1
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xie L, Xue F, Cheng C, Sui W, Zhang J, Meng L, Lu Y, Xiong W, Bu P, Xu F, Yu X, Xi B, Zhong L, Yang J, Zhang C, Zhang Y. Cardiomyocyte-specific knockout of ADAM17 alleviates doxorubicin-induced cardiomyopathy via inhibiting TNFα-TRAF3-TAK1-MAPK axis. Signal Transduct Target Ther 2024; 9:273. [PMID: 39406701 PMCID: PMC11480360 DOI: 10.1038/s41392-024-01977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of doxorubicin-induced cardiomyopathy remains unclear. This study was carried out to test our hypothesis that ADAM17 aggravates cardiomyocyte apoptosis induced by doxorubicin and inhibition of ADAM17 may ameliorate doxorubicin-induced cardiomyopathy. C57BL/6J mice were intraperitoneally injected with a cumulative dose of doxorubicin to induce cardiomyopathy. Cardiomyocyte-specific ADAM17-knockout (A17α-MHCKO) and ADAM17-overexpressing (AAV9-oeA17) mice were generated. In addition, RNA sequencing of the heart tissues in different mouse groups and in vitro experiments in neonatal rat cardiomyocytes (NRCMs) receiving different treatment were performed. Mouse tumor models were constructed in A17fl/fl and A17α-MHCKO mice. In addition, cardiomyocyte-specific TRAF3-knockdown and TRAF3-overexpressing mice were generated. ADAM17 expression and activity were markedly upregulated in doxorubicin-treated mouse hearts and NRCMs. A17α-MHCKO mice showed less cardiomyocyte apoptosis induced by doxorubicin than A17fl/fl mice, and cardiomyocyte ADAM17 deficiency did not affect the anti-tumor effect of doxorubicin. In contrast, AAV9-oeA17 mice exhibited markedly aggravated cardiomyocyte apoptosis relative to AAV9-oeNC mice after doxorubicin treatment. Mechanistically, doxorubicin enhanced the expression of transcription factor C/EBPβ, leading to increased expression and activity of ADAM17 in cardiomyocyte, which enhanced TNF-α shedding and upregulated the expression of TRAF3. Increased TRAF3 promoted TAK1 autophosphorylation, resulting in activated MAPKs pathway and cardiomyocyte apoptosis. ADAM17 acted as a positive regulator of cardiomyocyte apoptosis and cardiac remodeling and dysfunction induced by doxorubicin by upregulating TRAF3/TAK1/MAPKs signaling. Thus, targeting ADAM17/TRAF3/TAK1/MAPKs signaling holds a promising potential for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Xiong
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Xie M, Long H, Tian S, Zhu Z, Meng P, Du K, Wang Y, Guo D, Wang H, Peng Q. Saikosaponin F ameliorates depression-associated dry eye disease by inhibiting TRIM8-induced TAK1 ubiquitination. Int Immunopharmacol 2024; 130:111749. [PMID: 38430804 DOI: 10.1016/j.intimp.2024.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
AIMS Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1β, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410002, China
| | - Sainan Tian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengqing Zhu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pan Meng
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410002, China; College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ke Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yajing Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750003, China.
| | - Qinghua Peng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410002, China.
| |
Collapse
|
4
|
Wang W, Pang C, Zhang J, Peng L, Zhang X, Shi L, Zhang H. Takinib inhibits microglial M1 polarization and oxidative damage after subarachnoid hemorrhage by targeting TAK1-dependent NLRP3 inflammasome signaling pathway. Front Immunol 2023; 14:1266315. [PMID: 38035075 PMCID: PMC10682771 DOI: 10.3389/fimmu.2023.1266315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) positively regulates oxidative stress and inflammation in different diseases. Takinib, a novel and specific TAK1 inhibitor, has beneficial effects in a variety of disorders. However, the effects of takinib on early brain injury (EBI) after subarachnoid hemorrhage (SAH) and the underlying molecular mechanisms remain unknown. Our study showed that takinib administration significantly inhibited phosphorylated TAK1 expression after SAH. In addition, takinib suppressed M1 microglial polarization and promoted M2 microglial polarization. Furthermore, blockade of TAK1 by takinib reduced neuroinflammation, oxidative damage, brain edema, and neuronal apoptosis, and improved neurological behavior after SAH. Mechanistically, we revealed that TAK1 inhibition by takinib mitigated reactive oxygen species (ROS) production and ROS-mediated nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation. In contrast, NLRP3 activation by nigericin abated the neuroprotective effects of takinib against EBI after SAH. In general, our study demonstrated that takinib could protect against EBI by targeting TAK1-ROS-NLRP3 inflammasome signaling. Inhibition of TAK1 might be a promising option in the management of SAH.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Jiaxing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianghua Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Graduate School of Capital Medical University, Beijing, China
| | - Hao Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Zhao H, Lv J, Meng L, Lv J, Li Z. Dual-specificity phosphatase 26-dificient neurons are susceptible to oxygen-glucose deprivation/reoxygenation-evoked apoptosis and proinflammatory response by affecting the TAK1-medaited JNK/P38 MAPK pathway. Int Immunopharmacol 2023; 117:109980. [PMID: 37012870 DOI: 10.1016/j.intimp.2023.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Dual-specificity phosphatase 26 (DUSP26) is linked to a broad range of human disorders as it affects numerous signaling cascades. However, the involvement of DUSP26 in ischemic stroke has not been explored. Here, we investigated DUSP26 as a key mediator of oxygen-glucose deprivation/reoxygenation (OGD/R)-associated neuronal injury, an in vitro model for investigating ischemic stroke. A decline in DUSP26 occurred in neurons suffering from OGD/R. A deficiency in DUSP26 rendered neurons more susceptible to OGD/R by aggravating neuronal apoptosis and inflammation, while the overexpression of DUSP26 blocked OGD/R-evoked neuronal apoptosis and inflammation. Mechanistically, enhanced phosphorylation of transforming growth factor-β-activated kinase 1 (TAK1), c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) was evidenced in DUSP26-deficient neurons suffering from OGD/R, whereas the opposite effects were observed in DUSP26-overexpressed neurons. Moreover, the inhibition of TAK1 abolished the DUSP26-deficiency-elicited activation of JNK and P38 MAPK and exhibited anti-OGD/R injury effects in DUSP26-deficiency neurons. Results from these experiments show that DUSP26 is essential for neurons in defending against OGD/R insult, while neuroprotection is achieved by restraining the TAK1-mediated JNK/P38 MAPK pathway. Therefore, DUSP26 may serve as a therapeutic target for the management of ischemic stroke.
Collapse
|
6
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 2022; 17:1761-1768. [PMID: 35017436 PMCID: PMC8820688 DOI: 10.4103/1673-5374.331539] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis, apoptosis and necroptosis act in consort in a multimeric protein complex, PANoptosome. This allows all the components of PANoptosis to be regulated simultaneously. PANoptosis provides a new way to study the regulation of cell death, in that different types of cell death may be regulated at the same time. To test whether PANoptosis exists in diseases other than infectious diseases, we chose cerebral ischemia/reperfusion injury as the research model, collected articles researching cerebral ischemia/reperfusion from three major databases, obtained the original research data from these articles by bibliometrics, data mining and other methods, then integrated and analyzed these data. We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion. In the cell model simulating ischemic brain injury, pyroptosis, apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons. Pyroptosis, apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury. This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Department of Human Resources, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lyu-Shuang Liao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Juan Zhao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Zhang Z, Ma T, Fu Z, Feng Y, Wang Z, Tian S, Liu Z, Wei W, Li X, Chen J, Zhao W. TBC1Domain Family Member 25 deficiency aggravates cerebral ischemia-reperfusion injury via TAK1-JNK/p38 pathway. J Neurochem 2021; 160:392-411. [PMID: 34837397 DOI: 10.1111/jnc.15546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
TBC1Domain Family Member 25 (TBC1D25) is a protein that contains a TBC/RAB-GTPase activating protein (GAP) domain, which was shown to participate in autophagy in previous studies. However, the role of TBC1D25 in cerebral ischemia-reperfusion (I/R) injury remains unknown. In this study, we found that the mRNA and protein expression levels of TBC1D25 decreased in mouse brain after I/R injury and primary cortical neurons treated with oxygen and glucose deprivation/reoxygenation (OGD/R). Then TBC1D25 knockout (KO) mice were applied to demonstrate that TBC1D25 ablation aggravated cerebral I/R-induced neuronal loss and infarct size. In addition, neuronal apoptosis and inflammation were significantly potentiated in the TBC1D25-KO group. In in vitro OGD/R model, TBC1D25 knockdown can attenuate neuronal cell viability and aggravate the process of inflammation and apoptosis. Conversely, over-expression of TBC1D25 in primary neurons ameliorated the aforementioned processes. Mechanistically, RNA-sequencing (RNA-seq) analysis revealed mitogen-activated protein kinase (MAPK) signaling pathway was the most significant pathway that contributed to TBC1D25-mediated brain I/R injury process. Through experimental verification, TBC1D25 deficiency increased the phosphorylation of the transforming growth factor-β-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK)/p38 axis in neurons during the brain I/R injury. Furthermore, we found that TAK1 blockade abrogated the apoptosis and inflammatory response produced by TBC1D25 knockdown in vitro. In conclusion, this study is the first to demonstrate the functional significance of TBC1D25 in the pathophysiology of brain I/R injury, and the protective mechanism of TBC1D25 is dependent on the TAK1-JNK/p38 pathway.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.,Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Zhengyi Fu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
8
|
Geng X, Wang M, Leng Y, Li L, Yang H, Dai Y, Wang Y. Protective effects on acute hypoxic-ischemic brain damage in mfat-1 transgenic mice by alleviating neuroinflammation. J Biomed Res 2021; 35:474-490. [PMID: 34744086 PMCID: PMC8637658 DOI: 10.7555/jbr.35.20210107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute hypoxic-ischemic brain damage (HIBD) mainly occurs in adults as a result of perioperative cardiac arrest and asphyxia. The benefits of n-3 polyunsaturated fatty acids (n-3 PUFAs) in maintaining brain growth and development are well documented. However, possible protective targets and underlying mechanisms of mfat-1 mice on HIBD require further investigation. The mfat-1 transgenic mice exhibited protective effects on HIBD, as indicated by reduced infarct range and improved neurobehavioral defects. RNA-seq analysis showed that multiple pathways and targets were involved in this process, with the anti-inflammatory pathway as the most significant. This study has shown for the first time that mfat-1 has protective effects on HIBD in mice. Activation of a G protein-coupled receptor 120 (GPR120)-related anti-inflammatory pathway may be associated with perioperative and postoperative complications, thus innovating clinical intervention strategy may potentially benefit patients with HIBD.
Collapse
Affiliation(s)
- Xue Geng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yunjun Leng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W, Li R, Li J, Zhang C, Wang L, Liu X, Sun W, Hu W. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation 2021; 18:188. [PMID: 34461942 PMCID: PMC8406585 DOI: 10.1186/s12974-021-02226-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate immunity can facilitate early brain injury (EBI) following subarachnoid hemorrhage (SAH). Numerous studies suggest that pyroptosis could exacerbate extracellular immune responses by promoting secretion of inflammatory cytokines. Transforming growth factor-β-activated kinase 1 (TAK1) is a quintessential kinase that positively regulates inflammation through NF-κB and MAPK signaling cascades. However, the effects of TAK1 on neuroinflammation in EBI following SAH are largely unknown. METHODS Two hundred and forty-six male C57BL/6J mice were subjected to the endovascular perforation model of SAH. A selective TAK1 inhibitor, 5Z-7-oxozeaenol (OZ) was administered by intracerebroventricular (i.c.v) injection at 30 min after SAH induction. To genetic knockdown of TAK1, small interfering RNA (siRNA) was i.c.v injected at 48 h before SAH induction. SAH grade, brain water content, BBB permeability, neurological score, western blot, real-time PCR, ELISA, transmission electron microscope, and immunofluorescence staining were performed. Long-term behavioral sequelae were evaluated by the rotarod and Morris water maze tests. Furthermore, OZ was added to the culture medium with oxyhemoglobin (OxyHb) to mimic SAH in vitro. The reactive oxygen species level was detected by DCFH-DA staining. Lysosomal integrity was assessed by Lyso-Tracker Red staining and Acridine Orange staining. RESULTS The neuronal phosphorylated TAK1 expression was upregulated following SAH. Pharmacologic inhibition of TAK1 with OZ could alleviate neurological deficits, brain edema, and brain-blood barrier (BBB) disruption at 24 h after SAH. In addition, OZ administration restored long-term neurobehavioral function. Furthermore, blockade of TAK1 dampened neuronal pyroptosis by downregulating the N-terminal fragment of GSDMD (GSDMD-N) expression and IL-1β/IL-18 production. Mechanistically, both in vivo and in vitro, we demonstrated that TAK1 can induce neuronal pyroptosis through promoting nuclear translocation of NF-κB p65 and activating nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome. TAK1 siRNA treatment mitigated SAH-induced neurobehavioral deficits and restrained phosphorylated NF-κB p65 expression and NLRP3 inflammasome activation. TAK1 blockade also ameliorated reactive oxygen species (ROS) production and prevented lysosomal cathepsin B releasing into the cytoplasm. CONCLUSIONS Our findings demonstrate that TAK1 modulates NLRP3-mediated neuronal pyroptosis in EBI following SAH. Inhibition of TAK1 may serve as a potential candidate to relieve neuroinflammatory responses triggered by SAH.
Collapse
Affiliation(s)
- Pengfei Xu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| | - Chunrong Tao
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Yuyou Zhu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Guoping Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Lingqi Kong
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Wenyu Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Rui Li
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chao Zhang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Li Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Xinfeng Liu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.,Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Wen Sun
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| | - Wei Hu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| |
Collapse
|
10
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
11
|
Wu X, Lin L, Qin JJ, Wang L, Wang H, Zou Y, Zhu X, Hong Y, Zhang Y, Liu Y, Xin C, Xu S, Ye S, Zhang J, Xiong Z, Zhu L, Li H, Chen J, She ZG. CARD3 Promotes Cerebral Ischemia-Reperfusion Injury Via Activation of TAK1. J Am Heart Assoc 2020; 9:e014920. [PMID: 32349637 PMCID: PMC7428569 DOI: 10.1161/jaha.119.014920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Although multiple signaling cascades and molecules contributing to the pathophysiological process have been studied, the treatments for stroke against present targets have not acquired significant clinical progress. Although CARD3 (caspase activation and recruitment domain 3) protein is an important factor involved in regulating immunity, inflammation, lipid metabolism, and apoptosis, its role in cerebral stroke is currently unknown. Methods and Results Using a mouse model of ischemia-reperfusion (I-R) injury based on transient blockage of the middle cerebral artery, we have found that CARD3 expression is upregulated in a time-dependent manner during I-R injury. Further animal study revealed that, relative to control mice, CARD3-knockout mice exhibited decreased inflammatory response and neuronal apoptosis, with reduced infarct volume and lower neuropathological scores. In contrast, neuron-specific CARD3-overexpressing transgenic (CARD3-TG) mice exhibited increased I-R induced injury compared with controls. Mechanistically, we also found that the activation of TAK1 (transforming growth factor-β-activated kinase 1) was enhanced in CARD3-TG mice. Furthermore, the increased inflammation and apoptosis seen in injured CARD3-TG brains were reversed by intravenous administration of the TAK1 inhibitor 5Z-7-oxozeaenol. Conclusions These results indicate that CARD3 promotes I-R injury via activation of TAK1, which not only reveals a novel regulatory axis of I-R induced brain injury but also provides a new potential therapeutic approach for I-R injury.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Lijin Lin
- Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Juan-Juan Qin
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Lifen Wang
- Operating Theater Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hao Wang
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Yichun Zou
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Xueyong Zhu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Ying Hong
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Yan Zhang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Ye Liu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Can Xin
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Shuangxiang Xu
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Shengda Ye
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Jianjian Zhang
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Zhongwei Xiong
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China
| | - Lihua Zhu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Hongliang Li
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| | - Jincao Chen
- Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan PR China.,Department of Neurosurgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhi-Gang She
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan PR China.,Basic Medical School Wuhan University Wuhan PR China.,Institute of Model Animals of Wuhan University Wuhan PR China
| |
Collapse
|
12
|
Wang R, Pu H, Ye Q, Jiang M, Chen J, Zhao J, Li S, Liu Y, Hu X, Rocha M, Jadhav AP, Chen J, Shi Y. Transforming Growth Factor Beta-Activated Kinase 1-Dependent Microglial and Macrophage Responses Aggravate Long-Term Outcomes After Ischemic Stroke. Stroke 2020; 51:975-985. [PMID: 32078472 DOI: 10.1161/strokeaha.119.028398] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background and Purpose- Microglia/macrophages (Mi/MΦ) can profoundly influence stroke outcomes by acquiring functionally dominant phenotypes (proinflammatory or anti-inflammatory; deleterious or salutary). Identification of the molecular mechanisms that dictate the functional status of Mi/MΦ after brain ischemia/reperfusion may reveal novel therapeutic targets for stroke. We hypothesized that activation of TAK1 (transforming growth factor beta-activated kinase 1), a key MAP3K upstream of multiple inflammation-regulating pathways, drives Mi/MΦ toward a proinflammatory phenotype and potentiates ischemia/reperfusion brain injury. Methods- Young adult mice were subjected to 1 hour of middle cerebral artery occlusion (MCAO) followed by reperfusion. TAK1 was targeted by tamoxifen-induced Mi/MΦ-specific knockout or administration of a selective inhibitor 5Z-7-Oxozeaenol after MCAO. Neurobehavioral deficits and long-term gray matter and white matter injury were assessed up to 35 days after MCAO. Mi/MΦ functional status and brain inflammatory profiles were assessed 3 days after MCAO by RNA-seq, flow cytometry, and immunohistochemistry. Results- TAK1 Mi/MΦ-specific knockout markedly ameliorated neurological deficits in the rotarod and cylinder tests for at least 35 days after MCAO. Mechanistically, RNA-seq of purified brain Mi/MΦ demonstrated that proinflammatory genes and their predicted biological functions were downregulated or inhibited in microglia and macrophages from TAK1 Mi/MΦ-specific knockout mice versus WT mice 3 days after MCAO. Consistent with the anti-inflammatory phenotype of Mi/MΦ-specific knockout, oxozeaenol treatment mitigated neuroinflammation 3 days after MCAO, manifested by less Iba1+/CD16+ proinflammatory Mi/MΦ and suppressed brain invasion of various peripheral immune cells. Oxozeaenol treatment beginning 2 hours after MCAO improved long-term sensorimotor and cognitive functions in the foot fault, rotarod, and water maze tests. Furthermore, Oxozeaenol promoted both gray matter and white matter integrity 35 days after MCAO. Conclusions- TAK1 promotes ischemia/reperfusion-induced inflammation, brain injury, and maladaptive behavior by enhancing proinflammatory and deleterious Mi/MΦ responses. Therefore, TAK1 inhibition is a promising therapy to improve long-term stroke outcomes.
Collapse
Affiliation(s)
- Rongrong Wang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Hongjian Pu
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Qing Ye
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.).,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, PA (Q.Y., X.H., Jun Chen, Y.S.)
| | - Ming Jiang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Jie Chen
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Jingyan Zhao
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Sicheng Li
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Yaan Liu
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.)
| | - Xiaoming Hu
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.).,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, PA (Q.Y., X.H., Jun Chen, Y.S.)
| | - Marcelo Rocha
- Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, PA (M.R., A.P.J.)
| | - Ashutosh P Jadhav
- Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, PA (M.R., A.P.J.)
| | - Jun Chen
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.).,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, PA (Q.Y., X.H., Jun Chen, Y.S.)
| | - Yejie Shi
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA (R.W., H.P., Q.Y., M.J., Jie Chen, J.Z., S.L., Y.L., X.H., Jun Chen, Y.S.).,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, PA (Q.Y., X.H., Jun Chen, Y.S.)
| |
Collapse
|
13
|
Deng Y, Chen D, Wang L, Gao F, Jin B, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Miao Z. Silencing of Long Noncoding RNA Nespas Aggravates Microglial Cell Death and Neuroinflammation in Ischemic Stroke. Stroke 2019; 50:1850-1858. [PMID: 31167620 PMCID: PMC6594728 DOI: 10.1161/strokeaha.118.023376] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Ischemic stroke is one of the leading causes of morbidity and mortality worldwide and a major cause of long-term disability. Recently, long noncoding RNAs have been revealed, which are tightly associated with several human diseases. However, the functions of long noncoding RNAs in ischemic stroke still remain largely unknown. In the current study, for the first time, we investigated the role of long noncoding RNA Nespas in ischemic stroke. Methods- We used in vivo models of middle cerebral artery occlusion and in vitro models of oxygen-glucose deprivation to illustrate the effect of long noncoding RNA Nespas on ischemic stroke. Results- We found expression of Nespas was significantly increased in ischemic cerebral tissues and oxygen-glucose deprivation-treated BV2 cells in a time-dependent manner. Silencing of Nespas aggravated middle cerebral artery occlusion operation-induced IR injury and cell death. In addition, proinflammatory cytokine production and NF-κB (nuclear factor-κB) signaling activation were inhibited by Nespas overexpression. TAK1 (transforming growth factor-β-activated kinase 1) was found to directly interact with Nespas, and TAK1 activation was significantly suppressed by Nespas. At last, we found Nespas-inhibited TRIM8 (tripartite motif 8)-induced K63-linked polyubiquitination of TAK1. Conclusions- We showed that Nespas played anti-inflammatory and antiapoptotic roles in cultured microglial cells after oxygen-glucose deprivation stimulation and in mice after ischemic stroke by inhibiting TRIM8-related K63-linked polyubiquitination of TAK1.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Duanduan Chen
- From the School of Life Science (D.C., T.Y.), Beijing Institute of Technology, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology (D.C., T.Y.), Beijing Institute of Technology, China
| | - Luyao Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering (L.W.), Beijing Institute of Technology, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Hong Lv
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Guojun Zhang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Tianyi Yan
- From the School of Life Science (D.C., T.Y.), Beijing Institute of Technology, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology (D.C., T.Y.), Beijing Institute of Technology, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| |
Collapse
|
14
|
Chauhan A, Hudobenko J, Al Mamun A, Koellhoffer EC, Patrizz A, Ritzel RM, Ganesh BP, McCullough LD. Myeloid-specific TAK1 deletion results in reduced brain monocyte infiltration and improved outcomes after stroke. J Neuroinflammation 2018; 15:148. [PMID: 29776451 PMCID: PMC5960093 DOI: 10.1186/s12974-018-1188-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background Activation of transforming growth factor-β-activated kinase 1 (TAK1) occurs after stroke and leads to an exacerbation of brain injury. TAK1 is involved in innate and adaptive immune responses, but it has divergent inflammatory effects that are dependent on the cell type in which it is activated. There is a robust infiltration of myeloid cells after stroke; however, the contribution of myeloid TAK1 to cerebral ischemia is currently unknown. We hypothesized that myeloid-specific deletion of TAK1 would protect against ischemic brain injury. Methods Myeloid TAK1ΔM and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAo). Brain-infiltrating and splenic immune cells were evaluated at 3 days after stroke. Assessment of infarct size and behavioral deficits were performed on days 3 and 7 post-stroke. Results Infarcts were significantly smaller in TAK1ΔM mice (p < 0.01), and behavioral deficits were less severe despite equivalent reduction in cerebral blood flow. Flow cytometry demonstrated an increase in the frequency of splenic monocytes and neutrophils (p < 0.05) and a decrease in splenic CD3+ T (p < 0.01) and CD19+ B (p = 0.06) cells in TAK1ΔM mice compared to WT at baseline. Three days after stroke, a significant increase in the number of brain-infiltrating immune cell was observed in both TAK1ΔM (p < 0.05) and WT (p < 0.001) mice compared to their respective shams. However, there was a significant decrease in the infiltrating CD45hi immune cell counts (p < 0.05), with a pronounced reduction in infiltrating monocytes (p < 0.001) in TAK1ΔM after stroke compared to WT stroke mice. Additionally, a significant reduction in CD49d+ monocytes was seen in the brains of TAK1ΔM stroke mice compared to wild-type mice. Importantly, TAK1ΔM MCAo mice had smaller infarcts and improved behavioral outcomes at day 7 post-stroke. Conclusion Our results showed that deletion of myeloid TAK1 resulted in smaller infarcts and improved functional outcomes at the peak of inflammation (day 3) and a reduction in brain-infiltrating immune cells that were primarily monocytes. Myeloid TAK1 deletion was also protective at 7 days post MCAo, reflecting a detrimental role of myeloid TAK1 in the progression of ischemic injury. Electronic supplementary material The online version of this article (10.1186/s12974-018-1188-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Jacob Hudobenko
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Edward C Koellhoffer
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Anthony Patrizz
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA. .,Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Lin FL, Ho JD, Cheng YW, Chiou GCY, Yen JL, Chang HM, Lee TH, Hsiao G. Theissenolactone C Exhibited Ocular Protection of Endotoxin-Induced Uveitis by Attenuating Ocular Inflammatory Responses and Glial Activation. Front Pharmacol 2018; 9:326. [PMID: 29686615 PMCID: PMC5900795 DOI: 10.3389/fphar.2018.00326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the effects of a natural component, theissenolactone C (LC53), on the ocular inflammation of experimental endotoxin-induced uveitis (EIU) and its related mechanisms in microglia. Evaluation of the severity of anterior uveitis indicated that LC53 treatment significantly decreased iridal hyperemia and restored the clinical scores. Additionally, the deficient retina functions of electroretinography were improved by LC53. LC53 significantly reduced levels of tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1, protein leakage and activation of matrix metalloproteinases in the anterior section during EIU. Moreover, LC53 treatment decreased the oxidative stress as well as neuroinflammatory reactivities of GFAP and Iba-1 in the posterior section. Furthermore, LC53 decreased the phosphorylation of p65, expression of HSP90, Bax, and cleaved-caspase-3 in EIU. According to the microglia studies, LC53 significantly abrogated the productions of TNF-α, PGE2, NO and ROS, as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-stimulated microglial BV2 cells. The microglial activation of IKKβ, p65 phosphorylation and nuclear phosphorylated p65 translocation were strongly attenuated by LC53. On the other hand, LC53 exhibited the inhibitory effects on JNK and ERK MAPKs activation. Our findings indicated that LC53 exerted the ocular-protective effect through its inhibition on neuroinflammation, glial activation, and apoptosis in EIU, suggesting a therapeutic potential with down-regulation of the NF-κB signaling for uveitis and retinal inflammatory diseases.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics and Institute of Ocular Pharmacology, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Guan S, Lu J, Zhao Y, Woodfield SE, Zhang H, Xu X, Yu Y, Zhao J, Bieerkehazhi S, Liang H, Yang J, Zhang F, Sun S. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget 2018; 8:33666-33675. [PMID: 28430599 PMCID: PMC5464900 DOI: 10.18632/oncotarget.16895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aberrant activation of nuclear factor-κB (NF-κB) allows cancer cells to escape chemotherapy-induced cell death and acts as one of the major mechanisms of acquired chemoresistance in cervical cancer. TAK1, a crucial mediator that upregulates NF-κB activation in response to cellular genotoxic stress, is required for tumor cell viability and survival. Herein, we examined whether TAK1 inhibition is a potential therapeutic strategy for treating cervical cancer. We found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of Dox in a panel of cervical cancer cell lines. Treatment with 5Z-7-oxozeaenol hindered Dox-induced NF-κB activation and promoted Dox-induced apoptosis in cervical cancer cells. Moreover, 5Z-7-oxozeaenol showed similar effects in both positive and negative human papillomavirus-infected cervical cancer cells. Taken together, our results provide evidence that TAK1 inhibition significantly sensitizes cervical cancer cells to chemotherapy-induced cell death and supports the use of TAK1 inhibitor with current chemotherapies in the clinic for patients with refractory cervical cancer.
Collapse
Affiliation(s)
- Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Haoqian Liang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
17
|
Liu Z, Kong F, Vallance JE, Harmel-Laws E, Amarachintha S, Steinbrecher KA, Rosen MJ, Bhattacharyya S. Activation of TGF- β activated kinase 1 promotes colon mucosal pathogenesis in inflammatory bowel disease. Physiol Rep 2017; 5:5/7/e13181. [PMID: 28373409 PMCID: PMC5392505 DOI: 10.14814/phy2.13181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
The etiology and mechanisms for inflammatory bowel disease (IBD) are incompletely known. Determination of new, clinically important mechanisms for intestinal inflammation is imperative for developing effective therapies to treat IBD. We sought to define a widespread mechanism for colon mucosal inflammation via the activation of TGF‐β activated Kinase 1 (TAK1), a central regulator of cellular inflammatory actions. Activation of TAK1 and the downstream inflammatory signaling mediators was determined in pediatric patients with ulcerative colitis (UC) or Crohn's disease (CD) as well as in DSS‐induced and spontaneous IBD in mice. The role of TAK1 in facilitating intestinal inflammation in murine models of IBD was investigated by using (5Z)‐7‐Oxozeaenol, a highly selective pharmacological inhibitor of TAK1. We found hyper‐activation of TAK1 in patients with UC or CD and in murine models of IBD. Pharmacological inhibition of TAK1 prevented loss in body weight, disease activity, microscopic histopathology, infiltration of inflammatory cells in the colon mucosa, and elevated proinflammatory cytokine production in two murine models of IBD. We demonstrated that at the early phase of the disease activation of TAK1 is restricted in the epithelial cells. However, at a more advanced stage of the disease, TAK1 activation predominantly occurs in nonepithelial cells, especially in macrophages. These findings elucidate the activation of TAK1 as crucial in promoting intestinal inflammation. Thus, the TAK1 activation pathway may represent a suitable target to design new therapies for treating IBD in humans.
Collapse
Affiliation(s)
- Zhiwei Liu
- Department of Pediatrics, Center for Prevention of Preterm Birth Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - Fansheng Kong
- Department of Pediatrics, Center for Prevention of Preterm Birth Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - Jefferson E Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eleana Harmel-Laws
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kris A Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sandip Bhattacharyya
- Department of Pediatrics, Center for Prevention of Preterm Birth Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| |
Collapse
|
18
|
Wang JS, Wu D, Huang DY, Lin WW. TAK1 inhibition-induced RIP1-dependent apoptosis in murine macrophages relies on constitutive TNF-α signaling and ROS production. J Biomed Sci 2015; 22:76. [PMID: 26381601 PMCID: PMC4574455 DOI: 10.1186/s12929-015-0182-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/05/2015] [Indexed: 12/29/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a key regulator of signal cascades of TNF-α receptor and TLR4, and can induce NF-κB activation for preventing cell apoptosis and eliciting inflammation response. Results TAK1 inhibitor (TAKI) can decrease the cell viability of murine bone marrow-derived macrophages (BMDM), RAW264.7 and BV-2 cells, but not dermal microvascular endothelial cells, normal human epidermal keratinocytes, THP-1 monocytes, human retinal pigment epithelial cells, microglia CHME3 cells, and some cancer cell lines (CL1.0, HeLa and HCT116). In BMDM, TAKI-induced caspase activation and cell apoptosis were enhanced by lipopolysaccharide (LPS). Moreover, TAKI treatment increased the cytosolic and mitochondrial reactive oxygen species (ROS) production, and ROS scavengers NAC and BHA can inhibit cell death caused by TAKI. In addition, RIP1 inhibitor (necrostatin-1) can protect cells against TAKI-induced mitochondrial ROS production and cell apoptosis. We also observed the mitochondrial membrane potential loss after TAKI treatment and deterioration of oxygen consumption upon combination with LPS. Notably TNF-α neutralization antibody and inhibitor enbrel can decrease the cell death caused by TAKI. Conclusions TAKI-induced cytotoxicity is cell context specific, and apoptosis observed in macrophages is dependent on the constitutive autocrine action of TNF-α for RIP1 activation and ROS production.
Collapse
Affiliation(s)
- Jang-Shiun Wang
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Gong J, Li ZZ, Guo S, Zhang XJ, Zhang P, Zhao GN, Gao L, Zhang Y, Zheng A, Zhang XF, Xiang M, Li H. Neuron-Specific Tumor Necrosis Factor Receptor-Associated Factor 3 Is a Central Regulator of Neuronal Death in Acute Ischemic Stroke. Hypertension 2015; 66:604-16. [PMID: 26269654 DOI: 10.1161/hypertensionaha.115.05430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 12/30/2022]
Abstract
Neuronal death after ischemic stroke involves multiple pathophysiological events, as well as a complex molecular mechanism. Inhibiting a single therapeutic target that is involved in several ischemic signaling cascades may be a promising strategy for stroke management. Here, we report the versatile biological roles of tumor necrosis factor receptor-associated factor 3 (TRAF3) in ischemic stroke. Using several genetically manipulated mouse strains, we also demonstrated that TRAF3 inhibition can be neuroprotective. TRAF3 expression, which is robustly induced in response to ischemia/reperfusion (I/R) injury, was detected in neurons. Overexpression of TRAF3 in neurons led to aggravated neuronal loss and enlarged infarcts; these effects were reversed in TRAF3-knockout mice. Neuronal TRAF3 also contributed to c-Jun kinase-, nuclear factor κB- and Rac-1-induced neuronal death, inflammation, and oxidative stress. Mechanistically, we showed that TRAF3 interacts with transforming growth factor-β-activated kinase 1 (TAK1) and potentiates phosphorylation and activation of TAK1. Phosphorylated TAK1 sequentially initiated activation of nuclear factor κB, Rac-1/NADPH oxidase, and c-Jun kinase/c-Jun signaling cascades. Using a combination of adenoviruses encoding dominant-negative TAK1 and the TAK1 inhibitor 5Z-7-oxozeaenol, we demonstrated that the TRAF3-mediated activation of ischemic cascades was TAK1-dependent. More importantly, the adverse phenotypes observed in TRAF3-overexpressing mice were completely reversed when the TRAF3-TAK1 interaction was prevented. Therefore, we have shown that TRAF3 is a central regulator of ischemic pathways, including nuclear factor κB, Rac-1, and c-Jun kinase signaling, via its interaction with and activation of TAK1. Furthermore, certain components of the TRAF3-TAK1 signaling pathway are potentially promising therapeutic targets in ischemic stroke.
Collapse
Affiliation(s)
- Jun Gong
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Zuo-Zhi Li
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Sen Guo
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Guang-Nian Zhao
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Lu Gao
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Yan Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Ankang Zheng
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Xiao-Fei Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Mei Xiang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.).
| |
Collapse
|
20
|
Ojeda NB. Neuron-Specific Tumor Necrosis Factor Receptor-Associated Factor 3 and Acute Ischemic Stroke. Hypertension 2015; 66:472-3. [PMID: 26269652 DOI: 10.1161/hypertensionaha.115.05519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Norma B Ojeda
- From the Departments of Pediatrics (N.B.O.) and the Center for Excellence in Women's Health Research (N.B.O.), University of Mississippi-Medical Center, Jackson.
| |
Collapse
|
21
|
Kong F, Laryea G, Liu Z, Bhattacharyya S. Transforming growth factor-β-activated kinase 1 resistance limits glucocorticoid responsiveness to Toll-like receptor 4-mediated inflammation. Immunology 2015; 145:136-49. [PMID: 25521315 DOI: 10.1111/imm.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoids (GC) are among the most effective anti-inflammatory drugs, but are often associated with serious adverse effects or inadequate therapeutic responses. Here, we use activation of different Toll-like receptors (TLRs) by their respective ligands to evaluate context-specific GC sensitivity in the macrophage. Recruitment and activation of transforming growth factor-β-activated kinase 1 (TAK1), downstream of TLR engagement, is crucial in activating multiple inflammatory pathways, and contributes to inflammatory disorders. We hypothesize that GC exert anti-inflammatory effects through regulation of TAK1. Both in vivo and in vitro, in comparison to other TLRs, there was limited GC potency in restricting TLR4 ligand-mediated secretion of interleukin-6, tumour necrosis factor-α and interleukin-12. Also, we found that inactivation of TAK1 both in vivo and in vitro strongly inhibits TLR4-induced inflammation-associated genes beyond the suppressive effects from GC treatment. However, there was no effect of TAK1 inactivation on GC inhibition of TLR3- or TLR9-initiated inflammatory actions. Together, our findings demonstrate that GC resistance for TAK1 activation associated with TLR4 engagement may be an important contributor to GC resistance in inflammatory disorders.
Collapse
Affiliation(s)
- Fansheng Kong
- Department of Pediatrics, Center for Prevention of Preterm Birth, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
22
|
Zhang D, Yan H, Li H, Hao S, Zhuang Z, Liu M, Sun Q, Yang Y, Zhou M, Li K, Hang C. TGFβ-activated Kinase 1 (TAK1) Inhibition by 5Z-7-Oxozeaenol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage. J Biol Chem 2015; 290:19900-9. [PMID: 26100626 DOI: 10.1074/jbc.m115.636795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that activation of mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB exacerbates early brain injury (EBI) following subarachnoid hemorrhage (SAH) by provoking proapoptotic and proinflammatory cellular signaling. Here we evaluate the role of TGFβ-activated kinase 1 (TAK1), a critical regulator of the NF-κB and MAPK pathways, in early brain injury following SAH. Although the expression level of TAK1 did not present significant alternation in the basal temporal lobe after SAH, the expression of phosphorylated TAK1 (Thr-187, p-TAK1) showed a substantial increase 24 h post-SAH. Intracerebroventricular injection of a selective TAK1 inhibitor (10 min post-SAH), 5Z-7-oxozeaenol (OZ), significantly reduced the levels of TAK1 and p-TAK1 at 24 h post-SAH. Involvement of MAPKs and NF-κB signaling pathways was revealed that OZ inhibited SAH-induced phosphorylation of p38 and JNK, the nuclear translocation of NF-κB p65, and degradation of IκBα. Furthermore, OZ administration diminished the SAH-induced apoptosis and EBI. As a result, neurological deficits caused by SAH were reversed. Our findings suggest that TAK1 inhibition confers marked neuroprotection against EBI following SAH. Therefore, TAK1 might be a promising new molecular target for the treatment of SAH.
Collapse
Affiliation(s)
- Dingding Zhang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Huiying Yan
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Hua Li
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Rd., Nanjing 210093, Jiangsu Province, and
| | - Zong Zhuang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Ming Liu
- the Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, China
| | - Qing Sun
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Yiqing Yang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Mengliang Zhou
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Rd., Nanjing 210093, Jiangsu Province, and
| | - Chunhua Hang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, the Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, China
| |
Collapse
|