1
|
Awasthi VA, Dhankar V, Singh S. Novel therapeutic targets for reperfusion injury in ischemic stroke: Understanding the role of mitochondria, excitotoxicity and ferroptosis. Vascul Pharmacol 2024; 156:107413. [PMID: 39059676 DOI: 10.1016/j.vph.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Ischemic reperfusion injury (IRI) remains a significant challenge in various clinical settings, including stroke. Despite advances in reperfusion strategies, the restoration of blood flow to ischemic tissues often exacerbates tissue damage through a complex cascade of cellular and molecular events. In recent years, there has been growing interest in identifying novel therapeutic targets to ameliorate the detrimental effects of IRI and improve patient outcomes. This review critically evaluates emerging therapeutic targets and strategies for IRI management, such as R-spondin 3, neurolysin, glial cell gene therapy and inter alpha inhibitors. Diverse pathophysiology involved in IRI stroke such as oxidative stress, inflammation, mitochondrial dysfunction, and ferroptosis are also closely discussed. Additionally, we explored the intricate interplay between inflammation and IRI, focusing on cell-mediated gene therapy approaches and anti-inflammatory agents that hold promise for attenuating tissue damage. Moreover, we delve into novel strategies aimed at preserving endothelial function, promoting tissue repair, and enhancing cellular resilience to ischemic insults. Finally, we discuss challenges, future directions, and translational opportunities for the development of effective therapies targeting ischemic reperfusion injury.
Collapse
Affiliation(s)
- Vidhi Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
2
|
Liu YL, Xiang Z, Zhang BY, Zou YW, Chen GL, Yin L, Shi YL, Xu LL, Bi J, Wang Q. APOA5 alleviates reactive oxygen species to promote oxaliplatin resistance in PIK3CA-mutated colorectal cancer. Aging (Albany NY) 2024; 16:9410-9436. [PMID: 38848145 PMCID: PMC11210231 DOI: 10.18632/aging.205872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 06/09/2024]
Abstract
Although platinum-based chemotherapy is the frontline regimen for colorectal cancer (CRC), drug resistance remains a major challenge affecting its therapeutic efficiency. However, there is limited research on the correlation between chemotherapy resistance and lipid metabolism, including PIK3CA mutant tumors. In this present study, we found that PIK3CA-E545K mutation attenuated cell apoptosis and increased the cell viability of CRC with L-OHP treatment in vitro and in vivo. Mechanistically, PIK3CA-E545K mutation promoted the nuclear accumulation of SREBP1, which promoted the transcription of Apolipoprotein A5 (APOA5). APOA5 activated the PPARγ signaling pathway to alleviate reactive oxygen species (ROS) production following L-OHP treatment, which contributed to cell survival of CRC cells. Moreover, APOA5 overexpression enhanced the stemness-related traits of CRC cells. Increased APOA5 expression was associated with PIK3CA mutation in tumor specimens and poor response to first-line chemotherapy, which was an independent detrimental factor for chemotherapy sensitivity in CRC patients. Taken together, this study indicated that PIK3CA-E545K mutation promoted L-OHP resistance by upregulating APOA5 transcription in CRC, which could be a potent target for improving L-OHP chemotherapeutic efficiency. Our study shed light to improve chemotherapy sensitivity through nutrient management in CRC.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Bo-Ya Zhang
- China Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu-Wei Zou
- Department of Pathology, Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Yan-Long Shi
- Department of Oncology, 960 Hospital of People’s Liberation Army, Jinan 250031, China
| | - Li-Li Xu
- Department of Pathology, Navy 971 People’s Liberation Army Hospital, Qingdao 266071, China
| | - Jingwang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| |
Collapse
|
3
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
4
|
Lisco G, De Tullio A, Iovino M, Disoteo O, Guastamacchia E, Giagulli VA, Triggiani V. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023; 11:2993. [PMID: 38001993 PMCID: PMC10669051 DOI: 10.3390/biomedicines11112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine regulates several functions, such as voluntary movements, spatial memory, motivation, sleep, arousal, feeding, immune function, maternal behaviors, and lactation. Less clear is the role of dopamine in the pathophysiology of type 2 diabetes mellitus (T2D) and chronic complications and conditions frequently associated with it. This review summarizes recent evidence on the role of dopamine in regulating insular metabolism and activity, the pathophysiology of traditional chronic complications associated with T2D, the pathophysiological interconnection between T2D and chronic neurological and psychiatric disorders characterized by impaired dopamine activity/metabolism, and therapeutic implications. Reinforcing dopamine signaling is therapeutic in T2D, especially in patients with dopamine-related disorders, such as Parkinson's and Huntington's diseases, addictions, and attention-deficit/hyperactivity disorder. On the other hand, although specific trials are probably needed, certain medications approved for T2D (e.g., metformin, pioglitazone, incretin-based therapy, and gliflozins) may have a therapeutic role in such dopamine-related disorders due to anti-inflammatory and anti-oxidative effects, improvement in insulin signaling, neuroinflammation, mitochondrial dysfunction, autophagy, and apoptosis, restoration of striatal dopamine synthesis, and modulation of dopamine signaling associated with reward and hedonic eating. Last, targeting dopamine metabolism could have the potential for diagnostic and therapeutic purposes in chronic diabetes-related complications, such as diabetic retinopathy.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Michele Iovino
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Olga Disoteo
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| |
Collapse
|
5
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
6
|
Gerganova G, Riddell A, Miller AA. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol Ther 2022; 240:108220. [PMID: 35667516 DOI: 10.1016/j.pharmthera.2022.108220] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022]
Abstract
CNS border-associated macrophages (BAMs) are a small population of specialised macrophages localised in the choroid plexus, meningeal and perivascular spaces. Until recently, the function of this elusive cell type was poorly understood and largely overlooked, especially in comparison to microglia, the primary brain resident immune cell. However, the recent single cell immunophenotyping or transcriptomic analysis of BAM subsets in the homeostatic brain, coupled with the rapid emergence of new studies exploring BAM functions in various cerebral pathologies, including Alzheimer's disease, hypertension-induced neurovascular and cognitive dysfunction, and ischaemic stroke, has unveiled previously unrecognised heterogeneity and spatial-temporal complexity in BAM populations as well as their contributions to brain homeostasis and disease. In this review, we discuss the implications of this new-found knowledge on our current understanding of BAM function in ischaemic stroke. We first provide a comprehensive overview and discussion of the cell-surface expression profiles, transcriptional signatures and potential functional phenotypes of homeostatic BAM subsets described in recent studies. Evidence for their putative physiological roles is examined, including their involvement in immunological surveillance, waste clearance, and vascular permeability. We discuss the evidence supporting the accumulation and genetic transformation of BAMs in response to ischaemia and appraise the experimental evidence that BAM function might be deleterious in the acute phase of stroke, while considering the mechanisms by which BAMs may influence stroke outcomes in the longer term. Finally, we review the therapeutic potential of immunomodulatory strategies as an approach to stroke management, highlighting current challenges in the field and key issues relating to BAMs, and how BAMs could be harnessed experimentally to support future translational research.
Collapse
Affiliation(s)
- Gabriela Gerganova
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Alyson A Miller
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
7
|
Guo Y, Zuo W, Yin L, Gu T, Wang S, Fang Z, Wang B, Dong H, Hou W, Zuo Z, Deng J. Pioglitazone Attenuates Ischemic Stroke Aggravation By Blocking PPARγ Reduction and Inhibiting Chronic Inflammation in Diabetic Mice. Eur J Neurosci 2022; 56:4948-4961. [PMID: 35945686 DOI: 10.1111/ejn.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Diabetes can cause vascular remodeling and is associated with worse outcome after ischemic stroke. Pioglitazone is a commonly used anti-diabetic agent. However, it is not known whether pioglitazone use before ischemia could reduce brain ischemic injury. Pioglitazone was administered to 5-week-old db+ or db/db mice. Cerebral vascular remodeling was examined at the age of 9 weeks. Expression of peroxisome proliferator-activated receptor-γ (PPARγ), p-PPARγ (S112 and S273), nucleotide-binding domain (NOD)-like receptor protein 3 (Nlrp3), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was evaluated in the somatosensory cortex of mice. Neurological outcome was evaluated 24 h after brain ischemia. Results showed that early pioglitazone treatment provided a long-lasting effect of euglycemia but enhanced hyperlipidemia in the db/db mice. Diabetic mice exhibited increased vascular tortuosity, narrower middle cerebral artery (MCA) width and IgG leakage in the brain. These changes were blocked by early pioglitazone treatment. In diabetic animals, PPARγ expression was reduced and p-PPARγ at S273 but not S112, Nlrp3, IL-1β and TNF-α were increased in the somatosensory cortex. PPARγ decrease and Nlrp3 increase were mainly in the neurons of the diabetic brain, which was reversed by early pioglitazone treatment. Pioglitazone attenuated the aggravated neurological outcome after stroke in diabetic mice. But this protective effect was abolished through restoring cerebral inflammation by intracerebroventricular administration of IL-1β and TNF-α in pioglitazone treated diabetic mice before MCAO. In summary, early pioglitazone treatment attenuates cerebral vascular remodeling and ischemic brain injury possibly via blocking chronic neuroinflammation in the db/db mice.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bairen Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Vijikumar A, Saralkar P, Saylor SD, Sullivan PG, Huber JD, Geldenhuys WJ. Novel mitoNEET ligand NL-1 improves therapeutic outcomes in an aged rat model of cerebral ischemia/reperfusion injury. Exp Neurol 2022; 355:114128. [PMID: 35662609 DOI: 10.1016/j.expneurol.2022.114128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Cerebral ischemic stroke is a leading cause of mortality and disability worldwide. Currently, there are a lack of drugs capable of reducing neuronal cell loss due to ischemia/reperfusion-injury after stroke. Previously, we identified mitoNEET, a [2Fe-2S] redox mitochondrial protein, as a putative drug target for ischemic stroke. In this study, we tested NL-1, a novel mitoNEET ligand, in a preclinical model of ischemic stroke with reperfusion using aged female rats. Using a transient middle cerebral artery occlusion (tMCAO), we induced a 2 h ischemic injury and then evaluated the effects of NL-1 treatment on ischemic/reperfusion brain injury at 24 and 72 h. Test compounds were administered at time of reperfusion via intravenous dosing. Results of the study demonstrated that NL-1 (10 mg/kg) treatment markedly improved survival and reduced infarct volume and hemispheric swelling in the brain as compared aged rats treated with vehicle or a lower dose of NL-1 (0.25 mg/kg). Interestingly, the protective effect of NL-1 was significantly improved when encapsulated in PLGA nanoparticles, where a 40-fold lesser dose (0.25 mg/kg) of NL-1 produced an equivalent effect as the 10 mg/kg dose. Evaluation of changes in blood-brain barrier permeability and lipid peroxidation corroborated the protective actions of NL-1 (10 mg/kg) or NL-1 NP treatment demonstrated a reduced accumulation of parenchymal IgG, decreased levels of 4-hydroxynonenal (4-HNE) and a decreased TUNEL positive cells in the brains of aged female rats at 72 h after tMCAO with reperfusion. Our studies indicate that targeting mitoNEET following ischemia/reperfusion-injury is a novel drug target pathway that warrants further investigation.
Collapse
Affiliation(s)
- Aruvi Vijikumar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America
| | - Pushkar Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America
| | - Scott D Saylor
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal and Brain Injury Research Center, School of Medicine, University of Kentucky, Lexington, KY 40536, United States of America
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America.
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America; Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America
| |
Collapse
|
9
|
Wan H, Yang Y, Li Z, Cheng L, Ding Z, Wan H, Yang J, Zhou H. Compatibility of ingredients of Danshen (Radix Salviae Miltiorrhizae) and Honghua ( Flos Carthami) and their protective effects on cerebral ischemia-reperfusion injury in rats. Exp Ther Med 2021; 22:849. [PMID: 34149895 PMCID: PMC8210257 DOI: 10.3892/etm.2021.10281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Danshen (Radix Salviae Miltiorrhizae) and Honghua (Flos Carthami) (Danhong) are two drugs commonly prescribed together, which are often used in the treatment of cerebrovascular diseases in China. Due to the complexity of the ingredients of Danhong, the present study focused on performing the orthogonal compatibility method on the primary effective molecules of this drug: Tanshinol, salvianolic acid A, salvianolic acid B and hydroxysafflor yellow A. These four molecules were studied to determine their protective effects and to screen for the most compatible ingredients to improve cerebral ischemia-reperfusion injury (IR) in rats. Focal middle cerebral artery occlusion was performed to establish the cerebral IR model in rats. Male Sprague-Dawley rats were randomly divided into sham operation group, IR group and nine orthogonal administration groups with different ratios of Danhong effective ingredients and Danhong injection group. Neurological deficit score and cerebral infarction volume were measured postoperatively. Morphological pathological alterations were observed via H&E staining. Bcl-2 and Bax were quantified using ELISA. Immunohistochemistry was conducted to analyze the expression of caspase-3 in the hippocampus. The expression levels of cytochrome c, apoptotic peptidase activating factor 1 (apaf-1), caspase-9, caspase-3 and p53 mRNA in the hippocampus were assessed via reverse transcription-quantitative PCR. The results demonstrated that different compatibility groups significantly reduced the neurological function score and decreased the volume of cerebral infarct compared with the IR group. These groups were also indicated to improve the pathological damage to the brain tissue. In addition, certain compatibility groups significantly decreased the number of caspase-3 positive cells in the hippocampus and the expression levels of cytochrome c, apaf-1, caspase-9, caspase-3 and p53 mRNA in the brain tissue. Orthogonal group 4 (30 mg/kg tanshinol; 2.5 mg/kg salvianolic acid A; 16 mg/kg salvianolic acid B; 8 mg/kg hydroxysafflor yellow A) was indicated to be the most effective. The four effective ingredients of Danhong exhibited a protective effect on rats with cerebral IR injury, potentially through the inhibition of apoptosis via the downregulation of key targets upstream of the caspase-3 pathway. In addition, the present study provided novel insights for the continued study of the drug compatibility rules of TCM.
Collapse
Affiliation(s)
- Haoyu Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuting Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhiwei Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lan Cheng
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhishan Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
10
|
Ha J, Choi DW, Kim KY, Nam CM, Kim E. Pioglitazone use associated with reduced risk of the first attack of ischemic stroke in patients with newly onset type 2 diabetes: a nationwide nested case-control study. Cardiovasc Diabetol 2021; 20:152. [PMID: 34315501 PMCID: PMC8314540 DOI: 10.1186/s12933-021-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
Background Pioglitazone use is known to be associated with a reduced risk of recurrent stroke in patients with diabetes mellitus (DM) who have a history of stroke. However, it is unclear whether this benefit extends to patients without a history of stroke. We aimed to evaluate the association between pioglitazone use and development of first attack of ischemic stroke in patients with newly diagnosed type 2 DM. Methods Using longitudinal nationwide data from the 2002–2017 Korean National Health Insurance Service DM cohort, we analyzed the association between pioglitazone use and incidence of primary ischemic stroke using a nested case–control study. Among 128,171 patients with newly onset type 2 DM who were stroke-free at the time of DM diagnosis, 4796 cases of ischemic stroke were identified and matched to 23,980 controls based on age, sex, and the onset and duration of DM. The mean (standard deviation) follow-up time was 6.08 (3.34) years for the cases and controls. Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between ischemic stroke and pioglitazone use were analyzed by multivariable conditional logistic regression analyses adjusted for comorbidities, cardiometabolic risk profile, and other oral antidiabetic medications. Results Pioglitazone use was associated with a reduced risk of first attack of ischemic stroke (adjusted OR [AOR] 0.69, 95% CI 0.60–0.80) when compared with non-use. Notably, pioglitazone use was found to have a dose-dependent association with reduced rate of ischemic stroke emergence (first cumulative defined daily dose [cDDD] quartile AOR 0.99, 95% CI 0.74–1.32; second quartile, AOR 0.77, 95% CI 0.56–1.06; third quartile, AOR 0.51, 95% Cl 0.36–0.71; highest quartile, AOR 0.48, 95% CI 0.33–0.69). More pronounced risk reduction was found in patients who used pioglitazone for more than 2 years. A further stratified analysis revealed that pioglitazone use had greater protective effects in patients with risk factors for stroke, such as high blood pressure, obesity, and current smoking. Conclusions Pioglitazone use may have a preventive effect on primary ischemic stroke in patients with type 2 DM, particularly in those at high risk of stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01339-x.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Choi
- Department of Biostatistics, Yonsei University Graduate School of Public Health, Seoul, South Korea
| | - Keun You Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
CEBPA-AS1 Knockdown Alleviates Oxygen-Glucose Deprivation/Reperfusion-Induced Neuron Cell Damage by the MicroRNA 24-3p/BOK Axis. Mol Cell Biol 2021; 41:e0006521. [PMID: 34001648 DOI: 10.1128/mcb.00065-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebral ischemia/reperfusion (I/R) can lead to serious brain function impairments. Long noncoding RNA (lncRNA) CCAAT enhancer binding protein α antisense RNA 1 (CEBPA-AS1) was shown to be upregulated in human ischemic stroke. This study investigated the function and mechanism of CEBPA-AS1 in I/R. An oxygen-glucose deprivation/reperfusion (OGD/R) model was used to induce I/R injury in SH-SY5Y cells in vitro. RT-qPCR examined the expression of CEBPA-AS1, microRNA 24-3p (miR-24-3p), and Bcl-2-related ovarian killer (Bok). The cell viability, apoptosis, oxidative stress in OGD/R-treated cells were detected using CCK-8, flow cytometry, Western blotting, and enzyme-linked immunosorbent assays. The relationship among genes was tested by RNA pulldown and luciferase reporter assays. We found that OGD/R upregulated CEBPA-AS1 expression in SH-SY5Y cells. Functionally, CEBPA-AS1 depletion ameliorated OGD/R-induced apoptosis and oxidative stress in SH-SY5Y cells by reducing reactive oxygen species production and superoxide dismutase and glutathione. Mechanistic investigations indicated that CEBPA-AS1 acts as a sponge for miR-24-3p, and miR-24-3p binds to BOK. Moreover, miR-24-3p upregulation or BOK downregulation antagonized the protective role of CEBPA-AS1 depletion in SH-SY5Y cells exposed to OGD/R. Overall, downregulation of CEBPA-AS1 exerts protective functions against OGD/R-induced injury by targeting the miR-24-3p/BOK axis.
Collapse
|
12
|
Wu W, Wu G, Cao D. Acteoside Presents Protective Effects on Cerebral Ischemia/reperfusion Injury Through Targeting CCL2, CXCL10, and ICAM1. Cell Biochem Biophys 2021; 79:301-310. [PMID: 33439460 DOI: 10.1007/s12013-020-00965-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 11/26/2022]
Abstract
The objective of this study is to investigate the roles of acteoside (ACT) in cells with oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury and the underlying mechanisms. The differentially expressed genes (DEGs) in rats with middle cerebral artery occlusion were identified using GSE61616 data set. Kyoto Encyclopedia of Genes and Genomes pathway enrichment with the DEGs and the prediction of ACT's targets were conducted using The Comparative Toxicogenomics Database. The OGD/R model was established with bEnd.3 cells. Following that, bEnd.3 cells were treated by distinct concentrations of ACT and IL-10. The proliferation and apoptosis of cells were analyzed by cell counting kit-8 and flow cytometry assays, respectively. Western blot was used to check involved proteins. Herein, we identified CCL2, CXCL10, and ICAM1 as the targets of ACT, which were upregulated in tissues of MACO rats and cells with OGD/R-induced injury. ACT promoted the proliferation but reduce the apoptosis of cells with OGD/R-induced injury. Moreover, these effects of ACT were enhanced by IL-10. After being treated with ACT, IL-10, or ACT together with IL-10, the levels of CCL2, CXCL10, and ICAM1 were all decreased, whereas p-Stat3 was raised in cells with OGD/R-induced injury, while Stat3 expression presented no significant difference among groups. ACT protected cells against OGD/R-induced injury through regulating the IL-10/Stat3 signaling, indicating that ACT might be an effective therapy drug to lower cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Gang Wu
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong Province, PR China
| | - Deyan Cao
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
13
|
Neuroprotective and antioxidative effects of pioglitazone in brain tissue adjacent to the ischemic core are mediated by PI3K/Akt and Nrf2/ARE pathways. J Mol Med (Berl) 2021; 99:1073-1083. [PMID: 33864097 PMCID: PMC8313471 DOI: 10.1007/s00109-021-02065-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
Abstract The present study elucidates the neuroprotective mechanisms of the PPARγ (peroxisome proliferator-activated receptor γ) agonist pioglitazone in survival of ischemic neurons following middle cerebral artery occlusion with reperfusion (MCAO). Intracerebroventricular infusion of pioglitazone over 5 days before and 24 or 48 h after MCAO alleviated neurological impairments, inhibited apoptosis 24 h, and activated the PI3K/Akt pathway along with increased phosphorylation of Akt (ser473) and GSK-3β (ser9) in the peri-infarct cortical areas 48 h after MCAO. In primary cortical neurons, pioglitazone suppressed the glutamate-induced release of lactate dehydrogenase by a PPARγ-dependent mechanism. This protective effect was reversed after co-treatment with PI3K and Akt inhibitors, LY294002 and SH-6, respectively. Pioglitazone enhanced the expression of the antioxidative transcription factor Nrf2 and its target gene protein, heme oxidase-1, in the peri-infarct area. Pioglitazone also increased activation of the antioxidant response element (ARE) in neuronal PC12 cells transfected with the pNQO1-rARE plasmid. We demonstrate in primary cortical neurons from Nrf2 knockout mice that the lack of Nrf2 completely abolished the neuroprotective effects of pioglitazone against oxidative and excitotoxic damage. Our results strongly suggest that the neuroprotective effects of PPARγ in peri-infarct brain tissues comprise the concomitant activation of the PI3K/Akt and Nrf2/ARE pathways. Key messages Pioglitazone inhibits apoptosis in ischemic brain tissue. Pioglitazone acting on PPARγ activates PI3K/Akt pathway in ischemic brain tissue. Pioglitazone activates via Nrf2 the antioxidant defense pathway in injured neurons. Pioglitazone activates the antioxidant response element in neuronal PC12 cells. Pioglitazone fails to protect primary neurons lacking Nrf2 against oxidative damage. Activation of PPARγ supports the survival of viable neurons in peri-infarct regions.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02065-3.
Collapse
|
14
|
Zeng X, Zheng Y, Luo J, Liu H, Su W. A review on the chemical profiles, quality control, pharmacokinetic and pharmacological properties of Fufang Xueshuantong Capsule. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113472. [PMID: 33068651 DOI: 10.1016/j.jep.2020.113472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Xueshuantong Capsule (FXC) is a traditional Chinese medicine (TCM) formula composed of four herbs including Panax notoginseng, Astragalus membranaceus, Salvia miltiorrhiza, and Scrophularia ningpoensis. Long-term and extensive clinical applications have confirmed that FXC could exert significant effects on fundus, cardiovascular and cerebrovascular occlusive diseases. AIM OF THE REVIEW To systematically analyze and summarize the existing researches involving quality and efficacy re-evaluation of FXC, point out the typical problems, and further propose some opinions to contribute to future study. MATERIALS AND METHODS Literatures concerning FXC were collected from online scientific databases including China National Knowledge Infrastructure, WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link up to June 2020. All eligible studies are analyzed and summarized in this review. RESULTS This review outlines the chemical profiles, quality control, pharmacokinetic and pharmacological properties of FXC based on reported results. Some problems are pointed out for FXC: the quality control needs further improvement, the pharmacokinetic properties have not been comprehensively investigated, and in-depth and systematic mechanism researches are scarce. Hereon we propose several directions for future study: (a) establishment of feasible HPLC or LC-MS based quantitative methods for simultaneous determination of multiple components to monitor the overall quality; (b) pharmacokinetic studies concerning humans, drug-drug interactions, and correlation with pharmacodynamics; (c) pharmacological mechanism researches integrating multi-omics technologies (gut microbiome, metabolomics, etc.). CONCLUSIONS This review highlights the researches on quality and efficacy re-evaluation of FXC, and points out some typical problems. Further in-depth studies should focus on the promotion of quality control, pharmacokinetic properties, and pharmacological mechanism.
Collapse
Affiliation(s)
- Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Yuying Zheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Jianwen Luo
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Krinock MJ, Singhal NS. Diabetes, stroke, and neuroresilience: looking beyond hyperglycemia. Ann N Y Acad Sci 2021; 1495:78-98. [PMID: 33638222 DOI: 10.1111/nyas.14583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality among type 2 diabetic patients. Preclinical and translational studies have identified critical pathophysiological mediators of stroke risk, recurrence, and poor outcome in diabetic patients, including endothelial dysfunction and inflammation. Most clinical trials of diabetes and stroke have focused on treating hyperglycemia alone. Pioglitazone has shown promise in secondary stroke prevention for insulin-resistant patients; however, its use is not yet widespread. Additional research into clinical therapies directed at diabetic pathophysiological processes to prevent stroke and improve outcome for diabetic stroke survivors is necessary. Resilience is the process of active adaptation to a stressor. In patients with diabetes, stroke recovery is impaired by insulin resistance, endothelial dysfunction, and inflammation, which impair key neuroresilience pathways maintaining cerebrovascular integrity, resolving poststroke inflammation, stimulating neural plasticity, and preventing neurodegeneration. Our review summarizes the underpinnings of stroke risk in diabetes, the clinical consequences of stroke in diabetic patients, and proposes hypotheses and new avenues of research for therapeutics to stimulate neuroresilience pathways and improve stroke outcome in diabetic patients.
Collapse
Affiliation(s)
- Matthew J Krinock
- Department of Neurology, University of California - San Francisco, San Francisco, California
| | - Neel S Singhal
- Department of Neurology, University of California - San Francisco, San Francisco, California
| |
Collapse
|
16
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
17
|
Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S, Zhao D. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother 2020; 127:110151. [PMID: 32559840 DOI: 10.1016/j.biopha.2020.110151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/23/2023] Open
Abstract
Cepharanthine (CEP) is a potential candidate for treatment of cerebral ischemia/reperfusion (I/R) injury, due to its anti-inflammatory and anti-oxidative properties. To investigate the effect of CEP on cerebral I/R injury, we established a mouse model of transient middle cerebral artery occlusion (tMCAO) and a microglia cell model of oxygen and glucose deprivation/reoxygenation (OGD/R). Administration of CEP attenuated neurological deficits, reduced infarct volume and edema, and decreased microglia activation in MCAO mice. Immunofluorescence staining showed an up-regulation in NLR Family Pyrin Domain Containing 3 (NLRP3) immunoreactivity in Iba1-labled microglia together with total Iba1 and NLRP3 expression in the brain following tMCAO, while down-regulated by CEP treatment. In both tMCAO-induced mice and OGD/R-treated BV-2 cells, CEP exhibited dose-dependent inhibition on the expression of NLRP3, ASC and cleaved caspase-1. Importantly, CEP attenuated tMCAO or OGD/R-induced overproduction of M1 microglia-regulated pro-inflammation cytokines IL-1β and IL-18, suggesting that CEP might involve in suppressing microglia polarization to M1 phenotype in vivo and in vitro. Moreover, CEP dose-dependently inhibited tMCAO-induced arachidonate 15 lipoxygenase (ALOX15) together with Iba1-labled microglia. The subsequent ALOX15-mediated oxidative stress was decreased by CEP treatment in vivo and in vitro, as evidenced by reduced ROS generation and MDA level, and increased SOD activity. Taken together, we demonstrate that CEP attenuates cerebral I/R injury probably by inhibiting microglia activation and NLRP3 inflammasome-induced inflammation and reducing oxidative stress via suppressing 12/15-LOX signaling.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Xiangyu Piao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Yue Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Shanshan Liang
- Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Fang Han
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Qian Liang
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, People's Republic of China.
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China.
| |
Collapse
|
18
|
Pan H, Zhao F, Yang Y, Chang N. Overexpression of long non-coding RNA SNHG16 against cerebral ischemia-reperfusion injury through miR-106b-5p/LIMK1 axis. Life Sci 2020; 254:117778. [PMID: 32407850 DOI: 10.1016/j.lfs.2020.117778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/19/2020] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
Long non-coding RNA (LncRNA) involved in types of physiological insults and diseases via regulating the responses of complex molecular, including cerebral ischemia-reperfusion (I/R) injury. LncRNA SNHG16 played a potential role in ketamine-induced neurotoxicity. In this study, we utilized an in vitro cell model of I/R to examine the specific function and mechanism of LncRNA SNHG16 in oxygen-glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. After in vitro treatment of OGD/R, the lower the SH-SY5Y cell survival, the higher cell the apoptosis and increased caspase-3 activity was observed. Also, OGD/R induced endoplasmic reticulum stress (ERS) through increasing GRP78 and CHOP expressions and down-regulated LncRNA SNHG16 in SH-SY5Y cells. Conversely, LncRNA SNHG16 overexpression promoted OGD/R induced SH-SY5Y cell survival, suppressed its apoptosis, and caspase-3 activity. GRP78 and CHOP expressions were significantly suppressed in LncRNA SNHG16 overexpressing cells. MiR-106b-5p expression was increased and LIMK1 expression was down-regulated in OGD/R induced SH-SY5Y cells, and these effects were reversed by LncRNA SNHG16 overexpression, respectively. Moreover, LIMK1 is a direct target of MiR-106b-5p, and knockdown of LIMK1 reversed the effects of LncRNA SNHG16 on OGD/R-induced SH-SY5Y cells biology. Altogether, these results confirmed an important neuroprotection role of LncRNA SNHG16 in OGD/R induced SH-SY5Y cells injury, and miR-106b-5p/LIMK1 signal axis was involved in the action of LncRNA SNHG16.
Collapse
Affiliation(s)
- Haojun Pan
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Fangfang Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Yanmin Yang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Na Chang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China..
| |
Collapse
|
19
|
She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, Deng C, Liu X. Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112051. [PMID: 31279072 DOI: 10.1016/j.jep.2019.112051] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/29/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD) is used in classical traditional Chinese medicine to prevent and treat cerebral ischemia. Glycosides, which are effective components extracted from BYHWD, mainly include astragaloside IV, paeoniflorin, and amygdalin. These glycosides are the primary pharmacologically effective constituents of BYHWD that act against cerebral ischemic nerve injury; however, the mechanism of action of BYHWD is still unclear. AIM OF THE STUDY The present study aimed to determine the effect of BYHWD glycosides on pyroptosis after cerebral ischemia reperfusion injury and explore whether its mechanism involves the classical pyroptosis pathway mediated by NLRP3. MATERIAL AND METHODS Adult male Sprague-Dawley rats (n = 140) were randomly divided into seven groups: sham, cerebral ischemia and reperfusion (I/R), glycosides (0.064 g/kg, 0.128 g/kg, and 0.256 g/kg), BYHWD, and AC-YVAD-CMK (caspase-1 inhibitor). A rat model of cerebral I/R was established via classic middle cerebral artery occlusion (MCAO) for 2 h, followed by 24-h reperfusion. Neurological function was estimated using neurological defect scores. Brain infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and nerve cell damage was evaluated by Nissl staining. Pyroptosis was detected using TUNEL and caspase-1 immunofluorescence double staining. Protein expression of NLRP3, ASC, caspase-1, pro-caspase-1, and IL-1β was analyzed using Western blot analysis. RESULTS Glycosides improved neurological dysfunction, alleviated neuronal damage, and inhibited neuronal pyroptosis. The 0.128 g/kg glycosides group showed the most significant effects. Furthermore, we observed that this group showed significant inhibition of the expression of NLRP3, ASC, pro-caspase-1, caspase-1, and IL-1β proteins of the NLRP3-mediated classical pathway of pyroptosis. CONCLUSIONS Glycosides exert neuroprotective effects by inhibiting pyroptosis of neurons after cerebral I/R injury. The underlying mechanism of action is closely related to the regulation of the classical pyroptosis pathway by NLRP3.
Collapse
Affiliation(s)
- Yan She
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Le Shao
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, China.
| | - Yiren Zhang
- Pharmacy College,Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuxing Hao
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuan Cai
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhiwen Cheng
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Changqing Deng
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xinchun Liu
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, China.
| |
Collapse
|
20
|
Pioglitazone improves working memory performance when administered in chronic TBI. Neurobiol Dis 2019; 132:104611. [PMID: 31513844 DOI: 10.1016/j.nbd.2019.104611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability in the United States. Even in comparatively mild injuries, cognitive and behavioral symptoms can persist for years, and there are currently no established strategies for mitigating symptoms in chronic injury. A key feature of TBI-induced damage in acute and chronic injury is disruption of metabolic pathways. As neurotransmission, and therefore cognition, are highly dependent on the supply of energy, we hypothesized that modulating metabolic activity could help restore behavioral performance even when treatment was initiated weeks after TBI. We treated rats with pioglitazone, a FDA-approved drug for diabetes, beginning 46 days after lateral fluid percussion injury and tested working memory performance in the radial arm maze (RAM) after 14 days of treatment. Pioglitazone treated TBI rats performed significantly better in the RAM test than untreated TBI rats, and similarly to control animals. While hexokinase activity in hippocampus was increased by pioglitazone treatment, there was no upregulation of either the neuronal glucose transporter or hexokinase enzyme expression. Expression of glial markers GFAP and Iba-1 were also not influenced by pioglitazone treatment. These studies suggest that targeting brain metabolism, in particular hippocampal metabolism, may be effective in alleviating cognitive symptoms in chronic TBI.
Collapse
|
21
|
Bai M, Liu B, Peng M, Jia J, Fang X, Miao M. Effect of Sargentodoxa cuneata total phenolic acids on focal cerebral ischemia reperfusion injury rats model. Saudi J Biol Sci 2018; 26:569-576. [PMID: 30899173 PMCID: PMC6408703 DOI: 10.1016/j.sjbs.2018.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Explore the possible protective effect of Sargentodoxa cuneata total phenolic acids on cerebral ischemia reperfusion injury rats. Methods Focal cerebral ischemia reperfusion rats model were established by linear thrombus. Nimodipine group, Naoluotong group, the high, middle and low dose of Sargentodoxa cuneata total phenolic acids groups were given related drugs via intragastric administration before operation for seven days, once a day. At the same time sham operation group, and ischemia reperfusion group were given the same volume of physiological saline. One hour after the last administration, establish focal cerebral ischemia- reperfusion model in rats by thread method, and the thread was taken out after 2 h ischemia to achieve cerebral ischemia reperfusion injury in rats. After reperfusion for 24 h, the rats were given neurologic deficit score. The brain tissue was taken to measure the levels of IL-6, IL-1β, TNF-α, Bcl-2, Bax, Casp-3 and ICAM-1; HE staining observed histopathological changes in the hippocampus and cortical areas of the brain; Immunohistochemistry was used to observe the expression of NGF and NF-KBp65. Result Focal cerebral ischemia reperfusion rats model was copyed successed. Compared with model group, each dose group of Sargentodoxa cuneata total phenolic acids could decreased the neurologic deficit score (P < 0.05 or P < 0.01), decreased the levels of IL-6, IL-1β, ICAM-1, TNF-α, Bax and Caspase-3 in brain tissue (P < 0.05 or P < 0.01), increased the levels of IL-10, Bcl-2, NGF in brain tissue (P < 0.05 or P < 0.01), decreased the express of NF-KBp65 in brain (P < 0.05 or P < 0.01). Conclusion Sargentodoxa cuneata total phenolic acids can improve focal cerebral ischemia reperfusion injury rats tissue inflammation, apoptosis pathway, increase nutrition factor to protect the neurons, reduce the apoptosis of nerve cells, activate brain cells self-protect, improve the histopathological changes in the hippocampus and cortical areas of the brain, reduce cerebral ischemia reperfusion injury.
Collapse
Affiliation(s)
- Ming Bai
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baosong Liu
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengfan Peng
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Jia
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Fang
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingsan Miao
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
22
|
Surinkaew P, Sawaddiruk P, Apaijai N, Chattipakorn N, Chattipakorn SC. Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metab Brain Dis 2018; 33:1019-1030. [PMID: 29656335 DOI: 10.1007/s11011-018-0232-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/06/2018] [Indexed: 12/27/2022]
Abstract
Both cerebral and cardiac ischemia causes loss of cerebral blood flow, which may lead to neuronal cell damage, neurocognitive impairment, learning and memory difficulties, neurological deficits, and brain death. Although reperfusion is required immediately to restore the blood supply to the brain, it could lead to several detrimental effects on the brain. Several studies demonstrate that microglia activity increases following cerebral and cardiac ischemic/reperfusion (I/R) injury. However, the effects of microglial activation in the brain following I/R remains unclear. Some reports demonstrated that microglia were involved in neurodegeneration and oxidative stress generation, whilst others showed that microglia did not respond to I/R injury. Moreover, microglia are activated in a time-dependent manner, and in a specific brain region following I/R. Recently, several therapeutic approaches including pharmacological interventions and electroacupuncture showed the beneficial effects, while some interventions such as hyperthermia and hyperoxic resuscitation, demonstrated the deteriorated effects on the microglial activity after I/R. Therefore, the present review summarized and discussed those studies regarding the effects of global and focal cerebral as well as cardiac I/R injury on microglia activation, and the therapeutic interventions.
Collapse
Affiliation(s)
- Poomarin Surinkaew
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Lamphun Hospital, Lamphun, 51000, Thailand
| | - Passakorn Sawaddiruk
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
23
|
Wang JF, Mei ZG, Fu Y, Yang SB, Zhang SZ, Huang WF, Xiong L, Zhou HJ, Tao W, Feng ZT. Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway. Neural Regen Res 2018; 13:989-998. [PMID: 29926825 PMCID: PMC6022469 DOI: 10.4103/1673-5374.233441] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPK-mTOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-mTOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, mTOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin (50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and pS317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-mTOR and pS757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-mTOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jin-Feng Wang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Gang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Yang Fu
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, Hubei Province, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Shi-Zhong Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Wei-Feng Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Li Xiong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, China
| | - Wei Tao
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
24
|
Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke. Neural Plast 2017; 2017:5819514. [PMID: 29104807 PMCID: PMC5634612 DOI: 10.1155/2017/5819514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.
Collapse
|
25
|
Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important? Naunyn Schmiedebergs Arch Pharmacol 2017; 390:949-959. [PMID: 28669009 DOI: 10.1007/s00210-017-1395-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/16/2017] [Indexed: 12/25/2022]
Abstract
The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.
Collapse
|
26
|
The Transcription Factor IRF6 Co-Represses PPARγ-Mediated Cytoprotection in Ischemic Cerebrovascular Endothelial Cells. Sci Rep 2017; 7:2150. [PMID: 28526834 PMCID: PMC5438409 DOI: 10.1038/s41598-017-02095-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/18/2017] [Indexed: 12/29/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in the cerebrovascular endothelium is a key suppressor of post-stroke brain damage. However, the role of PPARγ’s co-regulators during cerebral ischemia remains largely unknown. Here, we show that the transcription factor IRF6 is a novel PPARγ co-regulator that directly binds to and suppresses PPARγ activity in murine cerebrovascular endothelial cells. Moreover, IRF6 was also revealed to be a transcriptional target of PPARγ suppression, with PPARγ silencing significantly promoting IRF6 expression in cerebrovascular endothelial cells. In addition, IRF6 silencing significantly promoted pioglitazone’s cytoprotective effects in ischemic murine cerebrovascular endothelial cells. Mechanistically, IRF6 significantly suppressed PPARγ’s transcriptional inhibition of the ischemia-induced, pro-apoptotic microRNA miR-106a. In conclusion, we identified IRF6 as a novel PPARγ co-suppressor that serves a key role in suppressing PPARγ-mediated cerebrovascular endothelial cytoprotection following ischemia. Further investigation into IRF6 and other PPARγ co-regulators should provide additional insights into PPARγ’s cytoprotective role in the cerebrovascular endothelium following stroke.
Collapse
|
27
|
Fan XX, Li F, Lv YN, Zhang Y, Kou JP, Yu BY. An integrated shotgun proteomics and bioinformatics approach for analysis of brain proteins from MCAO model using serial affinity chromatograph with four active ingredients from Shengmai preparations as ligands. Neurochem Int 2017; 103:45-56. [PMID: 28049027 DOI: 10.1016/j.neuint.2016.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/28/2022]
Abstract
Identification and validation of disease-relevant target proteins for natural products is an essential component of modern pharmaceutical research. In the present study, an integrated shotgun proteomics and bioinformatics approach was established to profile the interaction of active small molecules derived from ShengMai preparations (SMXZF) with hundreds of endogenously expressed proteins from middle cerebral artery occlusion (MCAO) model. Affinity-based proteomic strategies for isolation and identification of targets for the bioactive components is a classic, but still powerful approach. The proteins bound by SMXZF of the brain tissue proteins from MCAO model via serial affinity chromatograph were analyzed by nano liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) and all MS/MS spectra were then automatically searched by the SEQUEST program. A total of 154 proteins had been identified, with the molecular weight ranging from 21,369.6 to 332,393.21 and the pI from 4.32 to 10.88. Bioinformatic analysis was also implemented to better understand the identified proteins. In the gene ontology (GO) annotation, all the identified proteins were classified into 39, 18 and 12 groups according to biological process, cellular component and molecular function, respectively. KEGG pathways analysis of the identified proteins was conducted with 46 corresponding pathways found. In addition, the gene network was also constructed to analyze the relationship of these genes each other. Further validation of some targets were performed in MCAO model by Western blotting. The results indeed supported the notion that proteins MAPK/ERK1/2, CaMKII and VIM were involved in the disease development of MCAO and played an essential role in the protective effect of SMXZF. This study highlights the effectiveness and reliability of this integrated shotgun proteomics and bioinformatics approach, which is a promising paradigm for target identification and elucidating the mechanism of natural products in future research.
Collapse
Affiliation(s)
- Xiao-Xue Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Yan-Ni Lv
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| |
Collapse
|
28
|
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JPF, Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2016; 13:91-98. [PMID: 27842070 DOI: 10.1038/nchembio.2239] [Citation(s) in RCA: 2196] [Impact Index Per Article: 274.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.
Collapse
Affiliation(s)
- Sebastian Doll
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bettina Proneth
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Panzilius
- Institute of Stem Cell Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sho Kobayashi
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Irina Ingold
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Aichler
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Technische Universität München, Institute of Human Genetics, München, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gaowei Mao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Feng Qu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joachim Füllekrug
- Department of Gastroenterology, University of Heidelberg, Heidelberg, Germany
| | - Christina H Scheel
- Institute of Stem Cell Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joel A Schick
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
29
|
Lai SW, Lin HF, Lin CL, Liao KF. Long-term effects of pioglitazone on first attack of ischemic cerebrovascular disease in older people with type 2 diabetes: A case-control study in Taiwan. Medicine (Baltimore) 2016; 95:e4455. [PMID: 27495077 PMCID: PMC4979831 DOI: 10.1097/md.0000000000004455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Long-term studies demonstrating the effect of pioglitazone use on primary prevention of ischemic cerebrovascular disease in older people with type 2 diabetes mellitus are lacking. This study investigated the relationship between pioglitazone use and first attack of ischemic cerebrovascular disease in Taiwan.We conducted a case-control study using the database of the Taiwan National Health Insurance Program. There were 2359 type 2 diabetic subjects aged ≥65 years with newly diagnosed ischemic cerebrovascular disease from 2005 to 2011 as the case group and 4592 sex- and age-matched, randomly selected type 2 diabetic subjects aged ≥65 years without ischemic cerebrovascular disease as the control group. The odds ratio (OR) with 95% confidence interval (CI) of ischemic cerebrovascular disease associated with pioglitazone use was measured by the multivariable unconditional logistic regression model.After adjustment for confounding factors, the multivariable logistic regression analysis disclosed that the adjusted ORs of first attack of ischemic cerebrovascular disease associated with cumulative duration of using pioglitazone were 3.34 for <1 year (95% CI 2.59-4.31), 2.53 for 1 to 2 years (95% CI 1.56-4.10), 2.20 for 2 to 3 years (95% CI 1.05-4.64), and 1.09 for ≥3 years (95% CI 0.55-2.15), respectively.Our findings suggest that pioglitazone use does not have a protective effect on primary prevention for ischemic cerebrovascular disease among older people with type 2 diabetes mellitus during the first 3 years of use. Whether using pioglitazone for >3 years would have primary prevention for ischemic cerebrovascular disease needs a long-term research to prove.
Collapse
Affiliation(s)
- Shih-Wei Lai
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Feng Lin
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Fu Liao
- College of Medicine, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Taichung Tzu Chi General Hospital, Taichung, Taiwan
- Correspondence: Kuan-Fu Liao, Department of Internal Medicine, Taichung Tzu Chi General Hospital, No. 66, Sec. 1, Fongsing Road, Tanzi District, Taichung City 427, Taiwan (e-mail: )
| |
Collapse
|
30
|
Huang T, Gao D, Hei Y, Zhang X, Chen X, Fei Z. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury. Brain Res 2016; 1642:478-486. [PMID: 27103568 DOI: 10.1016/j.brainres.2016.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Our early experiments confirmed that D-allose was closely involved in the blood brain barrier (BBB) protection from ischemia reperfusion (IR) injury, but the regulatory mechanism is not fully defined. In this study, we aimed to investigate the role of D-allose in the protection of BBB integrity and the relevant mechanisms involved in the mice model of middle cerebral artery occlusion and reperfusion (MCAO/Rep). D-allose was intravenously injected via a tail vein (0.2mg/g and 0.4mg/g, 1h before ischemia), GW9662 was intraperitoneal injected to the mice (4mg/kg) before inducing ischemia 24h. Pretreatment with D-allose ameliorated the neurological deficits, infarct volume and brain edema in brains of MCAO/Rep mice. D-allose inhibited cell apoptosis in the mice model of MCAO/Rep. We observed that D-allose remarkably decreased BBB permeability and prevented the reduction of ZO-1, Occludin and Claudin-5 in mice brains with MCAO/Rep injury. D-allose also repressed the levels of TNF-α, NF-κB, interleukin (IL)-1β and IL-8 in inflammatory responses. The increases of intercellular adhesion molecular-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and CD11b/CD18 were significantly inhibited by D-allose during the MCAO/Rep injury. And D-allose decreased the L-selectin and P-selectin levels after MCAO/Rep. Moreover, D-allose induced up-regulation of peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of TNF-α and NF-κB after MCAO/Rep, which were abolished by utilization of GW9662. In conclusion, we provided evidences that D-allose may has therapeutic potential against brain IR injury through attenuating BBB disruption and the inflammatory response via PPARγ-dependent regulation of NF-κB.
Collapse
Affiliation(s)
- Tao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
31
|
Groeneveld ON, Kappelle LJ, Biessels GJ. Potentials of incretin-based therapies in dementia and stroke in type 2 diabetes mellitus. J Diabetes Investig 2016; 7:5-16. [PMID: 26816596 PMCID: PMC4718099 DOI: 10.1111/jdi.12420] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Patients with type 2 diabetes mellitus are at risk for accelerated cognitive decline and dementia. Furthermore, their risk of stroke is increased and their outcome after stroke is worse than in those without diabetes. Incretin-based therapies are a class of antidiabetic agents that are of interest in relation to these cerebral complications of diabetes. Two classes of incretin-based therapies are currently available: the glucagon-like-peptide-1 agonists and the dipeptidyl peptidase-4 -inhibitors. Independent of their glucose-lowering effects, incretin-based therapies might also have direct or indirect beneficial effects on the brain. In the present review, we discuss the potential of incretin-based therapies in relation to dementia, in particular Alzheimer's disease, and stroke in patients with type 2 diabetes. Experimental studies on Alzheimer's disease have found beneficial effects of incretin-based therapies on cognition, synaptic plasticity and metabolism of amyloid-β and microtubule-associated protein tau. Preclinical studies on incretin-based therapies in stroke have shown an improved functional outcome, a reduction of infarct volume as well as neuroprotective and neurotrophic properties. Both with regard to the treatment of Alzheimer's disease, and with regard to prevention and treatment of stroke, randomized controlled trials in patients with or without diabetes are underway. In conclusion, experimental studies show promising results of incretin-based therapies at improving the outcome of Alzheimer's disease and stroke through glucose-independent pleiotropic effects on the brain. If these findings would indeed be confirmed in large clinical randomized controlled trials, this would have substantial impact.
Collapse
Affiliation(s)
- Onno N Groeneveld
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| | - L Jaap Kappelle
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| | - Geert Jan Biessels
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| |
Collapse
|
32
|
Moon SM, Choi GM, Yoo DY, Jung HY, Yim HS, Kim DW, Hwang IK, Cho BM, Chang IB, Cho SM, Won MH. Differential Effects of Pioglitazone in the Hippocampal CA1 Region Following Transient Forebrain Ischemia in Low- and High-Fat Diet-Fed Gerbils. Neurochem Res 2015; 40:1063-73. [PMID: 25894680 DOI: 10.1007/s11064-015-1568-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
In the present study, we investigated the effects of pioglitazone (PGZ) in the hippocampal CA1 region of low- or high-fat diet (LFD or HFD) fed gerbils after transient forebrain ischemia. After 8 weeks of LFD or HFD feeding, PGZ (30 mg/kg) was intraperitoneally administered to the gerbils, following which ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. Administration of PGZ significantly reduced the ischemia-induced hyperactivity 1 day after ischemia/reperfusion in both LFD- and HFD-fed gerbils. At 4 days after ischemia/reperfusion, the neurons were significantly reduced and microglial activation was observed in the hippocampal CA1 region in LFD- and HFD-fed gerbils. The microglial activation was more prominent in the HFD-fed gerbils compared to the LFD-fed gerbils. Administration of PGZ ameliorated ischemia-induced neuronal death and microglial activation in the hippocampal CA1 region 4 days after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-gerbils. At 6 h after ischemia/reperfusion, tumor necrosis factor-α (TNF-α) and interlukin-1β (IL-1β) levels were significantly increased in the hippocampal homogenates of LFD-fed group compared to control group, and HFD feeding further increased TNF-α and IL-1β levels. PGZ treatment significantly ameliorated the increase of TNF-α and IL-1β levels in LFD-fed gerbils, not in the HFD-fed gerbils. At 12 h after ischemia/reperfusion, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in hippocampal homogenates were significantly increased in the LFD-fed group compared to the control group, and HFD feeding significantly showed relatively reduction in SOD activity and increase in MDA level. PGZ administration significantly reduced the increase in MDA levels 12 h after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-fed gerbils. These results suggest that PGZ ameliorates the neuronal damage induced by ischemia by maintaining the TNF-α, IL-1β, SOD and MDA levels in LFD-fed gerbils. In addition, HFD feeding affects the modulation of these parameters in the hippocampus after transient forebrain ischemia.
Collapse
Affiliation(s)
- Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 445-907, South Korea,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Feng T, Liu Y, Li C, Li Z. Protective Effects of Nigranoic Acid on Cerebral Ischemia–Reperfusion Injury and its Mechanism Involving Apoptotic Signaling Pathway. Cell Biochem Biophys 2014; 71:345-51. [DOI: 10.1007/s12013-014-0204-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Yuksel TN, Halici Z, Demir R, Cakir M, Calikoglu C, Ozdemir G, Unal D. Investigation of the effect of telmisartan on experimentally induced peripheral nerve injury in rats. Int J Neurosci 2014; 125:464-73. [PMID: 25069044 DOI: 10.3109/00207454.2014.948115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study was to investigate the effects of telmisartan on nerve healing in a rat peripheral nerve injury model. MATERIAL AND METHOD Thirty adult male Wistar albino rats were divided into five groups: healthy, axonotmesis, anastomosis, axonotmesis+10 mg/kg telmisartan and anastomosis+10 mg/kg telmisartan. Walking track analyses were performed 4 weeks after the surgery. The right sciatic nerves of all the animals were examined histopathologically, stereologically and molecularly. RESULTS Many badly damaged axons were detected in the axonotmesis group, in addition to enlarged spaces between the axons. In the anastomosis group, both ir- regular and degenerated axons at different severities were observed. The sections of the telmisartan group after the axonotmesis were similar to those of the healthy group. The sections of the telmisartan group after the anastomosis were similar to those of the healthy group and the telmisartan group after the axonotmesis. Interleukin-1 beta (IL-1β) gene expression increased in both the axonotmesis and the anastomosis groups when compared with the healthy group. Telmisartan had a significant down-regulatory effect on IL-1β expression. Caspase-3 mRNA expression was significantly increased in the anastomosis group, and the administration of telmisartan in this group significantly decreased this rise in caspase-3 mRNA expression. As a functional outcome, telmisartan also increased the walking distance of the rats after axonotmesis and anastomosis. CONCLUSION The histopathological, stereological, functional and molecular data suggest that telmisartan improves nerve regeneration in peripheral nerve injuries by inhibiting inflammatory cytokine IL-1β and apoptotic caspase-3.
Collapse
|
35
|
Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J. A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 2014; 92:1295-306. [PMID: 24801159 DOI: 10.1002/jnr.23400] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/30/2014] [Indexed: 01/10/2023]
Abstract
SMXZF is a combination of Rb1, Rg1, schizandrin, and DT-13 (6:9:5:4) derived from Sheng-mai San, a widely used Chinese traditional medicine for the treatment of cardiovascular and cerebral diseases. The present study explores the inhibitory effects and signaling pathways of SMXZF on autophagy induced by cerebral ischemia-reperfusion injury. Male C57BL/6 mice were subjected to ischemia-reperfusion insult by right middle cerebral artery occlusion (MCAO) for 1 hr with subsequent 24 hr reperfusion. Three doses of SMXZF (4.5, 9, and 18 mg/kg) were administered intraperitoneally (i.p.) after ischemia for 1 hr. An autophagic inhibitor, 3-methyladenine (3-MA; 300 μg/kg), was administered i.p. 20 min before ischemia as a positive drug. We found that SMXZF significantly increased cerebral blood flow and reduced the infarct volume, brain water content, and the neurological deficits in a dose-dependent manner. Similar to the positive control, SMXZF at 18 mg/kg also significantly inhibited autophagosome formation. Immunofluorescence staining and Western blotting demonstrated that SMXZF could significantly decrease the expression levels of beclin1 and microtubule-associated protein 1 light chain 3. SMXZF also remarkably inhibited the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) as well as the expression of c-Jun N-terminal kinase (JNK) and its phosphorylation induced by 24 hr reperfusion. Finally, we demonstrated that the optimal administration time of SMXZF was at the early period of reperfusion. This study reveals that SMXZF displays neuroprotective effect against focal ischemia-reperfusion injury, possibly associated with autophagy inactivation through AMPK/mTOR and JNK pathways.
Collapse
Affiliation(s)
- Zhongshun Guo
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Patrone C, Eriksson O, Lindholm D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol 2014; 2:256-62. [PMID: 24622756 DOI: 10.1016/s2213-8587(13)70125-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes is a metabolic disease characterised by insulin resistance with hyperglycaemia and dyslipidaemia. It is associated with increased risk of stroke and vascular dementia, and might contribute to the development of Alzheimer's disease. Recent studies have shown that several antidiabetic drugs can promote neuronal survival and lead to a significant clinical improvement of memory and cognition in different clinical settings. We discuss these emerging data, with a focus on metformin, thiazolidinediones, and the more recently developed compounds targeting the glucagon-like peptide-1 receptor. Data show that these antidiabetic drugs affect brain metabolism, neuroinflammation, and regeneration. Evidence thus far strongly indicates that these antidiabetic drugs could be developed as disease-modifying therapies for human brain diseases in patients with and without diabetes.
Collapse
Affiliation(s)
- Cesare Patrone
- Internal Medicine, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ove Eriksson
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum, Finland
| | - Dan Lindholm
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum, Finland; Minerva Medical Research Institute, Helsinki, Finland.
| |
Collapse
|
37
|
Hawkins KE, DeMars KM, Singh J, Yang C, Cho HS, Frankowski JC, Doré S, Candelario-Jalil E. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem 2013; 129:130-42. [PMID: 24225006 DOI: 10.1111/jnc.12607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/23/2013] [Accepted: 11/08/2013] [Indexed: 02/03/2023]
Abstract
Resolution of inflammation is an emerging new strategy to reduce damage following ischemic stroke. Lipoxin A4 (LXA4 ) is an anti-inflammatory, pro-resolution lipid mediator with high affinity binding to ALX, the lipoxin A4 receptor. Since LXA4 is rapidly inactivated, potent analogs have been created, including the ALX agonist BML-111. We hypothesized that post-ischemic intravenous administration of BML-111 would provide protection to the neurovascular unit and reduce neuroinflammation in a rat stroke model. Animals were subjected to 90 min of middle cerebral artery occlusion (MCAO) and BML-111 was injected 100 min and 24 h after stroke onset and animals euthanized at 48 h. Post-ischemic treatment with BML-111 significantly reduced infarct size, decreased vasogenic edema, protected against blood-brain barrier disruption, and reduced hemorrhagic transformation. Matrix metalloproteinase-9 and matrix metalloproteinase-3 were significantly reduced following BML-111 treatment. Administration of BML-111 dramatically decreased microglial activation, as seen with CD68, and neutrophil infiltration and recruitment, as assessed by levels of myeloperoxidase and intracellular adhesion molecule-1. The tight junction protein zona occludens-1 was protected from degradation following treatment with BML-111. These results indicate that post-ischemic activation of ALX has pro-resolution effects that limit the inflammatory damage in the cerebral cortex and helps maintain blood-brain barrier integrity after ischemic stroke.
Collapse
Affiliation(s)
- Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|