1
|
Shi Y, Xie J, Jiang J, Yan X, Chen X, Hong S, Liu J, Xu G, Su H, Chen W, Wang N, Lin X. A Homoplasmic MT-TV Mutation Associated with Mitochondrial Inheritance of Hereditary Spastic Paraplegia. Mov Disord 2025; 40:168-173. [PMID: 39468830 DOI: 10.1002/mds.30048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb weakness and spasticity, with unknown genetic cause in many cases. OBJECTIVES To identify novel genetic causes of HSP. METHODS Phenotypic characterization, genetic screening, transcriptome sequencing, and peroneal nerve biopsy were conducted in a Chinese HSP family. RESULTS We found a homoplasmic MT-TV (mitochondrial tRNAVal) mutation, m.1661A > G, present in all affected individuals across four generations of a family with complex HSP. Fourth-generation affected individuals displayed earlier onset, likely due to presumptive anticipation, and greater symptom severity, potentially caused by decreased mitochondrial DNA (mtDNA) copy number. Upregulation of mitochondrial autophagy genes in these patients suggested that MT-TV mutations could lead to reduced mtDNA copy number. Neural biopsies revealed ultrastructural abnormalities in myelin and mitochondria. CONCLUSIONS The rare MT-TV m.1661A > G mutation is associated with HSP. Variations in mtDNA copy number may play a causal role in differences among clinical phenotypes. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Junhao Xie
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junyi Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Yan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuejiao Chen
- Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Shunyan Hong
- Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Jiyuan Liu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huizhen Su
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
3
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
4
|
Lan MY, Lu CS, Wu SL, Chen YF, Sung YF, Tu MC, Chang YY. Clinical and genetic characterization of a Taiwanese cohort with spastic paraparesis combined with cerebellar involvement. Front Neurol 2022; 13:1005670. [PMID: 36247768 PMCID: PMC9563621 DOI: 10.3389/fneur.2022.1005670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower-limb spasticity. Cerebellar ataxia commonly co-occurs with complicated HSPs. HSP with concurrent cerebellar ataxia has significant clinical and genetic overlaps with hereditary cerebellar ataxia (HCA) and other inherited neurological diseases, adding to the challenge of planning genetic testing for the disease. In this study, we characterized clinical features of a cohort of 24 patients (male/female: 15/9) from 22 families who presented spastic paraparesis combined with cerebellar involvement, with a median disease onset age 20.5 (range 5–53) years. Aside from the core phenotype, 18 (75%) patients had additional neuropsychiatric and systemic manifestations. A stepwise genetic testing strategy stratified by mode of inheritance, distinct neuroimaging features (e.g., thin corpus callosum), population-specific prevalence and whole-exome sequencing was utilized to investigate the genetic etiology. Causative mutations in up to 10 genes traditionally related to HSP, HCA and other neurogenetic diseases (autosomal recessive spastic ataxia of Charlevoix-Saguenay, neurodegeneration with brain iron accumulation, and progressive encephalopathy with brain atrophy and thin corpus callosum) were detected in 16 (73%) of the 22 pedigrees. Our study revealed the genetic complexity of HSP combined with cerebellar involvement. In contrast to the marked genetic diversity, the functions of the causative genes are restricted to a limited number of physiological themes. The functional overlap might reflect common underlying pathogenic mechanisms, to which the corticospinal tract and cerebellar neuron circuits may be especially vulnerable.
Collapse
Affiliation(s)
- Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
- Department of Neurology, Landseed International Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yung-Yee Chang
| |
Collapse
|
5
|
Van de Vondel L, De Winter J, Beijer D, Coarelli G, Wayand M, Palvadeau R, Pauly MG, Klein K, Rautenberg M, Guillot-Noël L, Deconinck T, Vural A, Ertan S, Dogu O, Uysal H, Brankovic V, Herzog R, Brice A, Durr A, Klebe S, Stock F, Bischoff AT, Rattay TW, Sobrido MJ, De Michele G, De Jonghe P, Klopstock T, Lohmann K, Zanni G, Santorelli FM, Timmerman V, Haack TB, Züchner S, Schüle R, Stevanin G, Synofzik M, Basak AN, Baets J. De Novo and Dominantly Inherited SPTAN1 Mutations Cause Spastic Paraplegia and Cerebellar Ataxia. Mov Disord 2022; 37:1175-1186. [PMID: 35150594 DOI: 10.1002/mds.28959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giulia Coarelli
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Melanie Wayand
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Robin Palvadeau
- Koc University, School of Medicine, Suna and Inan Kirac Foundation, Istanbul, Turkey
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katrin Klein
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Maren Rautenberg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Léna Guillot-Noël
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Tine Deconinck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Atay Vural
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | - Sibel Ertan
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | - Okan Dogu
- Department of Neurology, School of Medicine, Mersin University, Mersin, Turkey
| | - Hilmi Uysal
- Department of Neurology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Vesna Brankovic
- Clinic for Child Neurology and Psychiatry, University of Belgrade, Belgrade, Serbia
| | - Rebecca Herzog
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Alexis Brice
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Friedrich Stock
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | | | - Tim W Rattay
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - María-Jesús Sobrido
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Peter De Jonghe
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Giovanni Stevanin
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France.,Paris Sciences Lettres Research University, Ecole Pratique des Hautes Etudes, Paris, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - A Nazli Basak
- Koc University, School of Medicine, Suna and Inan Kirac Foundation, Istanbul, Turkey
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
Lemire G, Ito YA, Marshall AE, Chrestian N, Stanley V, Brady L, Tarnopolsky M, Curry CJ, Hartley T, Mears W, Derksen A, Rioux N, Laflamme N, Hutchison HT, Pais LS, Zaki MS, Sultan T, Dane AD, Gleeson JG, Vaz FM, Kernohan KD, Bernard G, Boycott KM, Boycott KM. ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies. Am J Hum Genet 2021; 108:2017-2023. [PMID: 34587489 DOI: 10.1016/j.ajhg.2021.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
7
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
8
|
Behrendt L, Hoischen C, Kaether C. Disease-causing mutated ATLASTIN 3 is excluded from distal axons and reduces axonal autophagy. Neurobiol Dis 2021; 155:105400. [PMID: 34019998 DOI: 10.1016/j.nbd.2021.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/27/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022] Open
Abstract
Mutations in the ER-network forming GTPase atlastin3 (ATL3) can cause axon degeneration of sensory neurons by not fully understood mechanisms. We here show that the hereditary sensory and autonomous neuropathy (HSAN)-causing ATL3 Y192C or P338R are excluded from distal axons by a barrier at the axon initial segment (AIS). This barrier is selective for mutated ATL3, but not wildtype ATL3 or unrelated ER-membrane proteins. Actin-depolymerization partially restores the transport of ATL3 Y192C into distal axons. The results point to the existence of a selective diffusion barrier in the ER membrane at the AIS, analogous to the AIS-based barriers for plasma membrane and cytosolic proteins. Functionally, the absence of ATL3 at the distal axon reduces axonal autophagy and the ER network deformation in the soma causes a reduction in axonal lysosomes. Both could contribute to axonal degeneration and eventually to HSAN.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz-Institut für Alternsforschung-Fritz-Lipmann-Institut, 07745 Jena, Germany
| | - Christian Hoischen
- Leibniz-Institut für Alternsforschung-Fritz-Lipmann-Institut, 07745 Jena, Germany
| | - Christoph Kaether
- Leibniz-Institut für Alternsforschung-Fritz-Lipmann-Institut, 07745 Jena, Germany.
| |
Collapse
|
9
|
Frasquet M, Rojas-García R, Argente-Escrig H, Vázquez-Costa JF, Muelas N, Vílchez JJ, Sivera R, Millet E, Barreiro M, Díaz-Manera J, Turon-Sans J, Cortés-Vicente E, Querol L, Ramírez-Jiménez L, Martínez-Rubio D, Sánchez-Monteagudo A, Espinós C, Sevilla T, Lupo V. Distal hereditary motor neuropathies: Mutation spectrum and genotype-phenotype correlation. Eur J Neurol 2021; 28:1334-1343. [PMID: 33369814 DOI: 10.1111/ene.14700] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of disorders characterized by degeneration of the motor component of peripheral nerves. Currently, only 15% to 32.5% of patients with dHMN are characterized genetically. Additionally, the prevalence of these genetic disorders is not well known. Recently, biallelic mutations in the sorbitol dehydrogenase gene (SORD) have been identified as a cause of dHMN, with an estimated frequency in undiagnosed cases of up to 10%. METHODS In the present study, we included 163 patients belonging to 108 different families who were diagnosed with a dHMN and who underwent a thorough genetic screening that included next-generation sequencing and subsequent Sanger sequencing of SORD. RESULTS Most probands were sporadic cases (62.3%), and the most frequent age of onset of symptoms was 2 to 10 years (28.8%). A genetic diagnosis was achieved in 37/108 (34.2%) families and 78/163 (47.8%) of all patients. The most frequent cause of distal hereditary motor neuropathies were mutations in HSPB1 (10.4%), GARS1 (9.8%), BICD2 (8.0%), and DNAJB2 (6.7%) genes. In addition, 3.1% of patients were found to be carriers of biallelic mutations in SORD. Mutations in another seven genes were also identified, although they were much less frequent. Eight new pathogenic mutations were detected, and 17 patients without a definite genetic diagnosis carried variants of uncertain significance. The calculated minimum prevalence of dHMN was 2.3 per 100,000 individuals. CONCLUSIONS This study confirms the genetic heterogeneity of dHMN and that biallelic SORD mutations are a cause of dHMN in different populations.
Collapse
Affiliation(s)
- Marina Frasquet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Ricard Rojas-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Herminia Argente-Escrig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Juan Jesús Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Rafael Sivera
- Department of Neurology, Hospital Francesc de Borja, Gandía, Spain
| | - Elvira Millet
- Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Marisa Barreiro
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jordi Díaz-Manera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Janina Turon-Sans
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Cortés-Vicente
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramírez-Jiménez
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Dolores Martínez-Rubio
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| |
Collapse
|
10
|
Mutations in heat shock protein beta-1 (HSPB1) are associated with a range of clinical phenotypes related to different patterns of motor neuron dysfunction: A case series. J Neurol Sci 2020; 413:116809. [DOI: 10.1016/j.jns.2020.116809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
|
11
|
Alirezaei Z, Pourhanifeh MH, Borran S, Nejati M, Mirzaei H, Hamblin MR. Neurofilament Light Chain as a Biomarker, and Correlation with Magnetic Resonance Imaging in Diagnosis of CNS-Related Disorders. Mol Neurobiol 2020; 57:469-491. [PMID: 31385229 PMCID: PMC6980520 DOI: 10.1007/s12035-019-01698-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
The search for diagnostic and prognostic biomarkers for neurodegenerative conditions is of high importance, since these disorders may present difficulties in differential diagnosis. Biomarkers with high sensitivity and specificity are required. Neurofilament light chain (NfL) is a unique biomarker related to axonal damage and neural cell death, which is elevated in a number of neurological disorders, and can be detected in cerebrospinal fluid (CSF), as well as blood, serum, or plasma samples. Although the NfL concentration in CSF is higher than that in blood, blood measurement may be easier in practice due to its lesser invasiveness, reproducibility, and convenience. Many studies have investigated NfL in both CSF and serum/plasma as a potential biomarker of neurodegenerative disorders. Neuroimaging biomarkers can also potentially improve detection of CNS-related disorders at an early stage. Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) are sensitive techniques to visualize neuroaxonal loss. Therefore, investigating the combination of NfL levels with indices extracted from MRI and DTI scans could potentially improve diagnosis of CNS-related disorders. This review summarizes the evidence for NfL being a reliable biomarker in the early detection and disease management in several CNS-related disorders. Moreover, we highlight the correlation between MRI and NfL and ask whether they can be combined.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Ortega RPM, Rosemberg S. Reply. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:598. [PMID: 31508690 DOI: 10.1590/0004-282x20190102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Affiliation(s)
| | - Sérgio Rosemberg
- Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo SP, Brasil
- Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo SP, Brasil
| |
Collapse
|
13
|
Park J, Oh HM, Park HJ, Cho AR, Lee DW, Jang JH, Jang DH. Usefulness of comprehensive targeted multigene panel sequencing for neuromuscular disorders in Korean patients. Mol Genet Genomic Med 2019; 7:e00947. [PMID: 31475473 PMCID: PMC6785438 DOI: 10.1002/mgg3.947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Multigene panel sequencing (MGPS) is the first-line option in diagnostic testing for genetically heterogeneous but clinically similar conditions, such as neuromuscular disorders (NMDs). In this study, we aimed to assess the utility of comprehensive NMD MGPS and the need for updated panels. METHODS All patients were analyzed by either of two versions of the NMD MGPS and by chromosomal microarray and karyotype testing. Four patients with negative NMD MGPS results underwent whole exome sequencing. RESULTS In total, 91 patients were enrolled, and a genetic diagnosis was made in 36 (39.6%); of these, 33 were diagnosed by the comprehensive NMD MGPS, two were confirmed by chromosomal microarray, and one was diagnosed by whole exome sequencing. For MGPS, the diagnostic yield of Version 2 (19/52; 36.5%) was a little higher than that of Version 1 (14/39; 35.9%), and one gene identified in Version 2 was not included in Version 1. A total of 36 definitive and nine possible causative variants were identified, of which 17 were novel. CONCLUSION A more comprehensive panel for NMD MGPS can improve the diagnostic efficiency in genetic testing. The rapid discovery of new disease-causing genes over recent years necessitates updates to existing gene panels.
Collapse
Affiliation(s)
- Jihye Park
- Department of Rehabilitation Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ah-Ra Cho
- Department of Rehabilitation Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Eggermann K, Gess B, Häusler M, Weis J, Hahn A, Kurth I. Hereditary Neuropathies. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:91-97. [PMID: 29478438 DOI: 10.3238/arztebl.2018.0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hereditary peripheral neuropathies constitute a large group of genetic diseases, with an overall prevalence of 1:2500. In recent years, the use of so-called next-generation sequencing (NGS) has led to the identification of many previously unknown involved genes and genetic defects that cause neuropathy. In this article, we review the procedures and utility of genetic evaluation for hereditary neurop - athies, while also considering the implications of the fact that causally directed treatment of these disorders is generally unavailable. METHODS This review is based on pertinent publications retrieved by a PubMed search employing the search terms "hereditary neuropathy," "Charcot-Marie-Tooth disease," "hereditary sensory neuropathy," and "hereditary motor neuropathy." RESULTS With rare exceptions, the diagnostic evaluation for hereditary neuropathies proceeds in stepwise fashion, beginning with the study of individual genes. If this fails to detect any abnormality, NGS analysis, which involves the sequencing of many different genes in parallel and has now become available for routine diagnosis, should be performed early on in the diagnostic work-up. Exome and genome analyses are currently performed only when considered to be indicated in the individual case. Whenever a hereditary neuropathy is suspected, other (including potentially treatable) causes of neuropathy should be ruled out. Mutations in neurop athy-associated genes may also be associated with other clinical entities such as spastic paraplegia or myopathy. Thus, interdisciplinary assessment is necessary. CONCLUSION The molecular diagnosis of neuropathies has become much more successful through the use of NGS. Although causally directed treatment approaches still need to be developed, the correct diagnosis puts an end to the often highly stressful search for a cause and enables determination of the risk of disease in other members of the patient's family.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Uniklinik RWTH Aachen; Department of Neurology, Uniklinik RWTH Aachen; Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Uniklinik RWTH Aachen; Department of Neuropediatrics, Developmental Medicine and Epileptology, Children's Medical Center; Giessen, University of Giessen; Institute of Neuropathology, Uniklinik RWTH Aachen
| | | | | | | | | | | |
Collapse
|
15
|
Bermúdez-Guzmán L, Leal A. DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Transl Neurodegener 2019; 8:14. [PMID: 31110700 PMCID: PMC6511134 DOI: 10.1186/s40035-019-0156-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
- Neuroscience Research Center, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
16
|
El-Bazzal L, Rihan K, Bernard-Marissal N, Castro C, Chouery-Khoury E, Desvignes JP, Atkinson A, Bertaux K, Koussa S, Lévy N, Bartoli M, Mégarbané A, Jabbour R, Delague V. Loss of Cajal bodies in motor neurons from patients with novel mutations in VRK1. Hum Mol Genet 2019; 28:2378-2394. [DOI: 10.1093/hmg/ddz060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot–Marie–Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system.
Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease’.
Collapse
Affiliation(s)
- Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Khalil Rihan
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | - Eliane Chouery-Khoury
- Unité de Génétique Médicale, Université Saint Joseph, Campus des Sciences Médicales, Beirut, Lebanon
| | | | | | - Karine Bertaux
- Medical Genetics, Biological Resource Center—Tissue, DNA, Cells, CRB TAC, La Timone Children’s Hospital, Marseille, France
| | - Salam Koussa
- Department of Neurology, Lebanese University Hospital-Geitaoui, Beirut, Lebanon
| | - Nicolas Lévy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Children’s Hospital La Timone, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - André Mégarbané
- Centre Médical et Psychopédagogique, Beirut, Lebanon
- Institut Jérôme Lejeune, Paris, France
| | - Rosette Jabbour
- Neurology Division, Department of Internal Medicine, St George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | | |
Collapse
|
17
|
Behrendt L, Kurth I, Kaether C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 2019; 76:1433-1445. [PMID: 30666337 PMCID: PMC6420906 DOI: 10.1007/s00018-019-03010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
Atlastins (ATLs) are membrane-bound GTPases involved in shaping of the endoplasmic reticulum (ER). Mutations in ATL1 and ATL3 cause spastic paraplegia and hereditary sensory neuropathy. We here show that the sensory neuropathy causing ATL3 Y192C mutation reduces the complexity of the tubular ER-network. ATL3 Y192C delays ER-export by reducing the number of ER exit sites, reduces autophagy, fragments the Golgi and causes malformation of the nucleus. In cultured primary neurons, ATL3 Y192C does not localize to the growing axon, resulting in axon growth deficits. Patient-derived fibroblasts possess a tubular ER with reduced complexity and have a reduced number of autophagosomes. The data suggest that the disease-causing ATL3 Y192C mutation affects multiple ER-related pathways, possibly as a consequence of the distorted ER morphology.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
18
|
Ortega RPM, Rosemberg S. Hereditary spastic paraplegia: a clinical and epidemiological study of a Brazilian pediatric population. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:10-18. [PMID: 30758437 DOI: 10.1590/0004-282x20180153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
Abstract
AIMS To investigate hereditary spastic paraplegia (HSP) in a pediatric Brazilian sample. METHODS Epidemiological, clinical, radiological and laboratory data were analyzed in 35 patients. RESULTS Simple HSP (HSP-S) was detected in 12 patients, and complicated HSP (HSP-C) was detected in 23 patients. The mean age of onset of symptoms was 2.9 years in HSP-S and 1.6 years in HSP-C (p = 0.023). The disease was more severe in HSP-C. There were no differences in sex, ethnic background, or family history between groups. Intellectual disability was the most frequent finding associated with HSP-C. Peripheral axonal neuropathy was found in three patients. In the HSP-C group, MRI was abnormal in 13 patients. The MRI abnormalities included nonspecific white matter lesions, cerebellar atrophy, thinning of the corpus callosum and the "ear of the lynx sign". CONCLUSIONS In children with spastic paraplegia, HSP must be considered whenever similar pathologies, mainly diplegic cerebral palsy, are ruled out.
Collapse
Affiliation(s)
| | - Sérgio Rosemberg
- Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo SP, Brasil.,Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo SP, Brasil
| |
Collapse
|
19
|
A network biology approach to unraveling inherited axonopathies. Sci Rep 2019; 9:1692. [PMID: 30737464 PMCID: PMC6368620 DOI: 10.1038/s41598-018-37119-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
Inherited axonopathies represent a spectrum of disorders unified by the common pathological mechanism of length-dependent axonal degeneration. Progressive axonal degeneration can lead to both Charcot-Marie-Tooth type 2 (CMT2) and Hereditary Spastic Paraplegia (HSP) depending on the affected neurons: peripheral motor and sensory nerves or central nervous system axons of the corticospinal tract and dorsal columns, respectively. Inherited axonopathies display an extreme degree of genetic heterogeneity of Mendelian high-penetrance genes. High locus heterogeneity is potentially advantageous to deciphering disease etiology by providing avenues to explore biological pathways in an unbiased fashion. Here, we investigate ‘gene modules’ in inherited axonopathies through a network-based analysis of the Human Integrated Protein-Protein Interaction rEference (HIPPIE) database. We demonstrate that CMT2 and HSP disease proteins are significantly more connected than randomly expected. We define these connected disease proteins as ‘proto-modules’ and show the topological relationship of these proto-modules by evaluating their overlap through a shortest-path based measurement. In particular, we observe that the CMT2 and HSP proto-modules significantly overlapped, demonstrating a shared genetic etiology. Comparison of both modules with other diseases revealed an overlapping relationship between HSP and hereditary ataxia and between CMT2 + HSP and hereditary ataxia. We then use the DIseAse Module Detection (DIAMOnD) algorithm to expand the proto-modules into comprehensive disease modules. Analysis of disease modules thus obtained reveals an enrichment of ribosomal proteins and pathways likely central to inherited axonopathy pathogenesis, including protein processing in the endoplasmic reticulum, spliceosome, and mRNA processing. Furthermore, we determine pathways specific to each axonopathy by analyzing the difference of the axonopathy modules. CMT2-specific pathways include glycolysis and gluconeogenesis-related processes, while HSP-specific pathways include processes involved in viral infection response. Unbiased characterization of inherited axonopathy disease modules will provide novel candidate disease genes, improve interpretation of candidate genes identified through patient data, and guide therapy development.
Collapse
|
20
|
Vaeth S, Christensen R, Dunø M, Lildballe DL, Thorsen K, Vissing J, Svenstrup K, Hertz JM, Andersen H, Jensen UB. Genetic analysis of Charcot-Marie-Tooth disease in Denmark and the implementation of a next generation sequencing platform. Eur J Med Genet 2019; 62:1-8. [DOI: 10.1016/j.ejmg.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
|
21
|
Beetz C, Khundadze M, Goldberg LV, Hübner CA. Erbliche spastische Spinalparalysen: aktuelle Erkenntnisse und Entwicklungen. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zusammenfassung
Die erblichen spastischen Spinalparalysen („hereditary spastic paraplegias“, HSPs) sind Bewegungsstörungen, die aus der Degeneration der Axone oberer Motoneuronen resultieren. Sie sind klinisch und genetisch sehr heterogen. Der vorliegende Übersichtsartikel fasst aktuelle Strategien zur genetischen Diagnostik der HSPs zusammen, erörtert mögliche Mutationsmechanismen, diskutiert Erklärungen für die klinische Variabilität innerhalb ausgewählter Formen und verweist auf noch ungeklärte und zum Teil wenig beachtete Phänomene. Außerdem wird die Notwendigkeit eines tieferen Verständnisses der zellulären und molekularen Mechanismen für die Entwicklung neuer Therapien dargestellt.
Collapse
Affiliation(s)
- Christian Beetz
- Aff1 0000 0000 8517 6224 grid.275559.9 Institut für Klinische Chemie und Laboratoriumsdiagnostik Universitätsklinikum Jena Jena Deutschland
| | - Mukhran Khundadze
- Aff2 0000 0000 8517 6224 grid.275559.9 Institut für Humangenetik Universitätsklinikum Jena Am Klinikum 1 07747 Jena Deutschland
| | - Lisa V. Goldberg
- Aff1 0000 0000 8517 6224 grid.275559.9 Institut für Klinische Chemie und Laboratoriumsdiagnostik Universitätsklinikum Jena Jena Deutschland
| | - Christian A. Hübner
- Aff2 0000 0000 8517 6224 grid.275559.9 Institut für Humangenetik Universitätsklinikum Jena Am Klinikum 1 07747 Jena Deutschland
| |
Collapse
|
22
|
Mukherjee R, Majumder P, Chakrabarti O. MGRN1-mediated ubiquitination of α-tubulin regulates microtubule dynamics and intracellular transport. Traffic 2017; 18:791-807. [PMID: 28902452 DOI: 10.1111/tra.12527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022]
Abstract
MGRN1-mediated ubiquitination of α-tubulin regulates microtubule stability and mitotic spindle positioning in mitotic cells. This study elucidates the effect of MGRN1-mediated ubiquitination of α-tubulin in interphase cells. Here, we show that MGRN1-mediated ubiquitination regulates dynamics of EB1-labeled plus ends of microtubules. Intracellular transport of mitochondria and endosomes are affected in cultured cells where functional MGRN1 is depleted. Defects in microtubule-dependent organellar transport are evident in cells where noncanonical K6-mediated ubiquitination of α-tubulin by MGRN1 is compromised. Loss of MGRN1 has been previously correlated with late-onset spongiform neurodegeneration. Mislocalised cytosolically exposed PrP (Ctm PrP) interacts with MGRN1 leading to its loss of function. Expression of Ctm PrP generating mutants of PrP[PrP(A117V) and PrP(KHII)] lead to decrease in MGRN1-mediated ubiquitination of α-tubulin and intracellular transport defects. Brain lysates from PrP(A117V) transgenic mice also indicate loss of tubulin polymerization as compared to non-transgenic controls. Depletion of MGRN1 activity may hamper physiologically important processes like mitochondrial movement in neuronal processes and intracellular transport of ligands through the endosomal pathway thereby contributing to the pathogenesis of neurodegeneration in certain types of prion diseases.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Priyanka Majumder
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
23
|
Nakayama T, Wu J, Galvin-Parton P, Weiss J, Andriola MR, Hill RS, Vaughan DJ, El-Quessny M, Barry BJ, Partlow JN, Barkovich AJ, Ling J, Mochida GH. Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy. Hum Mutat 2017; 38:1348-1354. [PMID: 28493438 DOI: 10.1002/humu.23250] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 02/03/2023]
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases ligate amino acids to specific tRNAs and are essential for protein synthesis. Although alanyl-tRNA synthetase (AARS) is a synthetase implicated in a wide range of neurological disorders from Charcot-Marie-Tooth disease to infantile epileptic encephalopathy, there have been limited data on their pathogenesis. Here, we report loss-of-function mutations in AARS in two siblings with progressive microcephaly with hypomyelination, intractable epilepsy, and spasticity. Whole-exome sequencing identified that the affected individuals were compound heterozygous for mutations in AARS gene, c.2067dupC (p.Tyr690Leufs*3) and c.2738G>A (p.Gly913Asp). A lymphoblastoid cell line developed from one of the affected individuals showed a strong reduction in AARS abundance. The mutations decrease aminoacylation efficiency by 70%-90%. The p.Tyr690Leufs*3 mutation also abolished editing activity required for hydrolyzing misacylated tRNAs, thereby increasing errors during aminoacylation. Our study has extended potential mechanisms underlying AARS-related disorders to include destabilization of the protein, aminoacylation dysfunction, and defective editing activity.
Collapse
Affiliation(s)
- Tojo Nakayama
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, Texas
| | | | - Jody Weiss
- Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, New York
| | - Mary R Andriola
- Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, New York
| | - R Sean Hill
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts
| | - Dylan J Vaughan
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts
| | - Malak El-Quessny
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts
| | - Brenda J Barry
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, Texas.,Graduate School of Biomedical Sciences, Houston, Texas
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
Lavie J, Serrat R, Bellance N, Courtand G, Dupuy JW, Tesson C, Coupry I, Brice A, Lacombe D, Durr A, Stevanin G, Darios F, Rossignol R, Goizet C, Bénard G. Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum Mol Genet 2017; 26:674-685. [PMID: 28007911 DOI: 10.1093/hmg/ddw425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/07/2023] Open
Abstract
Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.
Collapse
Affiliation(s)
- Julie Lavie
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Román Serrat
- University of Bordeaux, 33077 Bordeaux, France.,INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France
| | - Nadège Bellance
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Gilles Courtand
- University of Bordeaux, 33077 Bordeaux, France.,INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Jean-William Dupuy
- University of Bordeaux, 33077 Bordeaux, France.,Plateforme Protéome, Centre de Génomique Fonctionnelle, F-33000 Bordeaux, France
| | - Christelle Tesson
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Isabelle Coupry
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Didier Lacombe
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Alexandra Durr
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Giovanni Stevanin
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Fréderic Darios
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Rodrigue Rossignol
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Cyril Goizet
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Giovanni Bénard
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
25
|
Yin X, Kidd GJ, Ohno N, Perkins GA, Ellisman MH, Bastian C, Brunet S, Baltan S, Trapp BD. Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 2017; 215:531-542. [PMID: 27872255 PMCID: PMC5119941 DOI: 10.1083/jcb.201607099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
The authors show that central nervous system myelin lacking proteolipid protein (PLP) induces mitochondrial dysfunction, including altered motility, degeneration, and ectopic smooth endoplasmic reticulum interactions, leading to axonal structural defects and degeneration. Mutated PLP occurs in hereditary spastic paraplegia, and these cellular effects provide potential insight into the pathology of the disease. Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P0 (P0-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria–SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria–SER associations were reduced by 86% in 1-mo-old P0-CNS juxtaparanodal axoplasm. 1-mo-old P0-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal axonal ovoids were prominent at 6 mo. These data support juxtaparanodal mitochondrial degeneration, reduced mitochondria–SER associations, and reduced ATP production as causes of axonal ovoid formation and axonal degeneration.
Collapse
Affiliation(s)
- Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Grahame J Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
| | - Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
26
|
Geuens T, De Winter V, Rajan N, Achsel T, Mateiu L, Almeida-Souza L, Asselbergh B, Bouhy D, Auer-Grumbach M, Bagni C, Timmerman V. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. Acta Neuropathol Commun 2017; 5:5. [PMID: 28077174 PMCID: PMC5225548 DOI: 10.1186/s40478-016-0407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3′- and 5′-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.
Collapse
|
27
|
Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Front Mol Neurosci 2016; 9:55. [PMID: 27458342 PMCID: PMC4935692 DOI: 10.3389/fnmol.2016.00055] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies.
Collapse
Affiliation(s)
- Robert A. Kozol
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Alexander J. Abrams
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - David M. James
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Elena Buglo
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - Qing Yan
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | | |
Collapse
|
28
|
Werheid F, Azzedine H, Zwerenz E, Bozkurt A, Moeller MJ, Lin L, Mull M, Häusler M, Schulz JB, Weis J, Claeys KG. Underestimated associated features in CMT neuropathies: clinical indicators for the causative gene? Brain Behav 2016; 6:e00451. [PMID: 27088055 PMCID: PMC4782242 DOI: 10.1002/brb3.451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth neuropathy (CMT) is a genetically heterogeneous group of peripheral neuropathies. In addition to the classical clinical phenotype, additional features can occur. METHODS We studied a wide range of additional features in a cohort of 49 genetically confirmed CMT patients and performed a systematic literature revision. RESULTS Patients harbored a PMP22 gene alteration (n = 28) or a mutation in MPZ (n = 11), GJB1 (n = 4), LITAF (n = 2), MFN2 (n = 2), INF2 (n = 1), NEFL (n = 1). We identified four novel mutations (3 MPZ, 1 GJB1). A total of 88% presented at least one additional feature. In MPZ patients, we detected hypertrophic nerve roots in 3/4 cases that underwent spinal MRI, and pupillary abnormalities in 27%. In our cohort, restless legs syndrome (RLS) was present in 18%. We describe for the first time RLS associated with LITAF or MFN2 and predominant upper limb involvement with LITAF. Cold-induced hand cramps occurred in 10% (PMP22,MPZ,MFN2), and autonomous nervous system involvement in 18% (PMP22,MPZ, LITAF,MFN2). RLS and respiratory insufficiency were mostly associated with severe neuropathy, and pupillary abnormalities with mild to moderate neuropathy. CONCLUSIONS In CMT patients, additional features occur frequently. Some of them might be helpful in orienting genetic diagnosis. Our data broaden the clinical spectrum and genotype-phenotype associations with CMT.
Collapse
Affiliation(s)
- Friederike Werheid
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Hamid Azzedine
- Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Eva Zwerenz
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Ahmet Bozkurt
- Department of Plastic and Reconstructive Surgery Hand Surgery-Burn Center University Hospital RWTH Aachen Aachen Germany; Department of Plastic & Aesthetic, Reconstructive & Hand Surgery Center for Reconstructive Microsurgery and Peripheral Nerve Surgery (ZEMPEN) Agaplesion Markus Hospital Frankfurt am Main Germany
| | - Marcus J Moeller
- Section Immunology and Nephrology Department of Internal Medicine University Hospital RWTH Aachen Aachen Germany
| | - Lilian Lin
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Michael Mull
- Department of Neuroradiology University Hospital RWTH Aachen Aachen Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics Department of Pediatrics University Hospital RWTH Aachen Aachen Germany
| | - Jörg B Schulz
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; JARA - Translational Brain Medicine Aachen Germany
| | - Joachim Weis
- Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Kristl G Claeys
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany; Department of Neurology University Hospitals Leuven and University of Leuven (KU Leuven) Leuven Belgium
| |
Collapse
|
29
|
Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, Janssens S. Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 2016; 131:505-23. [PMID: 26744348 PMCID: PMC4789254 DOI: 10.1007/s00401-015-1528-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022]
Abstract
There is a growing appreciation that membrane-bound organelles in eukaryotic cells communicate directly with one another through direct membrane contact sites. Mitochondria-associated membranes are specialized subdomains of the endoplasmic reticulum that function as membrane contact sites between the endoplasmic reticulum and mitochondria. These sites have emerged as major players in lipid metabolism and calcium signaling. More recently also autophagy and mitochondrial dynamics have been found to be regulated at ER-mitochondria contact sites. Neurons critically depend on mitochondria-associated membranes as a means to exchange metabolites and signaling molecules between these organelles. This is underscored by the fact that genes affecting mitochondrial and endoplasmic reticulum homeostasis are clearly overrepresented in several hereditary neurodegenerative disorders. Conversely, the processes affected by the contact sites between the endoplasmic reticulum and mitochondria are widely implicated in neurodegeneration. This review will focus on the most recent data addressing the structural composition and function of the mitochondria-associated membranes. In addition, the 3D morphology of the contact sites as observed using volume electron microscopy is discussed. Finally, it will highlight the role of several key proteins associated with these contact sites that are involved not only in dementias, amyotrophic lateral sclerosis and Parkinson's disease, but also in axonopathies such as hereditary spastic paraplegia and Charcot-Marie-Tooth disease.
Collapse
|
30
|
Dutta S, Rieche F, Eckl N, Duch C, Kretzschmar D. Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function. Dis Model Mech 2015; 9:283-94. [PMID: 26634819 PMCID: PMC4826977 DOI: 10.1242/dmm.022236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) or its vertebrate orthologue neuropathy target esterase (NTE), respectively, cause progressive neuronal degeneration in Drosophila and mice and a complex syndrome in humans that includes mental retardation, spastic paraplegia and blindness. SWS and NTE are widely expressed in neurons but can also be found in glia; however, their function in glia has, until now, remained unknown. We have used a knockdown approach to specifically address SWS function in glia and to probe for resulting neuronal dysfunctions. This revealed that loss of SWS in pseudocartridge glia causes the formation of multi-layered glial whorls in the lamina cortex, the first optic neuropil. This phenotype was rescued by the expression of SWS or NTE, suggesting that the glial function is conserved in the vertebrate protein. SWS was also found to be required for the glial wrapping of neurons by ensheathing glia, and its loss in glia caused axonal damage. We also detected severe locomotion deficits in glial sws-knockdown flies, which occurred as early as 2 days after eclosion and increased further with age. Utilizing the giant fibre system to test for underlying functional neuronal defects showed that the response latency to a stimulus was unchanged in knockdown flies compared to controls, but the reliability with which the neurons responded to increasing frequencies was reduced. This shows that the loss of SWS in glia impairs neuronal function, strongly suggesting that the loss of glial SWS plays an important role in the phenotypes observed in the sws mutant. It is therefore likely that changes in glia also contribute to the pathology observed in humans that carry mutations in NTE.
Collapse
Affiliation(s)
- Sudeshna Dutta
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR 97239, USA
| | - Franziska Rieche
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Nina Eckl
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Carsten Duch
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR 97239, USA
| |
Collapse
|
31
|
Sporadic hereditary motor and sensory neuropathies: Advances in the diagnosis using next generation sequencing technology. J Neurol Sci 2015; 359:409-17. [DOI: 10.1016/j.jns.2015.09.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/07/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022]
|
32
|
Montecchiani C, Pedace L, Lo Giudice T, Casella A, Mearini M, Gaudiello F, Pedroso JL, Terracciano C, Caltagirone C, Massa R, St George-Hyslop PH, Barsottini OGP, Kawarai T, Orlacchio A. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain 2015; 139:73-85. [PMID: 26556829 PMCID: PMC5839554 DOI: 10.1093/brain/awv320] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot-Marie-Tooth disease type 2H on chromosome 8q13-21.1 was excluded by linkage analysis. Pedigrees originated in Italy, Brazil, Canada, England, Iran, and Japan. Interestingly, we identified 15 ALS5/SPG11/KIAA1840 mutations in 12 families (two sequence variants were never reported before, p.Gln198* and p.Pro2212fs*5). No large deletions/duplications were detected in these patients. The novel mutations seemed to be pathogenic since they co-segregated with the disease in all pedigrees and were absent in 300 unrelated controls. Furthermore, in silico analysis predicted their pathogenic effect. Our results indicate that ALS5/SPG11/KIAA1840 is the causative gene of a wide spectrum of clinical features, including autosomal recessive axonal Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
| | - Lucia Pedace
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Temistocle Lo Giudice
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Antonella Casella
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Marzia Mearini
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | | | - José L Pedroso
- 3 Department of Neurology, Universidade Federal de São Paulo, Brazil
| | - Chiara Terracciano
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy 4 Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Santa Lucia, Rome, Italy
| | - Roberto Massa
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Peter H St George-Hyslop
- 5 Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada 6 Department of Medicine, University of Toronto, Toronto, Ontario, Canada 7 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Toshitaka Kawarai
- 8 Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Antonio Orlacchio
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
33
|
Sambuughin N, Goldfarb LG, Sivtseva TM, Davydova TK, Vladimirtsev VA, Osakovskiy VL, Danilova AP, Nikitina RS, Ylakhova AN, Diachkovskaya MP, Sundborger AC, Renwick NM, Platonov FA, Hinshaw JE, Toro C. Adult-onset autosomal dominant spastic paraplegia linked to a GTPase-effector domain mutation of dynamin 2. BMC Neurol 2015; 15:223. [PMID: 26517984 PMCID: PMC4628244 DOI: 10.1186/s12883-015-0481-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022] Open
Abstract
Background Hereditary Spastic Paraplegia (HSP) represents a large group of clinically and genetically heterogeneous disorders linked to over 70 different loci and more than 60 recognized disease-causing genes. A heightened vulnerability to disruption of various cellular processes inherent to the unique function and morphology of corticospinal neurons may account, at least in part, for the genetic heterogeneity. Methods Whole exome sequencing was utilized to identify candidate genetic variants in a four-generation Siberian kindred that includes nine individuals showing clinical features of HSP. Segregation of candidate variants within the family yielded a disease-associated mutation. Functional as well as in-silico structural analyses confirmed the selected candidate variant to be causative. Results Nine known patients had young-adult onset of bilateral slowly progressive lower-limb spasticity, weakness and hyperreflexia progressing over two-to-three decades to wheel-chair dependency. In the advanced stage of the disease, some patients also had distal wasting of lower leg muscles, pes cavus, mildly decreased vibratory sense in the ankles, and urinary urgency along with electrophysiological evidence of a mild distal motor/sensory axonopathy. Molecular analyses uncovered a missense c.2155C > T, p.R719W mutation in the highly conserved GTP-effector domain of dynamin 2. The mutant DNM2 co-segregated with HSP and affected endocytosis when expressed in HeLa cells. In-silico modeling indicated that this HSP-associated dynamin 2 mutation is located in a highly conserved bundle-signaling element of the protein while dynamin 2 mutations associated with other disorders are located in the stalk and PH domains; p.R719W potentially disrupts dynamin 2 assembly. Conclusion This is the first report linking a mutation in dynamin 2 to a HSP phenotype. Dynamin 2 mutations have previously been associated with other phenotypes including two forms of Charcot-Marie-Tooth neuropathy and centronuclear myopathy. These strikingly different pathogenic effects may depend on structural relationships the mutations disrupt. Awareness of this distinct association between HSP and c.2155C > T, p.R719W mutation will facilitate ascertainment of additional DNM2 HSP families and will direct future research toward better understanding of cell biological processes involved in these partly overlapping clinical syndromes.
Collapse
Affiliation(s)
- Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Uniformed Services University, Bethesda, MD, 20814, USA.
| | - Lev G Goldfarb
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, 20892, USA.
| | - Tatiana M Sivtseva
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Tatiana K Davydova
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Vsevolod A Vladimirtsev
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Vladimir L Osakovskiy
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Al'bina P Danilova
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Raisa S Nikitina
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Anastasia N Ylakhova
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Margarita P Diachkovskaya
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Anna C Sundborger
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Fishers Lane, Room 4S26, Bethesda, MD, 20892, USA.
| | - Neil M Renwick
- Department of Pathology and Molecular Medicine, Queen's University, Kingston General Hospital, Kingston, ON, K7L 3N6, Canada.
| | - Fyodor A Platonov
- Institute of Health, M.K. Ammosov North-Eastern Federal University, Sergelyakhskoe shosse 4 km, building C-2, Yakutsk, 677010, The Russian Federation.
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Fishers Lane, Room 4S26, Bethesda, MD, 20892, USA.
| | - Camilo Toro
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Novel mutations in genes causing hereditary spastic paraplegia and Charcot-Marie-Tooth neuropathy identified by an optimized protocol for homozygosity mapping based on whole-exome sequencing. Genet Med 2015; 18:600-7. [PMID: 26492578 DOI: 10.1038/gim.2015.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Homozygosity mapping is an effective approach for detecting molecular defects in consanguineous families by delineating stretches of genomic DNA that are identical by descent. Constant developments in next-generation sequencing created possibilities to combine whole-exome sequencing (WES) and homozygosity mapping in a single step. METHODS Basic optimization of homozygosity mapping parameters was performed in a group of families with autosomal-recessive (AR) mutations for which both single-nucleotide polymorphism (SNP) array and WES data were available. We varied the criteria for SNP extraction and PLINK thresholds to estimate their effect on the accuracy of homozygosity mapping based on WES. RESULTS Our protocol showed high specificity and sensitivity for homozygosity detection and facilitated the identification of novel mutations in GAN, GBA2, and ZFYVE26 in four families affected by hereditary spastic paraplegia or Charcot-Marie-Tooth disease. Filtering and mapping with optimized parameters was integrated into the HOMWES (homozygosity mapping based on WES analysis) tool in the GenomeComb package for genomic data analysis. CONCLUSION We present recommendations for detection of homozygous regions based on WES data and a bioinformatics tool for their identification, which can be widely applied for studying AR disorders.Genet Med 18 6, 600-607.
Collapse
|
35
|
Liu YT, Lee YC, Soong BW. What we have learned from the next-generation sequencing: Contributions to the genetic diagnoses and understanding of pathomechanisms of neurodegenerative diseases. J Neurogenet 2015; 29:103-12. [PMID: 26059699 DOI: 10.3109/01677063.2015.1060972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since its first availability in 2009, the next-generation sequencing (NGS) has been proved to be a powerful tool in identifying disease-associated variants in many neurological diseases, such as spinocerebellar ataxias, Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. Whole exome sequencing and whole genome sequencing are efficient for identifying variants in novel or unexpected genes responsible for inherited diseases, whereas targeted sequencing is useful in detecting variants in previously known disease-associated genes. The trove of genetic data yielded by NGS has made a significant impact on the clinical diagnoses while contributing hugely on the discovery of molecular pathomechanisms underlying these diseases. Nonetheless, elucidation of the pathogenic roles of the variants identified by NGS is challenging. Establishment of consensus guidelines and development of public genomic/phenotypic databases are thus vital to facilitate data sharing and validation.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- a Department of Neurology , Neurological Institute, Taipei Veterans General Hospital , Taipei , Taiwan.,b Departement of Neurology, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Yi-Chung Lee
- a Department of Neurology , Neurological Institute, Taipei Veterans General Hospital , Taipei , Taiwan.,b Departement of Neurology, National Yang-Ming University School of Medicine , Taipei , Taiwan.,c Brain Research Center, National Yang-Ming University , Taipei , Taiwan
| | - Bing-Wen Soong
- a Department of Neurology , Neurological Institute, Taipei Veterans General Hospital , Taipei , Taiwan.,b Departement of Neurology, National Yang-Ming University School of Medicine , Taipei , Taiwan.,c Brain Research Center, National Yang-Ming University , Taipei , Taiwan
| |
Collapse
|
36
|
Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol 2015; 262:2124-34. [PMID: 26100331 DOI: 10.1007/s00415-015-7727-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
Abstract
Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways.
Collapse
|
37
|
Abstract
Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | | |
Collapse
|
38
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This article focuses on recent advances in Charcot-Marie-Tooth disease, in particular additions to the genetic spectrum, novel paradigms in molecular techniques and an update on therapeutic strategies. RECENT FINDINGS Several new Charcot-Marie-Tooth disease-causing genes have been recently identified, further enlarging the genetic diversity and phenotypic variability, including: SBF1, DHTKD1, TFG, MARS, HARS, HINT1, TRIM1, AIFM1, PDK3 and GNB4. The increasing availability and affordability of next-generation sequencing technologies has ramped up gene discovery and drastically changed genetic screening strategies. All large-scale trials studying the effect of ascorbic acid in Charcot-Marie-Tooth 1A have now been completed and were negative. Efforts have been made to design more robust outcome-measures for clinical trials. Promising results with lonaprisan, curcumin and histone deacetylase 6 inhibitors have been obtained in animal models. SUMMARY Charcot-Marie-Tooth is the most common form of inherited peripheral neuropathy and represents the most prevalent hereditary neuromuscular disorder. The genetic spectrum spans more than 70 genes. Gene discovery has been revolutionized recently by new high-throughput molecular technologies. In addition, the phenotypic diversity has grown tremendously. This is a major challenge for geneticists and neurologists. No effective therapy is available for Charcot-Marie-Tooth. Several large trials with ascorbic acid were negative but research into novel compounds continues.
Collapse
Affiliation(s)
- Jonathan Baets
- aNeurogenetics Group bPeripheral Neuropathy Group, VIB-Department of Molecular Genetics cLaboratory of Neurogenetics, Institute Born-Bunge dDepartment of Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
40
|
Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, Antonellis A, Jordanova A, Scherer SS. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 2015; 84:2040-7. [PMID: 25904691 DOI: 10.1212/wnl.0000000000001583] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. METHODS We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. RESULTS All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. CONCLUSION A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes.
Collapse
Affiliation(s)
- William W Motley
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Laurie B Griffin
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Inès Mademan
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Jonathan Baets
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Els De Vriendt
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Peter De Jonghe
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Anthony Antonellis
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Albena Jordanova
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Steven S Scherer
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium.
| |
Collapse
|
41
|
Barneo-Muñoz M, Juárez P, Civera-Tregón A, Yndriago L, Pla-Martin D, Zenker J, Cuevas-Martín C, Estela A, Sánchez-Aragó M, Forteza-Vila J, Cuezva JM, Chrast R, Palau F. Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of charcot-marie-tooth neuropathy. PLoS Genet 2015; 11:e1005115. [PMID: 25860513 PMCID: PMC4393229 DOI: 10.1371/journal.pgen.1005115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.
Collapse
Affiliation(s)
- Manuela Barneo-Muñoz
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Paula Juárez
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Azahara Civera-Tregón
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Laura Yndriago
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - David Pla-Martin
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Carmen Cuevas-Martín
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Estela
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - María Sánchez-Aragó
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jerónimo Forteza-Vila
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Instituto Valenciano de Patología, Catholic University of Valencia, Valencia, Spain
| | - José M. Cuezva
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francesc Palau
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- University of Castilla-La Mancha School of Medicine at Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
42
|
Merkies ISJ, Faber CG, Lauria G. Advances in diagnostics and outcome measures in peripheral neuropathies. Neurosci Lett 2015; 596:3-13. [PMID: 25703220 DOI: 10.1016/j.neulet.2015.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 12/13/2022]
Abstract
Peripheral neuropathies are a group of acquired and hereditary disorders presenting with different distribution and nerve fiber class involvement. The overall prevalence is 2.4%, increasing to 8% in the elderly population. However, the frequency may vary depending on the underlying pathogenesis and association with systemic diseases. Distal symmetric polyneuropathy is the most common form, though multiple mononeuropathies, non-length dependent neuropathy and small fiber neuropathy can occur and may require specific diagnostic tools. The use of uniform outcome measures in peripheral neuropathies is important to improve the quality of randomized controlled trials, enabling comparison between studies. Recent developments in defining the optimal set of outcome measures in inflammatory neuropathies may serve as an example for other conditions. Diagnostic and outcome measure advances in peripheral neuropathies will be discussed.
Collapse
Affiliation(s)
- Ingemar S J Merkies
- Department of Neurology, Spaarne Hospital, Hoofddorp, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Lauria
- 3rd Neurology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy.
| |
Collapse
|
43
|
Copy number variations in a population-based study of Charcot-Marie-Tooth disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:960404. [PMID: 25648254 PMCID: PMC4306395 DOI: 10.1155/2015/960404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/13/2014] [Indexed: 12/14/2022]
Abstract
Copy number variations (CNVs) are important in relation to diversity and evolution but can sometimes cause disease. The most common genetic cause of the inherited peripheral neuropathy Charcot-Marie-Tooth disease is the PMP22 duplication; otherwise, CNVs have been considered rare. We investigated CNVs in a population-based sample of Charcot-Marie-Tooth (CMT) families. The 81 CMT families had previously been screened for the PMP22 duplication and point mutations in 51 peripheral neuropathy genes, and a genetic cause was identified in 37 CMT families (46%). Index patients from the 44 CMT families with an unknown genetic diagnosis were analysed by whole-genome array comparative genomic hybridization to investigate the entire genome for larger CNVs and multiplex ligation-dependent probe amplification to detect smaller intragenomic CNVs in MFN2 and MPZ. One patient had the pathogenic PMP22 duplication not detected by previous methods. Three patients had potentially pathogenic CNVs in the CNTNAP2, LAMA2, or SEMA5A, that is, genes related to neuromuscular or neurodevelopmental disease. Genotype and phenotype correlation indicated likely pathogenicity for the LAMA2 CNV, whereas the CNTNAP2 and SEMA5A CNVs remained potentially pathogenic. Except the PMP22 duplication, disease causing CNVs are rare but may cause CMT in about 1% (95% CI 0–7%) of the Norwegian CMT families.
Collapse
|
44
|
|
45
|
Cottenie E, Kochanski A, Jordanova A, Bansagi B, Zimon M, Horga A, Jaunmuktane Z, Saveri P, Rasic VM, Baets J, Bartsakoulia M, Ploski R, Teterycz P, Nikolic M, Quinlivan R, Laura M, Sweeney MG, Taroni F, Lunn MP, Moroni I, Gonzalez M, Hanna MG, Bettencourt C, Chabrol E, Franke A, von Au K, Schilhabel M, Kabzińska D, Hausmanowa-Petrusewicz I, Brandner S, Lim SC, Song H, Choi BO, Horvath R, Chung KW, Zuchner S, Pareyson D, Harms M, Reilly MM, Houlden H. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2. Am J Hum Genet 2014; 95:590-601. [PMID: 25439726 PMCID: PMC4225647 DOI: 10.1016/j.ajhg.2014.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022] Open
Abstract
Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Collapse
Affiliation(s)
- Ellen Cottenie
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrzej Kochanski
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Albena Jordanova
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Boglarka Bansagi
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Magdalena Zimon
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Vedrana Milic Rasic
- Clinic for Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jonathan Baets
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium; Laboratory of Neurogenetics, University of Antwerp, Antwerpen 2610, Belgium; Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Bartsakoulia
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafal Ploski
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Pawel Teterycz
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Milos Nikolic
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mary G Sweeney
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Disease IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael P Lunn
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Isabella Moroni
- Child Neurology Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael Gonzalez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Conceicao Bettencourt
- Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andre Franke
- Christian-Albrechts-University, 24118 Kiel, Germany
| | - Katja von Au
- SPZ Pediatric Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Irena Hausmanowa-Petrusewicz
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Siew Choo Lim
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673; Life Sciences Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 137-710, Korea
| | - Rita Horvath
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Ki-Wha Chung
- Department of Biological Science, Kongju National University, Chungnam 134-701, Korea
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
46
|
Hübner CA, Kurth I. Membrane-shaping disorders: a common pathway in axon degeneration. ACTA ACUST UNITED AC 2014; 137:3109-21. [PMID: 25281866 DOI: 10.1093/brain/awu287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with long projections are particularly liable to damage, which is reflected by a large group of hereditary neurodegenerative disorders that primarily affect these neurons. In the group of hereditary spastic paraplegias motor axons of the central nervous system degenerate, while distal pure motor neuropathies, Charcot-Marie-Tooth disorders and the group of hereditary sensory and autonomic neuropathies are characterized by degeneration of peripheral nerve fibres. Because the underlying pathologies share many parallels, the disorders are also referred to as axonopathies. A large number of genes has been associated with axonopathies and one of the emerging subgroups encodes membrane-shaping proteins with a central reticulon homology domain. Association of these proteins with lipid bilayers induces positive membrane curvature and influences the architecture of cellular organelles. Membrane-shaping proteins closely cooperate and directly interact with each other, but their structural features and localization to distinct subdomains of organelles suggests mutually exclusive roles. In some individuals a mutation in a shaping protein can result in upper motor neuron dysfunction, whereas in other patients it can lead to a degeneration of peripheral neurons. This suggests that membrane-shaping disorders might be considered as a continuous disease-spectrum of the axon.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
47
|
Bergamin G, Boaretto F, Briani C, Pegoraro E, Cacciavillani M, Martinuzzi A, Muglia M, Vettori A, Vazza G, Mostacciuolo ML. Mutation analysis of MFN2, GJB1, MPZ and PMP22 in Italian patients with axonal Charcot-Marie-Tooth disease. Neuromolecular Med 2014; 16:540-50. [PMID: 24819634 DOI: 10.1007/s12017-014-8307-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/19/2014] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth (CMT) diseases include a group of clinically heterogeneous inherited neuropathies subdivided into demyelinating (CMT1), axonal (CMT2) and intermediate CMT forms. CMTs are associated with different genes, although mutations in some of these genes may cause both clinical pictures. To date, more than 50 CMT genes have been identified, but more than half of the cases are due to mutations in MFN2, MPZ, GJB1 and PMP22. The aim of this study was to estimate the frequency of disease mutations of these four genes in the axonal form of CMT in order to evaluate their effectiveness in the molecular diagnosis of CMT2 patients. A cohort of 38 CMT2 Italian subjects was screened for mutations in the MFN2, MPZ and GJB1 genes by direct sequencing and for PMP22 rearrangements using the MLPA technique. Overall, we identified 15 mutations, 8 of which were novel: 11 mutations (28.9 %) were in the MFN2 gene, 2 (5.3 %) in MPZ and 2 (5.3 %) in PMP22. No mutations were found in GJB1. Two patients showed rearrangements in the PMP22 gene, which is commonly associated with CMT1 or HNPP phenotypes thus usually not tested in CMT2 patients. By including this gene in the analysis, we reached a molecular diagnosis rate of 39.5 %, which is one of the highest reported in the literature. Our findings confirm the MFN2 gene as the most common cause of CMT2 and suggest that PMP22 rearrangements should be considered in the molecular diagnosis of CMT2 patients.
Collapse
|
48
|
Gonzalez MA, Feely SM, Speziani F, Strickland AV, Danzi M, Bacon C, Lee Y, Chou TF, Blanton SH, Weihl CC, Zuchner S, Shy ME. A novel mutation in VCP causes Charcot-Marie-Tooth Type 2 disease. ACTA ACUST UNITED AC 2014; 137:2897-902. [PMID: 25125609 DOI: 10.1093/brain/awu224] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mutations in VCP have been reported to account for a spectrum of phenotypes that include inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia, hereditary spastic paraplegia, and 1-2% of familial amyotrophic lateral sclerosis. We identified a novel VCP mutation (p.Glu185Lys) segregating in an autosomal dominant Charcot-Marie-Tooth disease type 2 family. Functional studies showed that the Glu185Lys variant impaired autophagic function leading to the accumulation of immature autophagosomes. VCP mutations should thus be considered for genetically undefined Charcot-Marie-Tooth disease type 2.
Collapse
Affiliation(s)
- Michael A Gonzalez
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shawna M Feely
- 2 Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Fiorella Speziani
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alleene V Strickland
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Matt Danzi
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Chelsea Bacon
- 2 Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Youjin Lee
- 3 Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Tsui-Fen Chou
- 4 Division of Medical Genetics, Department of Paediatrics, Harbor-UCLA Medical Centre and Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA
| | - Susan H Blanton
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Conrad C Weihl
- 3 Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Stephan Zuchner
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michael E Shy
- 2 Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
49
|
Sergeeva OA, Tran MT, Haase-Pettingell C, King JA. Biochemical characterization of mutants in chaperonin proteins CCT4 and CCT5 associated with hereditary sensory neuropathy. J Biol Chem 2014; 289:27470-80. [PMID: 25124038 DOI: 10.1074/jbc.m114.576033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hereditary sensory neuropathies are a class of disorders marked by degeneration of the nerve fibers in the sensory periphery neurons. Recently, two mutations were identified in the subunits of the eukaryotic cytosolic chaperonin TRiC, a protein machine responsible for folding actin and tubulin in the cell. C450Y CCT4 was identified in a stock of Sprague-Dawley rats, whereas H147R CCT5 was found in a human Moroccan family. As with many genetically identified mutations associated with neuropathies, the underlying molecular basis of the mutants was not defined. We investigated the biochemical properties of these mutants using an expression system in Escherichia coli that produces homo-oligomeric rings of CCT4 and CCT5. Full-length versions of both mutant protein chains were expressed in E. coli at levels approaching that of the WT chains. Sucrose gradient centrifugation revealed chaperonin-sized complexes of both WT and mutant chaperonins, but with reduced recovery of C450Y CCT4 soluble subunits. Electron microscopy of negatively stained samples of C450Y CCT4 revealed few ring-shaped species, whereas WT CCT4, H147R CCT5, and WT CCT5 revealed similar ring structures. CCT5 complexes were assayed for their ability to suppress aggregation of and refold the model substrate γd-crystallin, suppress aggregation of mutant huntingtin, and refold the physiological substrate β-actin in vitro. H147R CCT5 was not as efficient in chaperoning these substrates as WT CCT5. The subtle effects of these mutations are consistent with the homozygous disease phenotype, in which most functions are carried out during development and adulthood, but some selective function is lost or reduced.
Collapse
Affiliation(s)
- Oksana A Sergeeva
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Meme T Tran
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Cameron Haase-Pettingell
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan A King
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
50
|
Liu YT, Laurá M, Hersheson J, Horga A, Jaunmuktane Z, Brandner S, Pittman A, Hughes D, Polke JM, Sweeney MG, Proukakis C, Janssen JC, Auer-Grumbach M, Zuchner S, Shields KG, Reilly MM, Houlden H. Extended phenotypic spectrum of KIF5A mutations: From spastic paraplegia to axonal neuropathy. Neurology 2014; 83:612-9. [PMID: 25008398 DOI: 10.1212/wnl.0000000000000691] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To establish the phenotypic spectrum of KIF5A mutations and to investigate whether KIF5A mutations cause axonal neuropathy associated with hereditary spastic paraplegia (HSP) or typical Charcot-Marie-Tooth disease type 2 (CMT2). METHODS KIF5A sequencing of the motor-domain coding exons was performed in 186 patients with the clinical diagnosis of HSP and in 215 patients with typical CMT2. Another 66 patients with HSP or CMT2 with pyramidal signs were sequenced for all exons of KIF5A by targeted resequencing. One additional patient was genetically diagnosed by whole-exome sequencing. RESULTS Five KIF5A mutations were identified in 6 unrelated patients: R204W and D232N were novel mutations; R204Q, R280C, and R280H have been previously reported. Three patients had CMT2 as the predominant and presenting phenotype; 2 of them also had pyramidal signs. The other 3 patients presented with HSP but also had significant axonal neuropathy or other additional features. CONCLUSION This is currently the largest study investigating KIF5A mutations. By combining next-generation sequencing and conventional sequencing, we confirm that KIF5A mutations can cause variable phenotypes ranging from HSP to CMT2. The identification of mutations in CMT2 broadens the phenotypic spectrum and underlines the importance of KIF5A mutations, which involve degeneration of both the central and peripheral nervous systems and should be tested in HSP and CMT2.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Matilde Laurá
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Joshua Hersheson
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Alejandro Horga
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Zane Jaunmuktane
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Sebastian Brandner
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Alan Pittman
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Deborah Hughes
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - James M Polke
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Mary G Sweeney
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Christos Proukakis
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - John C Janssen
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Michaela Auer-Grumbach
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Stephan Zuchner
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Kevin G Shields
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Mary M Reilly
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL
| | - Henry Houlden
- From the MRC Centre for Neuromuscular Diseases (Y.-T.L., M.L., A.H., M.M.R., H.H.) and Departments of Molecular Neuroscience (Y.-T.L., J.H., A.H., A.P., D.H., M.M.R., H.H.) and Clinical Neuroscience (C.P.), UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery and UCLH (M.L., J.H., A.H., K.G.S., M.M.R., H.H.), London, UK; Section of Epilepsy (Y.-T.L.), Department of Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine (Y.-T.L.), Taipei, Taiwan; Division of Neuropathology (Z.J., S.B.) and Neurogenetics Unit (J.M.P, M.G.S.), National Hospital for Neurology and Neurosurgery; Department of Neurology (J.C.J.), Chelsea and Westminster Hospital, London, UK; Department of Orthopaedics (M.A.-G.), Medical University Vienna, Austria; and Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics (S.Z.), Miller School of Medicine, University of Miami, FL.
| |
Collapse
|