1
|
Peng Y, Bramlett HM, Dietrich WD, Marcillo A, Sanchez-Molano J, Furones-Alonso O, Cao JJ, Huang J, Li AA, Feng JQ, Bauman WA, Qin W. Administration of low intensity vibration and a RANKL inhibitor, alone or in combination, reduces bone loss after spinal cord injury-induced immobilization in rats. Bone Rep 2024; 23:101808. [PMID: 39429803 PMCID: PMC11489065 DOI: 10.1016/j.bonr.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
We previously reported an ability of low-intensity vibration (LIV) to improve selected biomarkers of bone turnover and gene expression and reduce osteoclastogenesis but lacking of evident bone accrual. In this study, we demonstrate that a prolonged course of LIV that initiated at 2 weeks post-injury and continued for 8 weeks can protect against bone loss after SCI in rats. LIV stimulates bone formation and improves osteoblast differentiation potential of bone marrow stromal stem cells while inhibiting osteoclast differentiation potential of marrow hematopoietic progenitors to reduce bone resorption. We further demonstrate that the combination of LIV and RANKL antibody reduces SCI-related bone loss more than each intervention alone. Our findings that LIV is efficacious in maintaining sublesional bone mass suggests that such physical-based intervention approach would be a noninvasive, simple, inexpensive and practical intervention to treat bone loss after SCI. Because the combined administration of LIV and RANKL inhibition better preserved sublesional bone after SCI than either intervention alone, this work provides the impetus for the development of future clinical protocols based on the potential greater therapeutic efficacy of combining non-pharmacological (e.g., LIV) and pharmacological (e.g., RANKL inhibitor or other agents) approaches to treat osteoporosis after SCI or other conditions associated with severe immobilization.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
| | - Helen M. Bramlett
- Bruce W. Carter Miami VA Medical Center, Miami, Florida, USA
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. Dalton Dietrich
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alex Marcillo
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ofelia Furones-Alonso
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jay J. Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | | | | | - Jian Q. Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - William A. Bauman
- Departments of Medicine, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
- Departments of Medicine, USA
| |
Collapse
|
2
|
Gopalakrishnan B, Galili U, Saenger M, Burket NJ, Koss W, Lokender MS, Wolfe KM, Husak SJ, Stark CJ, Solorio L, Cox A, Dunbar A, Shi R, Li J. α-Gal Nanoparticles in CNS Trauma: II. Immunomodulation Following Spinal Cord Injury (SCI) Improves Functional Outcomes. Tissue Eng Regen Med 2024; 21:437-453. [PMID: 38308742 PMCID: PMC10987462 DOI: 10.1007/s13770-023-00616-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Previous investigations have shown that local application of nanoparticles presenting the carbohydrate moiety galactose-α-1,3-galactose (α-gal epitopes) enhance wound healing by activating the complement system and recruiting pro-healing macrophages to the injury site. Our companion in vitro paper suggest α-gal epitopes can similarly recruit and polarize human microglia toward a pro-healing phenotype. In this continuation study, we investigate the in vivo implications of α-gal nanoparticle administration directly to the injured spinal cord. METHODS α-Gal knock-out (KO) mice subjected to spinal cord crush were injected either with saline (control) or with α-gal nanoparticles immediately following injury. Animals were assessed longitudinally with neurobehavioral and histological endpoints. RESULTS Mice injected with α-gal nanoparticles showed increased recruitment of anti-inflammatory macrophages to the injection site in conjunction with increased production of anti-inflammatory markers and a reduction in apoptosis. Further, the treated group showed increased axonal infiltration into the lesion, a reduction in reactive astrocyte populations and increased angiogenesis. These results translated into improved sensorimotor metrics versus the control group. CONCLUSIONS Application of α-gal nanoparticles after spinal cord injury (SCI) induces a pro-healing inflammatory response resulting in neuroprotection, improved axonal ingrowth into the lesion and enhanced sensorimotor recovery. The data shows α-gal nanoparticles may be a promising avenue for further study in CNS trauma.
Collapse
Affiliation(s)
- Bhavani Gopalakrishnan
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Megan Saenger
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Noah J Burket
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manjari S Lokender
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Kaitlyn M Wolfe
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Samantha J Husak
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Collin J Stark
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - August Dunbar
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianming Li
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Li W, Tang T, Yao S, Zhong S, Fan Q, Zou T. Low-dose Lipopolysaccharide Alleviates Spinal Cord Injury-induced Neuronal Inflammation by Inhibiting microRNA-429-mediated Suppression of PI3K/AKT/Nrf2 Signaling. Mol Neurobiol 2024; 61:294-307. [PMID: 37605094 DOI: 10.1007/s12035-023-03483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023]
Abstract
This study investigated the impact of low-dose lipopolysaccharide (LPS) on spinal cord injury (SCI) and the potential molecular mechanism. Rats were randomly assigned to four groups: Sham, SCI, SCI + LPS, and SCI + LPS + agomir. Allen's weight-drop method was used to establish an in vivo SCI model. The Basso Bcattie Bresnahan rating scale was employed to monitor locomotor function. An in vitro SCI model was constructed by subjecting PC12 cells to oxygen and glucose deprivation/ reoxygenation (OGD/R). Enzyme-linked immunosorbent assay (ELISA) was applied for the determination interleukin (IL)-1β and IL-6. The dual luciferase reporter assay was used to validate the targeting of microRNA (miR)-429 with PI3K. Immunohistochemical staining was used to assess the expression of PI3K, phosphorylated AKT and Nrf2 proteins. The Nrf2-downstream anti-oxidative stress proteins, OH-1 and NQO1, were detected by western blot assay. MiR-429 expression was detected by fluorescence in situ hybridization and real-time quantitative reverse transcription PCR. In vitro, low-dose LPS decreased miR-429 expression, activated PI3K/AKT/Nrf2, inhibited oxidative stress and inflammation, and attenuated SCI. MiR-429 was found to target and negatively regulate PI3K. Inhibition of miR-429 suppressed low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. In vivo, miR-429 was detectable in neurons. Inhibition of miR-429 blocked low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. Overall, low-dose LPS was found to alleviate SCI-induced neuronal oxidative stress and inflammatory response by down-regulating miR-429 to activate the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Tao Tang
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shaoping Yao
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tiannan Zou
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China.
| |
Collapse
|
4
|
Sydney-Smith JD, Koltchev AM, Moon LDF, Warren PM. Delayed viral vector mediated delivery of neurotrophin-3 improves skilled hindlimb function and stability after thoracic contusion. Exp Neurol 2023; 360:114278. [PMID: 36455639 DOI: 10.1016/j.expneurol.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Alice M Koltchev
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Lawrence D F Moon
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Philippa M Warren
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
5
|
Romanelli P, Bieler L, Heimel P, Škokić S, Jakubecova D, Kreutzer C, Zaunmair P, Smolčić T, Benedetti B, Rohde E, Gimona M, Hercher D, Dobrivojević Radmilović M, Couillard-Despres S. Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury. Front Cell Neurosci 2022; 15:795008. [PMID: 35046776 PMCID: PMC8762366 DOI: 10.3389/fncel.2021.795008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.
Collapse
Affiliation(s)
- Pasquale Romanelli
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Innovacell AG, Innsbruck, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tomislav Smolčić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
6
|
Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 2020; 21:ijms21207533. [PMID: 33066029 PMCID: PMC7589539 DOI: 10.3390/ijms21207533] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Its pathophysiology comprises acute and chronic phases and incorporates a cascade of destructive events such as ischemia, oxidative stress, inflammatory events, apoptotic pathways and locomotor dysfunctions. Many therapeutic strategies have been proposed to overcome neurodegenerative events and reduce secondary neuronal damage. Efforts have also been devoted in developing neuroprotective and neuro-regenerative therapies that promote neuronal recovery and outcome. Although varying degrees of success have been achieved, curative accomplishment is still elusive probably due to the complex healing and protective mechanisms involved. Thus, current understanding in this area must be assessed to formulate appropriate treatment modalities to improve SCI recovery. This review aims to promote the understanding of SCI pathophysiology, interrelated or interlinked multimolecular interactions and various methods of neuronal recovery i.e., neuroprotective, immunomodulatory and neuro-regenerative pathways and relevant approaches.
Collapse
|
7
|
Busch DR, Lin W, Cai C, Cutrone A, Tatka J, Kovarovic BJ, Yodh AG, Floyd TF, Barsi J. Multi-Site Optical Monitoring of Spinal Cord Ischemia during Spine Distraction. J Neurotrauma 2020; 37:2014-2022. [PMID: 32458719 DOI: 10.1089/neu.2020.7012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Optimal surgical management of spine trauma will restore blood flow to the ischemic spinal cord. However, spine stabilization may also further exacerbate injury by inducing ischemia. Current electrophysiological technology is not capable of detecting acute changes in spinal cord blood flow or localizing ischemia. Further, alerts are delayed and unreliable. We developed an epidural optical device capable of directly measuring and immediately detecting changes in spinal cord blood flow using diffuse correlation spectroscopy (DCS). Herein we test the hypothesis that our device can continuously monitor blood flow during spine distraction. Additionally, we demonstrate the ability of our device to monitor multiple sites along the spinal cord and axially resolve changes in spinal cord blood flow. DCS-measured blood flow in the spinal cord was monitored at up to three spatial locations (cranial to, at, and caudal to the distraction site) during surgical distraction in a sheep model. Distraction was halted at 50% of baseline blood flow at the distraction site. We were able to monitor blood flow with DCS in multiple regions of the spinal cord simultaneously at ∼1 Hz. The distraction site had a greater decrement in flow than sites cranial to the injury (median -40 vs. -7%,). This pilot study demonstrated high temporal resolution and the capacity to axially resolve changes in spinal cord blood flow at and remote from the site of distraction. These early results suggest that this technology may assist in the surgical management of spine trauma and in corrective surgery of the spine.
Collapse
Affiliation(s)
- David R Busch
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, Texas, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, Texas, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern, Dallas, Texas, USA
| | - Alissa Cutrone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jakub Tatka
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Brandon J Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas F Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, Texas, USA.,Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern, Dallas, Texas, USA
| | - James Barsi
- Department of Orthopedic Surgery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
8
|
Sun X, Zhang C, Guo H, Chen J, Tao Y, Wang F, Lin X, Liu Q, Su L, Qin A. Pregnenolone Inhibits Osteoclast Differentiation and Protects Against Lipopolysaccharide-Induced Inflammatory Bone Destruction and Ovariectomy-Induced Bone Loss. Front Pharmacol 2020; 11:360. [PMID: 32292342 PMCID: PMC7135856 DOI: 10.3389/fphar.2020.00360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
Osteolytic bone disease is characterized by excessive osteoclast bone resorption leading to increased skeletal fragility and fracture risk. Multinucleated osteoclasts formed through the fusion of mononuclear precursors are the principle cell capable of bone resorption. Pregnenolone (Preg) is the grand precursor of most if not all steroid hormones and have been suggested to be a novel anti-osteoporotic agent. However, the effects of Preg on osteoclast biology and function has yet to be shown. Here we examined the effect of Preg on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation and bone resorption in vitro, and potential therapeutic application in inflammatory bone destruction and bone loss in vivo. Our in vitro cellular assays demonstrated that Preg can inhibit the formation of TRAP+ve osteoclast formation as well as mature osteoclast bone resorption in a dose-dependent manner. The expression of osteoclast marker genes CTSK, TRAP, DC-STAMP, ATP6V0d2, and NFATc1 were markedly attenuated. Biochemical analyses of RANKL-induced signaling pathways showed that Preg inhibited the early activation of extracellular regulated protein kinases (ERK) mitogen-activated protein kinase (MAPK) and nuclear factor-κB, which consequently impaired the downstream induction of c-Fos and NFATc1. Using reactive oxygen species (ROS) detection assays, we found that Preg exhibits anti-oxidant properties inhibiting the generation of intracellular ROS following RANKL stimulation. Consistent with these in vitro results, we confirmed that Preg protected mice against local Lipopolysaccharide (LPS)-induced inflammatory bone destruction in vivo by suppressing osteoclast formation. Furthermore, we did not find any observable effect of Preg on osteoblastogenesis and mineralization in vitro. Finally Preg was administered to ovariectomy (OVX)-induced bone loss and demonstrated that Preg prevented systemic OVX-induced osteoporosis. Collectively, our observations provide strong evidence for the use of Preg as anti-osteoclastogenic and anti-resorptive agent for the potential treatment of osteolytic bone conditions.
Collapse
Affiliation(s)
- Xiaochen Sun
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiao Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yali Tao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - An Qin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Exp Neurol 2019; 321:113015. [PMID: 31326353 DOI: 10.1016/j.expneurol.2019.113015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Spared corticospinal tract (CST) and proprioceptive afferent (PA) axons sprout after injury and contribute to rewiring spinal circuits, affecting motor recovery. Loss of CST connections post-injury results in corticospinal signal loss and associated reduction in spinal activity. We investigated the role of activity loss and injury on CST and PA sprouting. To understand activity-dependence after injury, we compared CST and PA sprouting after motor cortex (MCX) inactivation, produced by chronic MCX muscimol microinfusion, with sprouting after a CST lesion produced by pyramidal tract section (PTx). Activity suppression, which does not produce a lesion, is sufficient to trigger CST axon outgrowth from the active side to cross the midline and to enter the inactivated side of the spinal cord, to the same extent as PTx. Activity loss was insufficient to drive significant CST gray matter axon elongation, an effect of PTx. Activity suppression triggered presynaptic site formation, but less than PTx. Activity loss triggered PA sprouting, as PTx. To understand injury-dependent sprouting further, we blocked microglial activation and associated inflammation after PTX by chronic minocycline administration after PTx. Minocycline inhibited myelin debris phagocytosis contralateral to PTx and abolished CST axon elongation, formation of presynaptic sites, and PA sprouting, but not CST axon outgrowth from the active side to cross the midline. Our findings suggest sprouting after injury has a strong activity dependence and that microglial activation after injury supports axonal elongation and presynaptic site formation. Combining spinal activity support and inflammation control is potentially more effective in promoting functional restoration than either alone.
Collapse
|
10
|
Xu G, Shi D, Zhi Z, Ao R, Yu B. Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. J Cell Biochem 2018; 120:5183-5192. [PMID: 30257055 DOI: 10.1002/jcb.27794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Guanghui Xu
- Orthopedics Department Shanghai Pudong Hospital, Pudong Medical Center, Fudan University Pudong Shanghai China
| | - Dong Shi
- Radiology Department The 251st Hospital of Chinese PLA Zhangjiakou China
| | - Zhongzheng Zhi
- Orthopedics Department Shanghai Pudong Hospital, Pudong Medical Center, Fudan University Pudong Shanghai China
| | - Rongguang Ao
- Orthopedics Department Shanghai Pudong Hospital, Pudong Medical Center, Fudan University Pudong Shanghai China
| | - Baoqing Yu
- Orthopedics Department Shanghai Pudong Hospital, Pudong Medical Center, Fudan University Pudong Shanghai China
| |
Collapse
|
11
|
Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats. Exp Neurol 2018; 306:250-259. [DOI: 10.1016/j.expneurol.2018.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/23/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
|
12
|
Busch DR, Davis J, Kogler A, Galler RM, Parthasarathy AB, Yodh AG, Floyd TF. Laser safety in fiber-optic monitoring of spinal cord hemodynamics: a preclinical evaluation. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29923371 PMCID: PMC8357330 DOI: 10.1117/1.jbo.23.6.065003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
The prevention and treatment of spinal cord injury are focused upon the maintenance of spinal cord blood flow, yet no technology exists to monitor spinal cord ischemia. We recently demonstrated continuous monitoring of spinal cord ischemia with diffuse correlation and optical spectroscopies using an optical probe. Prior to clinical translation of this technology, it is critically important to demonstrate the safety profile of spinal cord exposure to the required light. To our knowledge, this is the first report of in situ safety testing of such a monitor. We expose the spinal cord to laser light utilizing a custom fiber-optic epidural probe in a survival surgery model (11 adult Dorset sheep). We compare the tissue illumination from our instrument with the American National Standards Institute maximum permissible exposures. We experimentally evaluate neurological and pathological outcomes of the irradiated sheep associated with prolonged exposure to the laser source and evaluate heating in ex vivo spinal cord samples. Spinal cord tissue was exposed to light levels at ∼18 × the maximum permissible exposure for the eye and ∼ ( 1 / 3 ) × for the skin. Multidisciplinary testing revealed no functional neurological sequelae, histopathologic evidence of laser-related injury to the spinal cord, or significant temperature changes in ex vivo samples. Low tissue irradiance and the lack of neurological, pathological, and temperature changes upon prolonged exposure to the laser source offer evidence that spinal cord tissues can be monitored safely with near-infrared optical probes placed within the epidural space.
Collapse
Affiliation(s)
- David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas Texas, United States
- University of Texas Southwestern, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: David R. Busch, E-mail: ; Thomas F. Floyd, E-mail:
| | - James Davis
- Stony Brook University Medical Center, Department of Pathology, Stony Brook, New York, United States
| | - Angela Kogler
- Stony Brook University Medical Center, Department of Anesthesiology, Stony Brook, New York, United States
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Robert M. Galler
- Stony Brook University Medical Center, Department of Neurosurgery, Stony Brook, New York, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Thomas F. Floyd
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas Texas, United States
- Address all correspondence to: David R. Busch, E-mail: ; Thomas F. Floyd, E-mail:
| |
Collapse
|
13
|
Vagnozzi AN, Silver J. Targeting the cytoskeleton with an FDA approved drug to promote recovery after spinal cord injury. Exp Neurol 2018; 306:260-262. [PMID: 29752944 DOI: 10.1016/j.expneurol.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochem Biophys Res Commun 2018; 496:1302-1307. [PMID: 29410176 DOI: 10.1016/j.bbrc.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
Abstract
After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury.
Collapse
|
15
|
Cyclosporine-immunosuppression does not affect survival of transplanted skin-derived precursor Schwann cells in the injured rat spinal cord. Neurosci Lett 2017; 658:67-72. [PMID: 28843345 DOI: 10.1016/j.neulet.2017.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
A major goal of Schwann cell (SC) transplantation for spinal cord injury (SCI) is to fill the injury site to create a bridge for regenerating axons. However, transplantation of peripheral nerve SCs requires an invasive biopsy, which may result in nerve damage and donor site morbidity. SCs derived from multipotent stem cells found in skin dermis (SKP-SCs) are a promising alternative. Regardless of source, loss of grafted SCs post-grafting is an issue in studies of regeneration, with survival rates ranging from ∼1 to 20% after ≥6 weeks in rodent models of SCI. Immune rejection has been implicated in these low survival rates. Therefore, our aim was to explore the role of the immune response on grafted SKP-SC survival in Fischer rats with a spinal hemisection injury. We compared SKP-SC survival 6 weeks post-transplantation in: (I) cyclosporine-immunosuppressed rats (n=8), (II) immunocompetent rats (n=9), and (III) rats of a different sub-strain than the SKP-SC donor rats (n=7). SKP-SC survival was similar in all groups, suggesting immune rejection was not a main factor in SKP-SC loss observed in this study. SKP-SCs were consistently found on laminin expressed at the injury site, indicating detachment-mediated apoptosis (i.e., anoikis) might play a major role in grafted cell loss.
Collapse
|
16
|
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 2017; 652:3-10. [DOI: 10.1016/j.neulet.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
|
17
|
Toll-Like Receptors and Dectin-1, a C-Type Lectin Receptor, Trigger Divergent Functions in CNS Macrophages. J Neurosci 2015; 35:9966-76. [PMID: 26156997 DOI: 10.1523/jneurosci.0337-15.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Spinal cord injury (SCI) activates macrophages, endowing them with both reparative and pathological functions. The mechanisms responsible for these divergent functions are unknown but are likely controlled through stochastic activation of different macrophage receptor subtypes. Various danger-associated molecular patterns released from dying cells in the injured spinal cord likely activate distinct subtypes of macrophage pattern recognition receptors, including bacterial toll-like receptors (TLRs) and fungal C-type lectin receptors (e.g., dectin-1). To determine the in vivo consequences of activating these receptors, ligands specific for TLR2 or dectin-1 were microinjected, alone or in combination, into intact spinal cord. Both ligands elicit a florid macrophage reaction; however, only dectin-1 activation causes macrophage-mediated demyelination and axonal injury. Coactivating TLR2 reduced the injurious effects of dectin-1 activation. When injected into traumatically injured spinal cord, TLR2 agonists enhance the endogenous macrophage reaction while conferring neuroprotection. Indeed, dieback of axons was reduced, leading to smaller lesion volumes at the peak of the macrophage response. Moreover, the density of NG2+ cells expressing vimentin increased in and near lesions that were enriched with TLR2-activated macrophages. In dectin-1-null mutant (knock-out) mice, dieback of corticospinal tract axons also is reduced after SCI. Collectively, these data support the hypothesis that the ability of macrophages to create an axon growth-permissive microenvironment or cause neurotoxicity is receptor dependent and it may be possible to exploit this functional dichotomy to enhance CNS repair. SIGNIFICANCE STATEMENT There is a growing appreciation that macrophages exert diverse functions in the injured and diseased CNS. Indeed, both macrophage-mediated repair and macrophage-mediated injury occur, and often these effector functions are elicited simultaneously. Understanding the mechanisms governing the reparative and pathological properties of activated macrophages is at the forefront of neuroscience research. In this report, using in vitro and in vivo models of relevance to traumatic spinal cord injury (SCI), new data indicate that stochastic activation of toll-like and c-type lectin receptors on macrophages causes neuroprotection or neurotoxicity, respectively. Although this manuscript focuses on SCI, these two innate immune receptor subtypes are also involved in developmental processes and become activated in macrophages that respond to various neurological diseases.
Collapse
|
18
|
Hosier H, Peterson D, Tsymbalyuk O, Keledjian K, Smith BR, Ivanova S, Gerzanich V, Popovich PG, Simard JM. A Direct Comparison of Three Clinically Relevant Treatments in a Rat Model of Cervical Spinal Cord Injury. J Neurotrauma 2015; 32:1633-44. [PMID: 26192071 PMCID: PMC4638208 DOI: 10.1089/neu.2015.3892] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent preclinical studies have identified three treatments that are especially promising for reducing acute lesion expansion following traumatic spinal cord injury (SCI): riluzole, systemic hypothermia, and glibenclamide. Each has demonstrated efficacy in multiple studies with independent replication, but there is no way to compare them in terms of efficacy or safety, since different models were used, different laboratories were involved, and different outcomes were evaluated. Here, using a model of lower cervical hemicord contusion, we compared safety and efficacy for the three treatments, administered beginning 4 h after trauma. Treatment-associated mortality was 30% (3/10), 30% (3/10), 12.5% (1/8), and 0% (0/7) in the control, riluzole, hypothermia, and glibenclamide groups, respectively. For survivors, all three treatments showed overall favorable efficacy, compared with controls. On open-field locomotor scores (modified Basso, Beattie, and Bresnahan scores), hypothermia- and glibenclamide-treated animals were largely indistinguishable throughout the study, whereas riluzole-treated rats underperformed for the first two weeks; during the last four weeks, scores for the three treatments were similar, and significantly different from controls. On beam balance, hypothermia and glibenclamide treatments showed significant advantages over riluzole. After trauma, rats in the glibenclamide group rapidly regained a normal pattern of weight gain that differed markedly and significantly from that in all other groups. Lesion volumes at six weeks were: 4.8±0.7, 3.5±0.4, 3.1±0.3 and 2.5±0.3 mm3 in the control, riluzole, hypothermia, and glibenclamide groups, respectively; measurements of spared spinal cord tissue confirmed these results. Overall, in terms of safety and efficacy, systemic hypothermia and glibenclamide were superior to riluzole.
Collapse
Affiliation(s)
- Hillary Hosier
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - David Peterson
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Kaspar Keledjian
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Bradley R Smith
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | | | - Phillip G Popovich
- 2 Center for Brain and Spinal Cord Repair, the Ohio State University , Columbus, Ohio
| | - J Marc Simard
- 3 Departments of Neurosurgery, Pathology and Physiology, University of Maryland , Baltimore, Maryland
| |
Collapse
|
19
|
Popovich PG, Tovar CA, Lemeshow S, Yin Q, Jakeman LB. Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Exp Neurol 2014; 261:97-108. [PMID: 24999028 PMCID: PMC4194241 DOI: 10.1016/j.expneurol.2014.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 12/31/2022]
Abstract
The goal of the current manuscript was to replicate published data that show intrathecal infusions of Taxol® (paclitaxel), an anti-neoplastic microtubule stabilizing agent, reduce fibrogliotic scarring caused by a dorsal spinal hemisection (DHx) injury and increase functional recovery and growth of serotonergic axons after moderate spinal contusion injury. These experiments were completed as part of an NIH-NINDS contract entitled "Facilities of Research Excellence in Spinal Cord Injury (FORE-SCI) - Replication". Here, data are presented that confirm the anti-scarring effects of Taxol after DHx injury; however, Taxol did not confer neuroprotection or promote serotonergic axon growth nor did it improve functional recovery in a model of moderate spinal contusion injury. Thus, only partial replication was achieved. Possible explanations for disparate results in our studies and published data are discussed.
Collapse
Affiliation(s)
- Phillip G Popovich
- Center for Brain and Spinal Cord Repair, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - C Amy Tovar
- Center for Brain and Spinal Cord Repair, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stanley Lemeshow
- Division of Biostatistics, The Ohio State University, College of Public Health, Columbus, OH, USA
| | - Qin Yin
- Center for Brain and Spinal Cord Repair, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Lyn B Jakeman
- Center for Brain and Spinal Cord Repair, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Lemmon VP, Abeyruwan S, Visser U, Bixby JL. Facilitating transparency in spinal cord injury studies using data standards and ontologies. Neural Regen Res 2014; 9:6-7. [PMID: 25206736 PMCID: PMC4146316 DOI: 10.4103/1673-5374.125322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vance P Lemmon
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA ; Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA ; Center for Computational Science, University of Miami, Miami, FL 33146, USA
| | - Saminda Abeyruwan
- Center for Computational Science, University of Miami, Miami, FL 33146, USA ; Department of Computer Science, University of Miami, Miami, FL 33146, USA
| | - Ubbo Visser
- Center for Computational Science, University of Miami, Miami, FL 33146, USA ; Department of Computer Science, University of Miami, Miami, FL 33146, USA
| | - John L Bixby
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA ; Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA ; Center for Computational Science, University of Miami, Miami, FL 33146, USA ; Department of Molecular & Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
21
|
Anthony DC, Couch Y. The systemic response to CNS injury. Exp Neurol 2014; 258:105-11. [PMID: 25017891 DOI: 10.1016/j.expneurol.2014.03.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Inflammation within the brain or spinal cord has the capacity to damage neurons and is known to contribute to long-term disability in a spectrum of central nervous system (CNS) pathologies. However, there is a more profound increase in the recruitment of potentially damaging populations of leukocytes to the spinal cord than to the brain after equivalent injuries. Increased levels of inflammatory cytokines and chemokines in the spinal cord underpin this dissimilarity after injury, which also appears to be very sensitive to processes that operate within organs distant from the primary injury site such as the liver, lung and spleen. Indeed, CNS injury per se can generate profound changes in gene expression and the cellularity of these organs, which, as a consequence, gives rise to secondary organ damage. Our understanding of the local inflammatory processes that can damage neurons is becoming clearer, but our understanding of how the peripheral immune system coordinates the response to CNS injury and how any concomitant infections or injury might impact on the outcome of CNS injury is not so well developed. It is clear that the orientation of the response to peripheral challenges, be it a pro- or anti-inflammatory effect, appears to be dependent on the nature and timing of events. Here, the importance of the inter-relationship between inflammation in the CNS and the consequent inflammatory response in peripheral tissues is highlighted.
Collapse
Affiliation(s)
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Li WC, Jiang R, Jiang DM, Zhu FC, Su B, Qiao B, Qi XT. Lipopolysaccharide preconditioning attenuates apoptotic processes and improves neuropathologic changes after spinal cord injury in rats. Int J Neurosci 2013; 124:585-92. [PMID: 24205811 DOI: 10.3109/00207454.2013.864289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have shown earlier that administration of low-dose lipopolysaccharide (LPS) significantly contributed to recovery of motor function after traumatic spinal cord injury in the adult female rat. Using the same standardized animal model, we have now designed a set of experiments to test the hypothesis that LPS preconditioning attenuates stress-related apoptotic processes early after spinal cord trauma. The lower thoracic spinal cord injury in adult female Sprague-Dawley rats was caused by a 10 g weight rod drop from 25 mm on the dural surface of the exposed spinal cord at T10. The rats were randomly assigned to three groups: Sham injury, control (received normal saline alone), and LPS preconditioning (0.2 mg/kg, ip; 72 h prior to the injury). The animals were euthanized at 72 h postinjury. Neuropathologic changes were assessed using hematoxylin and eosin staining. SCI-induced apoptosis were observed by transmission electron microscopy. Caspase-3, cleaved caspase-3, Bax, and Bcl-2 were examined with immunohistochemistry or Western blotting. Compared with the control group, LPS preconditioning group showed significant improvement in the SCI-induced morphology changes. Furthermore, LPS preconditioning reduced the expressions of apoptotic markers caspase-3, cleaved caspase-3, and Bax, upregulated the expression of antiapoptotic marker Bcl-2 in the samples of spinal cord. Low-dose LPS attenuated the recruitment of inflammatory cells and the proliferation of glial cells in the site of injury. LPS preconditioning has neuroprotective effects against TSCI in rats due to its antiapoptosis properties as shown by the inhibition of caspase pathway and the upregulation of antiapoptotic protein.
Collapse
Affiliation(s)
- Wei-Chao Li
- 1Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30:1311-24. [PMID: 23731227 DOI: 10.1089/neu.2012.2651] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting 270,000 people in the United States. A potential treatment for decreasing the secondary inflammation, excitotoxic damage, and neuronal apoptosis associated with SCI, is the anti-inflammatory cytokine interleukin-10. The best characterized effects of IL-10 are anti-inflammatory-it downregulates pro-inflammatory species interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor-α, interferon-γ, matrix metalloproteinase-9, nitric oxide synthase, myeloperoxidase, and reactive oxygen species. Pro-apoptotic factors cytochrome c, caspase 3, and Bax are downregulated by IL-10, whereas anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X, B-cell lymphoma-extra large (Bcl-xl) are upregulated by IL-10. IL-10 also provides trophic support to neurons through the IL-10 receptor. Increased tissue sparing, functional recovery, and neuroprotection are seen with an immediate post-SCI systemic administration of IL-10. Treatment of SCI with IL-10 has been used successfully in combination with Schwann cell and olfactory glial cell grafts, as well as methylprednisolone. Minocycline, tetramethylpyrazine, and hyperbaric oxygen treatment all increase IL-10 levels in a SCI models and result in increased tissue sparing and functional recovery. A chronic systemic administration of IL-10 does not appear to be beneficial to SCI recovery and causes increased susceptibility to septicemia, pneumonia, and peripheral neuropathy. However, a localized upregulation of IL-10 has been shown to be beneficial and can be achieved by herpes simplex virus gene therapy, injection of poliovirus replicons, or surgical placement of a slow-release compound. IL-10 shows promise as a treatment for SCI, although research on local IL-10 delivery timeline and dosage needs to be expanded.
Collapse
Affiliation(s)
- Colton D Thompson
- Department of Neurological Surgery, University of Wisconsin , Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
24
|
Domercq M, Vázquez-Villoldo N, Matute C. Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 2013; 7:49. [PMID: 23626522 PMCID: PMC3630369 DOI: 10.3389/fncel.2013.00049] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 01/09/2023] Open
Abstract
Microglial cells are the resident immune cells of the central nervous system. In the resting state, microglia are highly dynamic and control the environment by rapidly extending and retracting motile processes. Microglia are closely associated with astrocytes and neurons, particularly at the synapses, and more recent data indicate that neurotransmission plays a role in regulating the morphology and function of surveying/resting microglia, as they are endowed with receptors for most known neurotransmitters. In particular, microglia express receptors for ATP and glutamate, which regulate microglial motility. After local damage, the release of ATP induces microgliosis and activated microglial cells migrate to the site of injury, proliferate, and phagocytose cells, and cellular compartments. However, excessive activation of microglia could contribute to the progression of chronic neurodegenerative diseases, though the underlying mechanisms are still unclear. Microglia have the capacity to release a large number of substances that can be detrimental to the surrounding neurons, including glutamate, ATP, and reactive oxygen species. However, how altered neurotransmission following acute insults or chronic neurodegenerative conditions modulates microglial functions is still poorly understood. This review summarizes the relevant data regarding the role of neurotransmitter receptors in microglial physiology and pathology.
Collapse
Affiliation(s)
- María Domercq
- Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU Leioa, Spain ; Achucarro Basque Center for Neuroscience-UPV/EHU Zamudio, Spain ; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas Leioa, Spain
| | | | | |
Collapse
|
25
|
|
26
|
Reddy SS, Leitman IM. Pharmacotherapy for traumatic spinal cord injury: the science behind the promise. J Surg Res 2012; 181:222-4. [PMID: 22459293 DOI: 10.1016/j.jss.2012.02.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Sanjay S Reddy
- Department of Surgery, Albert Einstein College of Medicine-Beth Israel Medical Center, 10 Union Square East, New York, New York 10003, USA
| | | |
Collapse
|