong-Xuan Tong
- Institute of Basic Theory for Chinese Medicine China Academy of Chinese Medical Sciences Beijing China
| | - Yu-Tian Zhu
- Department of Urology Peking University Third Hospital Beijing China
| |
Collapse
|
16
|
Espinosa A, Meneses G, Chavarría A, Mancilla R, Pedraza-Chaverri J, Fleury A, Bárcena B, Pérez-Osorio IN, Besedovsky H, Arauz A, Fragoso G, Sciutto E. Intranasal Dexamethasone Reduces Mortality and Brain Damage in a Mouse Experimental Ischemic Stroke Model. Neurotherapeutics 2020; 17:1907-1918. [PMID: 32632775 PMCID: PMC7851226 DOI: 10.1007/s13311-020-00884-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation triggered by the expression of damaged-associated molecular patterns released from dying cells plays a critical role in the pathogenesis of ischemic stroke. However, the benefits from the control of neuroinflammation in the clinical outcome have not been established. In this study, the effectiveness of intranasal, a highly efficient route to reach the central nervous system, and intraperitoneal dexamethasone administration in the treatment of neuroinflammation was evaluated in a 60-min middle cerebral artery occlusion (MCAO) model in C57BL/6 male mice. We performed a side-by-side comparison using intranasal versus intraperitoneal dexamethasone, a timecourse including immediate (0 h) or 4 or 12 h poststroke intranasal administration, as well as 4 intranasal doses of dexamethasone beginning 12 h after the MCAO versus a single dose at 12 h to identify the most effective conditions to treat neuroinflammation in MCAO mice. The best results were obtained 12 h after MCAO and when mice received a single dose of dexamethasone (0.25 mg/kg) intranasally. This treatment significantly reduced mortality, neurological deficits, infarct volume size, blood-brain barrier permeability in the somatosensory cortex, inflammatory cell infiltration, and glial activation. Our results demonstrate that a single low dose of intranasal dexamethasone has neuroprotective therapeutic effects in the MCAO model, showing a better clinical outcome than the intraperitoneal administration. Based on these results, we propose a new therapeutic approach for the treatment of the damage process that accompanies ischemic stroke.
Collapse
Affiliation(s)
- Alejandro Espinosa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Gabriela Meneses
- Departamento de Parasitología, Instituto Nacional de Diagnóstico y Referencia Epidemiológicos, Mexico City, 01480, Mexico
| | - Anahí Chavarría
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 06726, Mexico
| | - Raúl Mancilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Agnes Fleury
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Unidad Periférica del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Brandon Bárcena
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Ivan N Pérez-Osorio
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University, Marburg, D-35037, Germany
| | - Antonio Arauz
- Stroke Clinic, Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
17
|
Tsuji M, Ohshima M, Yamamoto Y, Saito S, Hattori Y, Tanaka E, Taguchi A, Ihara M, Ogawa Y. Cilostazol, a Phosphodiesterase 3 Inhibitor, Moderately Attenuates Behaviors Depending on Sex in the Ts65Dn Mouse Model of Down Syndrome. Front Aging Neurosci 2020; 12:106. [PMID: 32372946 PMCID: PMC7186592 DOI: 10.3389/fnagi.2020.00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
People with Down syndrome, which is a trisomy of chromosome 21, exhibit intellectual disability from infancy and neuropathology similar to Alzheimer’s disease, such as amyloid plaques, from an early age. Recently, we showed that cilostazol, a selective inhibitor of phosphodiesterase (PDE) 3, promotes the clearance of amyloid β and rescues cognitive deficits in a mouse model of Alzheimer’s disease. The objective of the present study was to examine whether cilostazol improves behaviors in the most widely used animal model of Down syndrome, i.e., Ts65Dn mice. Mice were supplemented with cilostazol from the fetal period until young adulthood. Supplementation significantly ameliorated novel-object recognition in Ts65Dn females and partially ameliorated sensorimotor function as determined by the rotarod test in Ts65Dn females and hyperactive locomotion in Ts65Dn males. Cilostazol supplementation significantly shortened swimming distance in Ts65Dn males in the Morris water maze test, suggesting that the drug improved cognitive function, although it did not shorten swimming duration, which was due to decreased swimming speed. Thus, this study suggests that early supplementation with cilostazol partially rescues behavioral abnormalities seen in Down syndrome and indicates that the effects are sex-dependent.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Makiko Ohshima
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
18
|
Senda J, Ito K, Kotake T, Kanamori M, Kishimoto H, Kadono I, Nakagawa-Senda H, Wakai K, Katsuno M, Nishida Y, Ishiguro N, Sobue G. Cilostazol use is associated with FIM cognitive improvement during convalescent rehabilitation in patients with ischemic stroke: a retrospective study. NAGOYA JOURNAL OF MEDICAL SCIENCE 2020; 81:359-373. [PMID: 31579328 PMCID: PMC6728194 DOI: 10.18999/nagjms.81.3.359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilostazol is a phosphodiesterase III-inhibiting antiplatelet agent that is often used to prevent stroke and peripheral artery disease, and its administration has shown significant improvements for cognitive impairment. We investigate the potential of cilostazol for reducing or restoring cognitive decline during convalescent rehabilitation in patients with non-cardioembolic ischemic stroke. The study sample included 371 consecutive patients with lacunar (n = 44) and atherothrombosis (n = 327) subtypes of non-cardioembolic ischemic stroke (224 men and 147 women; mean age, 72.9 ± 8.1 years) who were required for inpatient convalescent rehabilitation. Their medical records were retrospectively surveyed to identify those who had received cilostazol (n = 101). Patients were grouped based on cilostazol condition, and Functional Independence Measure (FIM) scores (total and motor or cognitive subtest scores) were assessed both at admission and discharge. The gain and efficiency in FIM cognitive scores from admission to discharge were significantly higher in patients who received cilostazol than those who did not (p = 0.047 and p = 0.035, respectively); we found no significant differences in other clinical factors or scores. Multiple linear regression analysis confirmed that cilostazol was a significant factor in FIM cognitive scores at discharge (β = 0.041, B = 0.682, p = 0.045); the two tested dosages were not significantly different (100 mg/day, n = 43; 200 mg/day, n = 58). Cilostazol can potentially improve cognitive function during convalescent rehabilitation of patients with non-cardioembolic ischemic stroke, although another research must be needed to confirm this potential.
Collapse
Affiliation(s)
- Joe Senda
- Department of Neurology and Rehabilitation, Komaki City Hospital, Komaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Rehabilitation, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Keiichi Ito
- Division of Rehabilitation, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Tomomitsu Kotake
- Division of Rehabilitation, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Masahiko Kanamori
- Division of Rehabilitation, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Hideo Kishimoto
- Division of Rehabilitation, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Izumi Kadono
- Division of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Hiroko Nakagawa-Senda
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nishida
- Division of Rehabilitation, Nagoya University Hospital, Nagoya, Japan.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Division of Rehabilitation, Nagoya University Hospital, Nagoya, Japan.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, Keep RF. Endothelial Targets in Stroke: Translating Animal Models to Human. Arterioscler Thromb Vasc Biol 2019; 39:2240-2247. [PMID: 31510792 DOI: 10.1161/atvbaha.119.312816] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Jianming Xiang
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Svetlana M Stamatovic
- Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Ya Hua
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Guohua Xi
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Michael M Wang
- Neurology (M.M.W.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Richard F Keep
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| |
Collapse
|
20
|
Yasmeen S, Akram BH, Hainsworth AH, Kruuse C. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cell Signal 2019; 61:108-119. [PMID: 31132399 DOI: 10.1016/j.cellsig.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke. METHOD We performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors. RESULTS We found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects. CONCLUSION This review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.
Collapse
Affiliation(s)
- Saiqa Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bilal Hussain Akram
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christina Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
21
|
Ono K, Tsuji M. Pharmacological Potential of Cilostazol for Alzheimer's Disease. Front Pharmacol 2019; 10:559. [PMID: 31191308 PMCID: PMC6540873 DOI: 10.3389/fphar.2019.00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD), a slow progressive form of dementia, is clinically characterized by cognitive dysfunction and memory impairment and neuropathologically characterized by the accumulation of extracellular plaques containing amyloid β-protein (Aβ) and neurofibrillary tangles containing tau in the brain, with neuronal degeneration and high level of oxidative stress. The current treatments for AD, e.g., acetylcholinesterase inhibitors (AChEIs), have efficacies limited to symptom improvement. Although there are various approaches to the disease modifying therapies of AD, none of them can be used alone for actual treatment, and combination therapy may be needed for amelioration of the progression. There are reports that cilostazol (CSZ) suppressed cognitive decline progression in patients with mild cognitive impairment or stable AD receiving AChEIs. Previously, we showed that CSZ suppressed Aβ-induced neurotoxicity in SH-SY5Y cells via coincident inhibition of oxidative stress, as demonstrated by reduced activity of nicotinamide adenine dinucleotide phosphate oxidase, accumulation of reactive oxygen species, and signaling of mitogen-activated protein kinase. CSZ also rescued cognitive impairment and promoted soluble Aβ clearance in a mouse model of cerebral amyloid angiopathy. Mature Aβ fibrils have long been considered the primary neurodegenerative factors in AD; however, recent evidence indicates soluble oligomers to initiate the neuronal and synaptic dysfunction related to AD and other protein-misfolding diseases. Further underscoring the potential of CSZ for AD treatment, we recently described the inhibitory effects of CSZ on Aβ oligomerization and aggregation in vitro. In this review, we discuss the possibility of CSZ as a potential disease-modifying therapy for the prevention or delay of AD.
Collapse
Affiliation(s)
- Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 2019; 123:74-80. [DOI: 10.1016/j.mvr.2019.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|
23
|
Ouk T, Potey C, Maestrini I, Petrault M, Mendyk AM, Leys D, Bordet R, Gautier S. Neutrophils in tPA-induced hemorrhagic transformations: Main culprit, accomplice or innocent bystander? Pharmacol Ther 2019; 194:73-83. [DOI: 10.1016/j.pharmthera.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
25
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
26
|
Hedya SA, Safar MM, Bahgat AK. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 2018; 55:7579-7587. [DOI: 10.1007/s12035-018-0923-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
27
|
El Amki M, Wegener S. Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke. Int J Mol Sci 2017; 18:ijms18122669. [PMID: 29232823 PMCID: PMC5751271 DOI: 10.3390/ijms18122669] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is caused by a disruption in blood supply to a region of the brain. It induces dysfunction of brain cells and networks, resulting in sudden neurological deficits. The cause of stroke is vascular, but the consequences are neurological. Decades of research have focused on finding new strategies to reduce the neural damage after cerebral ischemia. However, despite the incredibly huge investment, all strategies targeting neuroprotection have failed to demonstrate clinical efficacy. Today, treatment for stroke consists of dealing with the cause, attempting to remove the occluding blood clot and recanalize the vessel. However, clinical evidence suggests that the beneficial effect of post-stroke recanalization may be hampered by the occurrence of microvascular reperfusion failure. In short: recanalization is not synonymous with reperfusion. Today, clinicians are confronted with several challenges in acute stroke therapy, even after successful recanalization: (1) induce reperfusion, (2) avoid hemorrhagic transformation (HT), and (3) avoid early or late vascular reocclusion. All these parameters impact the restoration of cerebral blood flow after stroke. Recent advances in understanding the molecular consequences of recanalization and reperfusion may lead to innovative therapeutic strategies for improving reperfusion after stroke. In this review, we will highlight the importance of restoring normal cerebral blood flow after stroke and outline molecular mechanisms involved in blood flow regulation.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
28
|
Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:2451-2468. [PMID: 28963120 DOI: 10.1042/cs20160727] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.
Collapse
|
29
|
Granger DN, Kvietys PR. Reperfusion therapy-What's with the obstructed, leaky and broken capillaries? ACTA ACUST UNITED AC 2017; 24:213-228. [PMID: 29102280 DOI: 10.1016/j.pathophys.2017.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microvascular dysfunction is well established as an early and rate-determining factor in the injury response of tissues to ischemia and reperfusion (I/R). Severe endothelial cell dysfunction, which can develop without obvious morphological cell injury, is a major underlying cause of the microvascular abnormalities that accompany I/R. While I/R-induced microvascular dysfunction is manifested in different ways, two responses that have received much attention in both the experimental and clinical setting are impaired capillary perfusion (no-reflow) and endothelial barrier failure with a transition to hemorrhage. These responses are emerging as potentially important determinants of the severity of the tissue injury response, and there is growing clinical evidence that they are predictive of clinical outcome following reperfusion therapy. This review provides a summary of animal studies that have focused on the mechanisms that may underlie the genesis of no-reflow and hemorrhage following reperfusion of ischemic tissues, and addresses the clinical evidence that implicates these vascular events in the responses of the ischemic brain (stroke) and heart (myocardial infarction) to reperfusion therapy. Inasmuch as reactive oxygen species (ROS) and matrix metalloproteinases (MMP) are frequently invoked as triggers of the microvascular dysfunction elicited by I/R, the potential roles and sources of these mediators are also discussed. The available evidence in the literature justifies the increased interest in the development of no-reflow and hemorrhage in heart and brain following reperfusion therapy, and suggests that these vascular events may be predictive of poor clinical outcome and warrant the development of targeted treatment strategies.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Abstract
Vascular cognitive impairment (VCI) is the second most common type of dementia after Alzheimer's disease (AD). Stroke and cardiovascular risk factors have been linked to both AD and VCI and potentially can affect cognitive function in mid and later life. Various pharmacological agents, including donepezil, galantamine, and memantine, approved for the treatment of AD have shown modest cognitive benefits in patients with vascular dementia (VaD). However, their functional and global benefits have been inconsistent. Donepezil has shown some cognitive benefit in patients with VaD only, and galantamine has shown some benefit in mixed dementia (AD/VaD). The benefits of other drugs such as rivastigmine, memantine, nimodipine, and piracetam are not clear. Some other supplements and herbal therapies, such as citicoline, actovegin, huperzine A, and vinpocetine, have also been studied in patients with VaD, but their beneficial effects are not well established. Non-drug therapies and lifestyle modifications such as diet, exercise, and vascular risk factor control are important in the management of VCI and should not be ignored. However, there is a need for more robust clinical trials focusing on executive function and other cognitive measures and incorporation of newer imaging modalities to provide additional evidence about the utility of these strategies in patients with VCI.
Collapse
Affiliation(s)
- Muhammad U Farooq
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA.
| | - Jiangyong Min
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA
| | - Christopher Goshgarian
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA
| | - Philip B Gorelick
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA.,Department Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, 220 Cherry Street SE Room H 3037, Grand Rapids, MI, 49503, USA
| |
Collapse
|
31
|
Kitamura A, Manso Y, Duncombe J, Searcy J, Koudelka J, Binnie M, Webster S, Lennen R, Jansen M, Marshall I, Ihara M, Kalaria RN, Horsburgh K. Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion. Sci Rep 2017; 7:4299. [PMID: 28655874 PMCID: PMC5487324 DOI: 10.1038/s41598-017-04082-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/09/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic cerebral hypoperfusion is a major cause of age-related vascular cognitive impairment. A well-characterised mouse model has shown that hypoperfusion results in gliovascular and white matter damage and impaired spatial working memory. In this study, we assessed whether cilostazol, a phosphodiesterase III inhibitor, could protect against these changes. Adult, male C57Bl/6J mice were subjected to bilateral common carotid artery stenosis or a sham operation and fed normal or cilostazol diet for three months. Cilostazol treatment reduced the impairment in working memory and white matter function after hypoperfusion. Endothelial adhesion molecules and gliosis, increased after hypoperfusion, were ameliorated with cilostazol treatment. Interestingly, the improvement in working memory was closely correlated with reduced microglia and endothelial adhesion molecules. Further, the number of stroke lesions after hypoperfusion was reduced in the cilostazol-treated group. Altogether cilostazol showed potential to ameliorate the gliovascular damage and working memory impairments after hypoperfusion possibly via endothelial protection supporting its potential use in the treatment of vascular cognitive impairment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Masafumi Ihara
- National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | | |
Collapse
|
32
|
Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, Nabekura J, Sato K, Okajima F, Takebayashi H, Okano H, Koizumi S. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 2017. [PMID: 28642575 PMCID: PMC5481424 DOI: 10.1038/s41467-017-00037-1] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Astrocytes become reactive following various brain insults; however, the functions of reactive astrocytes are poorly understood. Here, we show that reactive astrocytes function as phagocytes after transient ischemic injury and appear in a limited spatiotemporal pattern. Following transient brain ischemia, phagocytic astrocytes are observed within the ischemic penumbra region during the later stage of ischemia. However, phagocytic microglia are mainly observed within the ischemic core region during the earlier stage of ischemia. Phagocytic astrocytes upregulate ABCA1 and its pathway molecules, MEGF10 and GULP1, which are required for phagocytosis, and upregulation of ABCA1 alone is sufficient for enhancement of phagocytosis in vitro. Disrupting ABCA1 in reactive astrocytes result in fewer phagocytic inclusions after ischemia. Together, these findings suggest that astrocytes are transformed into a phagocytic phenotype as a result of increase in ABCA1 and its pathway molecules and contribute to remodeling of damaged tissues and penumbra networks. Astrocytic phagocytosis has been shown to play a role in synaptic pruning during development, but whether adult astrocytes possess phagocytic ability is unclear. Here the authors show that following brain ischemia, reactive astrocytes become phagocytic and engulf debris via the ABCA1 pathway.
Collapse
Affiliation(s)
- Yosuke M Morizawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.,Department of Super-network Brain Physiology, Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Shinsuke Shibata
- Department of Physiology and Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Yang Sui
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Kanagawa, 240-0193, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hideyuki Okano
- Department of Physiology and Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
33
|
Sumbria RK, Vasilevko V, Grigoryan MM, Paganini-Hill A, Kim R, Cribbs DH, Fisher MJ. Effects of phosphodiesterase 3A modulation on murine cerebral microhemorrhages. J Neuroinflammation 2017; 14:114. [PMID: 28583195 PMCID: PMC5460510 DOI: 10.1186/s12974-017-0885-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development. METHODS The effect of PDE3A pathway inhibition was studied in the inflammation-induced and cerebral amyloid angiopathy (CAA)-associated mouse models of CMH. The PDE3A pathway was modulated using two approaches: genetic deletion of PDE3A and pharmacological inhibition of PDE3A by cilostazol. The effects of PDE3A pathway modulation on H&E- and Prussian blue (PB)-positive CMH development, BBB function (IgG, claudin-5, and fibrinogen), and neuroinflammation (ICAM-1, Iba-1, and GFAP) were investigated. RESULTS Robust development of CMH in the inflammation-induced and CAA-associated spontaneous mouse models was observed. Inflammation-induced CMH were associated with markers of BBB dysfunction and inflammation, and CAA-associated spontaneous CMH were associated primarily with markers of neuroinflammation. Genetic deletion of the PDE3A gene did not alter BBB function, microglial activation, or CMH development, but significantly reduced endothelial and astrocyte activation in the inflammation-induced CMH mouse model. In the CAA-associated CMH mouse model, PDE3A modulation via pharmacological inhibition by cilostazol did not alter BBB function, neuroinflammation, or CMH development. CONCLUSIONS Modulation of the PDE3A pathway, either by genetic deletion or pharmacological inhibition, does not alter CMH development in an inflammation-induced or in a CAA-associated mouse model of CMH. The role of microglial activation and BBB injury in CMH development warrants further investigation.
Collapse
Affiliation(s)
- Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA.,Department of Neurology, University of California, Irvine, CA, USA
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | | | | | - Ronald Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, CA, USA. .,Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA. .,UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
34
|
Hase Y, Craggs L, Hase M, Stevenson W, Slade J, Lopez D, Mehta R, Chen A, Liang D, Oakley A, Ihara M, Horsburgh K, Kalaria RN. Effects of environmental enrichment on white matter glial responses in a mouse model of chronic cerebral hypoperfusion. J Neuroinflammation 2017; 14:81. [PMID: 28399892 PMCID: PMC5387261 DOI: 10.1186/s12974-017-0850-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Background This study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Methods A total of 74 wild-type male C57BL/6J mice underwent BCAS or sham surgery. One week after surgery, the mice were randomly assigned into three different groups having varied amounts of EE—standard housing with no EE conditions (std), limited exposure with 3 h EE a day (3 h) and full-time exposure to EE (full) for 12 weeks. At 16 weeks after BCAS surgery, behavioural and cognitive function were assessed prior to euthanasia. Brain tissues were analysed for the degree of gliosis including morphological changes in astrocytes and microglia. Results Chronic cerebral hypoperfusion (or BCAS) increased clasmatodendrocytes (damaged astrocytes) with disruption of aquaporin-4 immunoreactivity and an increased degree of microglial activation/proliferation. BCAS also impaired behavioural and cognitive function. These changes were significantly attenuated, by limited exposure compared to full-time exposure to EE. Conclusions Our results suggest that moderate or limited exposure to EE substantially reduced glial damage/activation. Our findings also suggest moderate rather than continuous exposure to EE is beneficial for patients with subcortical ischaemic vascular dementia characterised by white matter disease-related inflammation.
Collapse
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Lucinda Craggs
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Mai Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - William Stevenson
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Janet Slade
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Dianne Lopez
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rubin Mehta
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Aiqing Chen
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Di Liang
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Arthur Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
35
|
Kangawa Y, Yoshida T, Abe H, Seto Y, Miyashita T, Nakamura M, Kihara T, Hayashi SM, Shibutani M. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice. ACTA ACUST UNITED AC 2017; 69:179-186. [DOI: 10.1016/j.etp.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
|
36
|
Kangawa Y, Yoshida T, Maruyama K, Okamoto M, Kihara T, Nakamura M, Ochiai M, Hippo Y, Hayashi SM, Shibutani M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem Toxicol 2017; 100:103-114. [DOI: 10.1016/j.fct.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
|
37
|
Saito S, Kojima S, Oishi N, Kakuta R, Maki T, Yasuno F, Nagatsuka K, Yamamoto H, Fukuyama H, Fukushima M, Ihara M. A multicenter, randomized, placebo-controlled trial for cilostazol in patients with mild cognitive impairment: The COMCID study protocol. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:250-257. [PMID: 29067312 PMCID: PMC5651350 DOI: 10.1016/j.trci.2016.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Introduction There are currently no effective treatments preventing conversion from mild cognitive impairment (MCI) to Alzheimer's disease. Cilostazol is a selective type-3 phosphodiesterase inhibitor that ameliorates accumulation of amyloid-β and has prevented cognitive decline in rodent models. Furthermore, cilostazol is known to suppress platelet aggregation, protect vascular endothelia, dilate vessels, and increase cerebral blood flow. Beneficial effects have also been shown in observational cohort studies, demonstrating the need for a prospective clinical trial. Methods The Cilostazol for prevention of COnversion from MCI to Dementia (COMCID) study is a double-blind, randomized phase II study of patients with MCI. Participants will receive cilostazol or placebo for 96 weeks. The primary objective is to evaluate whether cilostazol slows down cognitive decline measured by the Mini-Mental State Examination. Secondary objectives are assessing time to conversion from MCI to dementia and assessing incremental changes in several psychological assessment scales. Discussion The COMCID trial will identify the therapeutic potential of cilostazol. This trial, which is based on a drug repositioning strategy, may aid the development of a neurovascular treatment for neurocognitive disorders.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinsuke Kojima
- Department of MediScience, Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Naoya Oishi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Ryosuke Kakuta
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Kazuyuki Nagatsuka
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Haruko Yamamoto
- Center for Advancing Clinical and Translational Sciences, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Masanori Fukushima
- Department of MediScience, Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Masafumi Ihara
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
38
|
El-Dessouki AM, Galal MA, Awad AS, Zaki HF. Neuroprotective Effects of Simvastatin and Cilostazol in L-Methionine-Induced Vascular Dementia in Rats. Mol Neurobiol 2016; 54:5074-5084. [PMID: 27544235 DOI: 10.1007/s12035-016-0051-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Vascular dementia (VaD) is a degenerative cerebrovascular disorder that leads to progressive decline in cognitive abilities and memory. Several reports demonstrated that oxidative stress and endothelial dysfunction are principal pathogenic factors in VaD. The present study was constructed to determine the possible neuroprotective effects of simvastatin in comparison with cilostazol in VaD induced by L-methionine in rats. Male Wistar rats were divided into four groups. Group I (control group), group II received L-methionine (1.7 g/kg, p.o.) for 32 days. The remaining two groups received simvastatin (50 mg/kg, p.o.) and cilostazol (100 mg/kg, p.o.), respectively, for 32 days after induction of VaD by L-methionine. Subsequently, rats were tested for cognitive performance using Morris water maze test then sacrificed for biochemical and histopathological assays. L-methionine induced VaD reflected by alterations in rats' behavior as well as the estimated neurotransmitters, acetylcholinesterase activity as well as increased brain oxidative stress and inflammation parallel to histopathological changes in brain tissue. Treatment of rats with simvastatin ameliorated L-methionine-induced behavioral, neurochemical, and histological changes in a manner comparable to cilostazol. Simvastatin may be regarded as a potential therapeutic strategy for the treatment of VaD. To the best of our knowledge, this is the first study to reveal the neuroprotective effects of simvastatin or cilostazol in L-methionine-induced VaD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
39
|
Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity. Sci Rep 2016; 6:30127. [PMID: 27440054 PMCID: PMC4954989 DOI: 10.1038/srep30127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 01/12/2023] Open
Abstract
The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain.
Collapse
|
40
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
41
|
Therapeutic window of globular adiponectin against cerebral ischemia in diabetic mice: the role of dynamic alteration of adiponectin/adiponectin receptor expression. Sci Rep 2015; 5:17310. [PMID: 26611106 PMCID: PMC4661424 DOI: 10.1038/srep17310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/28/2015] [Indexed: 01/14/2023] Open
Abstract
Recent studies have demonstrated that adiponectin (APN) attenuates cerebral ischemic/reperfusion via globular adiponectin (gAD). However, the therapeutic role of gAD in cerebral ischemic injury in type 1 diabetes mellitus (T1DM) remains unclear. Our results showed that gAD improved neurological scores and reduced the infarct volumes in the 8-week T1DM (T1DM-8W) mice, but not in the 2-week T1DM (T1DM-2W) mice. Moreover, the ischemic penumbra APN levels increased and peaked in T1DM-2W mice, and reduced to normal in T1DM-8W mice, while the APN receptor 1 (AdipoR1) expression change was the opposite. Administration of rosiglitazone in T1DM-2W mice up-regulated the expression of AdipoR1 and restored the neuroprotection of gAD, while intracerebroventricular injection of AdipoR1 small interfering RNA (siRNA) in T1DM-8W mice reversed it. Furthermore, the expression of p-PERK, p-IRE1 and GRP78 were increased whereas the expressions of CHOP and cleaved caspase-12 as well as the number of apoptotic neurons were decreased after gAD treatment in T1DM-8W mice. These beneficial effects of gAD were reversed by pretreatment with AdipoR1 siRNA. These results demonstrated a dynamic dysfunction of APN/AdipoR1 accompanying T1DM progression. Interventions bolstering AdipoR1 expression during early stages and gAD supplementation during advanced stages may potentially reduce the cerebral ischemic injury in diabetic patients.
Collapse
|
42
|
Abstract
Silent information regulator 2 homolog 1 (SIRT1) is a protein deacetylase that has been reported to suppress neurodegenerative and cardiovascular pathologies in model organisms. We have recently reported that SIRT1 overexpression preserves cerebral blood flow (CBF) after bilateral common carotid artery stenosis (∼50% stenosis) by the deacetylation of endothelial nitric oxide synthase. This study was designed to determine whether cerebral SIRT1 expression would be effective in a more severe model of cerebral ischemia caused by bilateral common carotid artery occlusion (BCAO) in vivo. Sirt1-overexpressing (Sirt1-Tg) mice (n=13) and their wild-type littermates (n=17) were subjected to BCAO for 10 min using microaneurysm clips. Temporal CBF changes were measured by laser speckle flowmetry before and 5, 10 min, and 2 h after BCAO. Histological evaluation of hippocampal changes was performed 7 days after BCAO. Histological findings were significantly less severe in Sirt1-Tg mice than in wild-type mice; wild-type mice showed strokes in the hippocampus, whereas Sirt1-Tg mice had minimal hippocampal damage 7 days after BCAO. Consistent with this observation, wild-type mice showed a severe reduction in CBF to ∼20-25% of the baseline level during BCAO, whereas Sirt1-Tg littermates showed significantly preserved CBF up to 45-50% of the baseline level. Our study provides evidence for the promising role of SIRT1 in protecting against cerebral global ischemia by preserving CBF and restoring the cerebrovascular reserve.
Collapse
|
43
|
Godinho J, de Oliveira JN, Ferreira EDF, Zaghi GGD, Bacarin CC, de Oliveira RMW, Milani H. Cilostazol but not sildenafil prevents memory impairment after chronic cerebral hypoperfusion in middle-aged rats. Behav Brain Res 2015; 283:61-8. [DOI: 10.1016/j.bbr.2015.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
|
44
|
Toyoda K, Uchiyama S, Hoshino H, Kimura K, Origasa H, Naritomi H, Minematsu K, Yamaguchi T. Protocol for Cilostazol Stroke Prevention Study for Antiplatelet Combination (CSPS.com): a randomized, open-label, parallel-group trial. Int J Stroke 2014; 10:253-8. [PMID: 25487817 PMCID: PMC4335602 DOI: 10.1111/ijs.12420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023]
Abstract
Rationale and aims Monotherapy with antiplatelet agents is only modestly effective in secondary prevention of ischemic stroke (IS), particularly in patients with multiple risk factors such as cervicocephalic arterial stenosis, diabetes, and hypertension. While dual antiplatelet therapy (DAPT) with aspirin and clopidogrel reduced IS recurrence, particularly in the early stages after IS, it increased the risk of bleeding. Compared with aspirin, cilostazol prevented IS recurrence without increasing the incidence of serious bleeds. In patients with intracranial arterial stenosis, no significant increase in bleeding events was observed for DAPT with cilostazol and aspirin, compared to that for aspirin monotherapy. DAPT involving cilostazol may therefore be safer than conventional DAPT. These findings prompted us to conduct the Cilostazol Stroke Prevention Study for Antiplatelet Combination (CSPS.com; ClinicalTrials.gov identifier: NCT01995370) to evaluate the safety and efficacy of DAPT involving cilostazol for secondary IS prevention, in comparison with that of antiplatelet monotherapy. Design The CSPS.com is a multicenter, randomized, open-label, parallel-group trial. A total of 4000 high-risk patients with noncardioembolic IS will be randomized 8–180 days after onset to receive aspirin or clopidogrel monotherapy, or DAPT with cilostazol and aspirin or clopidogrel for at least one-year. Study outcomes The primary outcome is IS recurrence. Secondary outcomes are composite occurrences of any stroke, death from any cause, myocardial infarction, vascular death, and other vascular events. Discussion The CSPS.com is expected to provide evidence indicating whether secondary IS prevention in high-risk patients can be improved by using DAPT involving cilostazol.
Collapse
Affiliation(s)
- Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Saito S, Ihara M. New therapeutic approaches for Alzheimer's disease and cerebral amyloid angiopathy. Front Aging Neurosci 2014; 6:290. [PMID: 25368578 PMCID: PMC4202741 DOI: 10.3389/fnagi.2014.00290] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has shown a strong relationship between Alzheimer’s disease (AD), cerebral amyloid angiopathy (CAA), and cerebrovascular disease. Cognitive impairment in AD patients can result from cortical microinfarcts associated with CAA, as well as the synaptic and neuronal disturbances caused by cerebral accumulations of β-amyloid (Aβ) and tau proteins. The pathophysiology of AD may lead to a toxic chain of events consisting of Aβ overproduction, impaired Aβ clearance, and brain ischemia. Insufficient removal of Aβ leads to development of CAA and plays a crucial role in sporadic AD cases, implicating promotion of Aβ clearance as an important therapeutic strategy. Aβ is mainly eliminated by three mechanisms: (1) enzymatic/glial degradation, (2) transcytotic delivery, and (3) perivascular drainage (3-“d” mechanisms). Enzymatic degradation may be facilitated by activation of Aβ-degrading enzymes such as neprilysin, angiotensin-converting enzyme, and insulin-degrading enzyme. Transcytotic delivery can be promoted by inhibition of the receptor for advanced glycation end products (RAGE), which mediates transcytotic influx of circulating Aβ into brain. Successful use of the RAGE inhibitor TTP488 in Phase II testing has led to a Phase III clinical trial for AD patients. The perivascular drainage system seems to be driven by motive force generated by cerebral arterial pulsations, suggesting that vasoactive drugs can facilitate Aβ clearance. One of the drugs promoting this system is cilostazol, a selective inhibitor of type 3 phosphodiesterase. The clearance of fluorescent soluble Aβ tracers was significantly enhanced in cilostazol-treated CAA model mice. Given that the balance between Aβ synthesis and clearance determines brain Aβ accumulation, and that Aβ is cleared by several pathways stated above, multi-drugs combination therapy could provide a mainstream cure for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center , Suita , Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center , Suita , Japan
| |
Collapse
|
46
|
Maki T, Okamoto Y, Carare RO, Hase Y, Hattori Y, Hawkes CA, Saito S, Yamamoto Y, Terasaki Y, Ishibashi-Ueda H, Taguchi A, Takahashi R, Miyakawa T, Kalaria RN, Lo EH, Arai K, Ihara M. Phosphodiesterase III inhibitor promotes drainage of cerebrovascular β-amyloid. Ann Clin Transl Neurol 2014; 1:519-33. [PMID: 25356424 PMCID: PMC4184555 DOI: 10.1002/acn3.79] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/09/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Brain amyloidosis is a key feature of Alzheimer's disease (AD). It also incorporates cerebrovascular amyloid β (Aβ) in the form of cerebral amyloid angiopathy (CAA) involving neurovascular dysfunction. We have recently shown by retrospective analysis that patients with mild cognitive impairment receiving a vasoactive drug cilostazol, a selective inhibitor of phosphodiesterase (PDE) III, exhibit significantly reduced cognitive decline. Here, we tested whether cilostazol protects against the disruption of the neurovascular unit and facilitates the arterial pulsation-driven perivascular drainage of Aβ in AD/CAA. METHODS We explored the expression of PDE III in postmortem human brain tissue followed by a series of experiments examining the effects of cilostazol on Aβ metabolism in transgenic mice (Tg-SwDI mice) as a model of cerebrovascular β-amyloidosis, as well as cultured neurons. RESULTS We established that PDE III is abnormally upregulated in cerebral blood vessels of AD and CAA subjects and closely correlates with vascular amyloid burden. Furthermore, we demonstrated that cilostazol treatment maintained cerebral hyperemic and vasodilative responses to hypercapnia and acetylcholine, suppressed degeneration of pericytes and vascular smooth muscle cells, promoted perivascular drainage of soluble fluorescent Aβ1-40, and rescued cognitive deficits in Tg-SwDI mice. Although cilostazol decreased endogenous Aβ production in cultured neurons, C-terminal fragment of amyloid precursor protein expression was not altered in cilostazol-treated Tg-SwDI mice. INTERPRETATION The predominant action of cilostazol on Aβ metabolism is likely to facilitate Aβ clearance due to the sustained cerebrovascular function in vivo. Our findings mechanistically demonstrate that cilostazol is a promising therapeutic approach for AD and CAA.
Collapse
Affiliation(s)
- Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, Massachusetts
| | - Yoko Okamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Department of Pathology, National Cerebral and Cardiovascular Center Osaka, Japan
| | - Roxana O Carare
- Division of Clinical Neurosciences, Southampton General Hospital, Southampton University Hampshire, United Kingdom
| | - Yoshiki Hase
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Yorito Hattori
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Osaka, Japan
| | - Cheryl A Hawkes
- Division of Clinical Neurosciences, Southampton General Hospital, Southampton University Hampshire, United Kingdom
| | - Satoshi Saito
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Osaka, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Osaka, Japan
| | - Yasukazu Terasaki
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, Massachusetts
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation Kobe, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | | | - Raj N Kalaria
- Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality Newcastle upon Tyne, United Kingdom
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, Massachusetts
| | - Ken Arai
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, Massachusetts
| | - Masafumi Ihara
- Department of Neurology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center Osaka, Japan
| |
Collapse
|
47
|
Saito S, Hata K, Iwaisako K, Yanagida A, Takeiri M, Tanaka H, Kageyama S, Hirao H, Ikeda K, Asagiri M, Uemoto S. Cilostazol attenuates hepatic stellate cell activation and protects mice against carbon tetrachloride-induced liver fibrosis. Hepatol Res 2014; 44:460-73. [PMID: 23607402 DOI: 10.1111/hepr.12140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 01/28/2023]
Abstract
AIM Liver fibrosis is a common pathway leading to cirrhosis. Cilostazol, a clinically available oral phosphodiesterase-3 inhibitor, has been shown to have antifibrotic potential in experimental non-alcoholic fatty liver disease. However, the detailed mechanisms of the antifibrotic effect and its efficacy in a different experimental model remain elusive. METHODS Male C57BL/6J mice were assigned to five groups: mice fed a normal diet (groups 1 and 2); 0.1% or 0.3% cilostazol-containing diet (groups 3 and 4, respectively); and 0.125% clopidogrel-containing diet (group 5). Two weeks after feeding, groups 2-5 were intraperitoneally administered carbon tetrachloride (CCl4 ) twice a week for 6 weeks, while group 1 was treated with the vehicle alone. To investigate the effects of cilostazol on hepatic cells, in vitro studies were conducted using primary hepatic stellate cells (HSC), Kupffer cells and hepatocytes with cilostazol supplementation. RESULTS Sirius red staining revealed that groups 3 and 4 exhibited a lesser fibrotic area (2.49 ± 0.43% and 2.31 ± 0.30%, respectively) than group 2 (3.17 ± 0.67%, P < 0.05 and P < 0.001, respectively). In vitro studies showed cilostazol dose-dependently suppressed HSC activation (assessed by morphological change, cell proliferation, and the expression of HSC activation markers), suggesting the therapeutic effect of cilostazol is mediated by its direct action on HSC. CONCLUSION Cilostazol could alleviate CCl4 -induced hepatic fibrogenesis in vivo, presumably due, at least partly, to its direct effect to suppress HSC activation. Given its clinical availability and safety, it may be a novel therapeutic intervention for chronic liver diseases.
Collapse
Affiliation(s)
- Shunichi Saito
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Hata
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Yanagida
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Takeiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirokazu Tanaka
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoichi Kageyama
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Hirao
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masataka Asagiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 2014; 34:185-99. [PMID: 24281743 PMCID: PMC3915212 DOI: 10.1038/jcbfm.2013.203] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 01/12/2023]
Abstract
Hemorrhagic transformation (HT) is a common complication of ischemic stroke that is exacerbated by thrombolytic therapy. Methods to better prevent, predict, and treat HT are needed. In this review, we summarize studies of HT in both animals and humans. We propose that early HT (<18 to 24 hours after stroke onset) relates to leukocyte-derived matrix metalloproteinase-9 (MMP-9) and brain-derived MMP-2 that damage the neurovascular unit and promote blood-brain barrier (BBB) disruption. This contrasts to delayed HT (>18 to 24 hours after stroke) that relates to ischemia activation of brain proteases (MMP-2, MMP-3, MMP-9, and endogenous tissue plasminogen activator), neuroinflammation, and factors that promote vascular remodeling (vascular endothelial growth factor and high-moblity-group-box-1). Processes that mediate BBB repair and reduce HT risk are discussed, including transforming growth factor beta signaling in monocytes, Src kinase signaling, MMP inhibitors, and inhibitors of reactive oxygen species. Finally, clinical features associated with HT in patients with stroke are reviewed, including approaches to predict HT by clinical factors, brain imaging, and blood biomarkers. Though remarkable advances in our understanding of HT have been made, additional efforts are needed to translate these discoveries to the clinic and reduce the impact of HT on patients with ischemic stroke.
Collapse
|
49
|
Cilostazol inhibits leukocyte-endothelial cell interactions in murine microvessels after transient bilateral common carotid artery occlusion. Brain Res 2014; 1543:173-8. [PMID: 24309140 DOI: 10.1016/j.brainres.2013.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022]
Abstract
Leukocyte behavior in the cerebral microvasculature following vessel occlusion has not been fully elucidated. The purpose of this study was to investigate the effects of cilostazol on leukocyte behavior (rolling and adhesion) in murine cerebral microvessels following transient bilateral carotid artery occlusion using intravital fluorescence microscopy. Four groups of mice were assigned: a sham group (n=16); an ischemia (induced by 15-min occlusion of bilateral common carotid arteries) and reperfusion (I/R) group (n=13); I/R+cilostazol (I/R+CZ3 mg/kg) group (I/R after oral administration of cilostazol at 3 mg/kg) (n=8); and I/R+cilostazol (I/R+CZ30 mg/kg) group (I/R after oral administration of cilostazol at 30 mg/kg) (n=12). Leukocytes labeled with 0.05% acridine orange were administered intravenously and their behavior was investigated at 3 and 6 h after reperfusion. Numbers of rolling or adherent leukocytes were expressed as the count per square millimeter per 30s. Numbers of rolling and adherent leukocytes at 3 and 6h after reperfusion were significantly higher in the I/R group than in the sham or I/R+CZ30 mg/kg groups in both pial veins (P<0.05) and pial arteries (P<0.05). Cilostazol (30 mg/kg) inhibited leukocyte-endothelial interactions following cerebral ischemia and reperfusion.
Collapse
|
50
|
Affiliation(s)
- Mark J Fisher
- From the Departments of Neurology, Anatomy & Neurobiology, and Pathology & Laboratory Medicine, UC Irvine School of Medicine, Irvine, CA
| |
Collapse
|