1
|
Vukolova MN, Yen LY, Khmyz MI, Sobolevsky AI, Yelshanskaya MV. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors. Front Cell Dev Biol 2023; 11:1252953. [PMID: 38033869 PMCID: PMC10683763 DOI: 10.3389/fcell.2023.1252953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.
Collapse
Affiliation(s)
- Marina N. Vukolova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Laura Y. Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University, New York, NY, United States
| | - Margarita I. Khmyz
- N. V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Maria V. Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Fu J, Zhao X, Tian F, Yu X. Continuous dopaminergic stimulation counteracts L-DOPA-induced overactivity of Ca 2+ in 6-OHDA-lesioned rats. Exp Brain Res 2022; 240:1933-1941. [PMID: 35699744 DOI: 10.1007/s00221-022-06390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
In the clinical treatment of Parkinson's disease (PD), the emergence of L-DOPA-induced dyskinesia (LID) and other motor symptoms remains a restrictive factor for the use of levodopa (L-DOPA). Our objective was to test the effect of continuous dopaminergic stimulation (CDS) on LID and the mechanism of its effect on the calcium (Ca2+) signaling pathway. 6-OHDA (6-hydroxydopamine)-treated rats were administered 1% CMC-Na, L-DOPA, rotigotine behenate (RGTB), and L-DOPA + RGTB, respectively, for 28 days. During the treatment, the abnormal involuntary movement (AIM) scores were conducted on days 1, 5, 10, 14, 19, 23 and 28 after the first dose. Subsequently, the number of tyrosine hydroxylase (TH)-positive neurons was detected by immunohistochemistry. Additionally, the changes in Ca2+ were detected using a laser confocal technique, and the related proteins, such as neuronal NOS (nNOS), BAX, BCL2, CaMKII, P-CaMKII, and PSD-95, were measured by Western blot. Transmission electron microscopy (TEM) was used to investigate the changes in synaptic structure. The data showed that CDS reduced the AIM scores, increased the expression of TH in the substantia nigra (SN), decreased the expression of nNOS and BAX/BCL2ratio in the striatum, reduced the Ca2+ influx induced by L-DOPA and inhibited the Ca2+ signaling pathways of dopamine neurons in the striatum. Moreover, the overactivity of synapses induced by L-DOPA was inhibited by CDS. These data further support the hypothesis that continuous delivery of a dopamine agonist reduces the risk of LID induction. Moreover, RGTB could be a promising treatment for PD by simulating CDS.
Collapse
Affiliation(s)
- Jie Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xinyu Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Fugang Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xin Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
3
|
Search for Selective Glua1 Ampa Receptor Antagonists in a Series of Dicationic Compounds. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Liu Q, Fang L, Wu C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes (Basel) 2022; 13:genes13030401. [PMID: 35327956 PMCID: PMC8951537 DOI: 10.3390/genes13030401] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of pre-mRNA is a key mechanism for increasing the complexity of proteins in humans, causing a diversity of expression of transcriptomes and proteomes in a tissue-specific manner. Alternative splicing is regulated by a variety of splicing factors. However, the changes and errors of splicing regulation caused by splicing factors are strongly related to many diseases, something which represents one of this study’s main interests. Further understanding of alternative splicing regulation mediated by cellular factors is also a prospective choice to develop specific drugs for targeting the dynamic RNA splicing process. In this review, we firstly concluded the basic principle of alternative splicing. Afterwards, we showed how splicing isoforms affect physiological activities through specific disease examples. Finally, the available treatment methods relative to adjusting splicing activities have been summarized.
Collapse
|
5
|
Bishop C. Neuroinflammation: Fanning the fire of l-dopa-induced dyskinesia. Mov Disord 2020; 34:1758-1760. [PMID: 31845761 DOI: 10.1002/mds.27900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christopher Bishop
- Binghamton University, Department of Psychology, Binghamton, New York, USA
| |
Collapse
|
6
|
Carr KD. Homeostatic regulation of reward via synaptic insertion of calcium-permeable AMPA receptors in nucleus accumbens. Physiol Behav 2020; 219:112850. [PMID: 32092445 PMCID: PMC7108974 DOI: 10.1016/j.physbeh.2020.112850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The incentive effects of food and related cues are determined by stimulus properties and the internal state of the organism. Enhanced hedonic reactivity and incentive motivation in energy deficient subjects have been demonstrated in animal models and humans. Defining the neurobiological underpinnings of these state-based modulatory effects could illuminate fundamental mechanisms of adaptive behavior, as well as provide insight into maladaptive consequences of weight loss dieting and the relationship between disturbed eating behavior and substance abuse. This article summarizes research of our laboratory aimed at identifying neuroadaptations induced by chronic food restriction (FR) that increase the reward magnitude of drugs and associated cues. The main findings are that FR decreases basal dopamine (DA) transmission, upregulates signaling downstream of the D1 DA receptor (D1R), and triggers synaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). Selective antagonism of CP-AMPARs decreases excitatory postsynaptic currents in NAc medium spiny neurons of FR rats and blocks the enhanced rewarding effects of d-amphetamine and a D1R, but not a D2R, agonist. These results suggest that FR drives CP-AMPARs into the synaptic membrane of D1R-expressing MSNs, possibly as a homeostatic response to reward loss. FR subjects also display diminished aversion for contexts associated with LiCl treatment and centrally infused cocaine. An encompassing, though speculative, hypothesis is that NAc synaptic incorporation of CP-AMPARs in response to food scarcity and other forms of sustained reward loss adaptively increases incentive effects of reward stimuli and, at the same time, diminishes responsiveness to aversive stimuli that have potential to interfere with goal pursuit.
Collapse
Affiliation(s)
- Kenneth D Carr
- Departments of Psychiatry and Biochemistry and Molecular Pharmacology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| |
Collapse
|
7
|
Boi L, Pisanu A, Greig NH, Scerba MT, Tweedie D, Mulas G, Fenu S, Carboni E, Spiga S, Carta AR. Immunomodulatory drugs alleviate l-dopa-induced dyskinesia in a rat model of Parkinson's disease. Mov Disord 2019; 34:1818-1830. [PMID: 31335998 DOI: 10.1002/mds.27799] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Thalidomide and closely related analogues are used clinically for their immunomodulatory and antiangiogenic properties mediated by the inhibition of the proinflammatory cytokine tumor necrosis factor α. Neuroinflammation and angiogenesis contribute to classical neuronal mechanisms underpinning the pathophysiology of l-dopa-induced dyskinesia, a motor complication associated with l-dopa therapy in Parkinson's disease. The efficacy of thalidomide and the more potent derivative 3,6'-dithiothalidomide on dyskinesia was tested in the 6-hydroxydopamine Parkinson's disease model. METHODS Three weeks after 6-hydroxydopamine infusion, rats received 10 days of treatment with l-dopa plus benserazide (6 mg/kg each) and thalidomide (70 mg/kg) or 3,6'-dithiothalidomide (56 mg/kg), and dyskinesia and contralateral turning were recorded daily. Rats were euthanized 1 hour after the last l-dopa injection, and levels of tumor necrosis factor-α, interleukin-10, OX-42, vimentin, and vascular endothelial growth factor immunoreactivity were measured in their striatum and substantia nigra reticulata to evaluate neuroinflammation and angiogenesis. Striatal levels of GLUR1 were measured as a l-dopa-induced postsynaptic change that is under tumor necrosis factor-α control. RESULTS Thalidomide and 3,6'-dithiothalidomide significantly attenuated the severity of l-dopa-induced dyskinesia while not affecting contralateral turning. Moreover, both compounds inhibited the l-dopa-induced microgliosis and excessive tumor necrosis factor-α in the striatum and substantia nigra reticulata, while restoring physiological levels of the anti-inflammatory cytokine interleukin-10. l-Dopa-induced angiogenesis was inhibited in both basal ganglia nuclei, and l-dopa-induced GLUR1 overexpression in the dorsolateral striatum was restored to normal levels. CONCLUSIONS These data suggest that decreasing tumor necrosis factor-α levels may be useful to reduce the appearance of dyskinesia, and thalidomide, and more potent derivatives may provide an effective therapeutic approach to dyskinesia. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Augusta Pisanu
- CNR Institute of Neuroscience, Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute of Aging, Baltimore, Maryland, USA
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, National Institute of Aging, Baltimore, Maryland, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute of Aging, Baltimore, Maryland, USA
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Mariani LL, Longueville S, Girault JA, Hervé D, Gervasi N. Differential enhancement of ERK, PKA and Ca 2+ signaling in direct and indirect striatal neurons of Parkinsonian mice. Neurobiol Dis 2019; 130:104506. [PMID: 31220556 DOI: 10.1016/j.nbd.2019.104506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by severe locomotor deficits due to the disappearance of dopamine (DA) from the dorsal striatum. The development of PD symptoms and treatment-related complications such as dyskinesia have been proposed to result from complex alterations in intracellular signaling in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) following loss of DA afferents. To identify cell-specific and dynamical modifications of signaling pathways associated with PD, we used a hemiparkinsonian mouse model with 6-hydroxydopamine (6-OHDA) lesion combined with two-photon fluorescence biosensors imaging in adult corticostriatal slices. After DA lesion, extracellular signal-regulated kinase (ERK) activation was increased in response to DA D1 receptor (D1R) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation. The cAMP-dependent protein kinase (PKA) pathway contributing to ERK activation displayed supersensitive responses to D1R stimulation after 6-OHDA lesion. This cAMP/PKA supersensitivity was specific of D1R-responding SPNs and resulted from Gαolf upregulation and deficient phosphodiesterase activity. In lesioned striatum, the number of D1R-SPNs with spontaneous Ca2+ transients augmented while Ca2+ response to AMPA receptor stimulation specifically increased in iSPNs. Our work reveals distinct cell type-specific signaling alterations in the striatum after DA denervation. It suggests that over-activation of ERK pathway, observed in PD striatum, known to contribute to dyskinesia, may be linked to the combined dysregulation of DA and glutamate signaling pathways in the two populations of SPNs. These findings bring new insights into the implication of these respective neuronal populations in PD motor symptoms and the occurrence of PD treatment complications.
Collapse
Affiliation(s)
- Louise-Laure Mariani
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Sophie Longueville
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Nicolas Gervasi
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
9
|
|
10
|
Chotibut T, Meadows S, Kasanga E, McInnis T, Cantu MA, Bishop C, Salvatore MF. Ceftriaxone reduces L-dopa-induced dyskinesia severity in 6-hydroxydopamine parkinson's disease model. Mov Disord 2017; 32:1547-1556. [PMID: 28631864 PMCID: PMC5681381 DOI: 10.1002/mds.27077] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increased extracellular glutamate may contribute to l-dopa induced dyskinesia, a debilitating side effect faced by Parkinson's disease patients 5 to 10 years after l-dopa treatment. Therapeutic strategies targeting postsynaptic glutamate receptors to mitigate dyskinesia may have limited success because of significant side effects. Increasing glutamate uptake may be another approach to attenuate excess glutamatergic neurotransmission to mitigate dyskinesia severity or prolong the time prior to onset. Initiation of a ceftriaxone regimen at the time of nigrostriatal lesion can attenuate tyrosine hydroxylase loss in conjunction with increased glutamate uptake and glutamate transporter GLT-1 expression in a rat 6-hydroxydopamine model. In this article, we examined if a ceftriaxone regimen initiated 1 week after nigrostriatal lesion, but prior to l-dopa, could reduce l-dopa-induced dyskinesia in an established dyskinesia model. METHODS Ceftriaxone (200 mg/kg, intraperitoneal, once daily, 7 consecutive days) was initiated 7 days post-6-hydroxydopamine lesion (days 7-13) and continued every other week (days 21-27, 35-39) until the end of the study (day 39 postlesion, 20 days of l-dopa). RESULTS Ceftriaxone significantly reduced abnormal involuntary movements at 5 time points examined during chronic l-dopa treatment. Partial recovery of motor impairment from nigrostriatal lesion by l-dopa was unaffected by ceftriaxone. The ceftriaxone-treated l-dopa group had significantly increased striatal GLT-1 expression and glutamate uptake. Striatal tyrosine hydroxylase loss in this group was not significantly different when compared with the l-dopa alone group. CONCLUSIONS Initiation of ceftriaxone after nigrostriatal lesion, but prior to and during l-dopa, may reduce dyskinesia severity without affecting l-dopa efficacy or the reduction of striatal tyrosine hydroxylase loss. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tanya Chotibut
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Samantha Meadows
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000
| | - Ella Kasanga
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
| | - Tamara McInnis
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
| | - Mark A. Cantu
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000
| | - Michael F. Salvatore
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
11
|
Wen W, Lin CY, Niu L. R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 2017; 7:13654. [PMID: 29057893 PMCID: PMC5651858 DOI: 10.1038/s41598-017-13233-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
In α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors, RNA editing and alternative splicing generate sequence variants, and those variants, as in GluA2-4 AMPA receptor subunits, generally show different properties. Yet, earlier studies have shown that the alternatively spliced, flip and flop variants of GluA1 AMPA receptor subunit exhibit no functional difference in homomeric channel form. Using a laser-pulse photolysis technique, combined with whole-cell recording, we measured the rate of channel opening, among other kinetic properties, for a series of AMPA channels with different arginine/glycine (R/G) editing and flip/flop status. We find that R/G editing in the GluA2 subunit modulates the channel properties in both homomeric (GluA2Q) and complex (GluA2Q/2R and GluA1/2R) channel forms. However, R/G editing is only effective in flop channels. Specifically, editing at the R/G site on the GluA2R flop isoform accelerates the rate of channel opening and desensitization for GluA1/2R channels more pronouncedly with the GluA1 being in the flop form than in the flip form; yet R/G editing has no effect on either channel-closing rate or EC50. Our results suggest R/G editing via GluA2R serve as a regulatory mechanism to modulate the function of GluA2R-containing, native receptors involved in fast excitatory synaptic transmission.
Collapse
Affiliation(s)
- Wei Wen
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Chi-Yen Lin
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States.
| |
Collapse
|
12
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
13
|
Rylander Ottosson D, Lane E. Striatal Plasticity in L-DOPA- and Graft-Induced Dyskinesia; The Common Link? Front Cell Neurosci 2016; 10:16. [PMID: 26903804 PMCID: PMC4744851 DOI: 10.3389/fncel.2016.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
One of the major symptoms of the neurodegenerative condition Parkinson's disease (PD) is a slowness or loss of voluntary movement, yet frustratingly therapeutic strategies designed to restore movement can result in the development of excessive abnormal movements known as dyskinesia. These dyskinesias commonly develop as a result of pharmacotherapy in the form of L-DOPA administration, but have also been identified following deep brain stimulation (DBS) and intrastriatal cell transplantation. In the case of L-DOPA these movements can be treatment limiting, and whilst they are not long lasting or troubling following DBS, recognition of their development had a near devastating effect on the field of cell transplantation for PD.Understanding the relationship between these therapeutic approaches and the development of dyskinesia may improve our ability to restore function without disabling side effects. Interestingly, despite the fact that dopaminergic cell transplantation repairs many of the changes induced by the disease process and through L-DOPA treatment, there appears to be a relationship between the two. In rodent models of the disease, the severity of dyskinesia induced by L-DOPA prior to the transplantation procedure correlated with post-transplantation, graft-induced dyskinesia. A review of clinical data also suggested that the worse preoperational dyskinesia causes worsened graft-induced dyskinesia (GID). Understanding how these aberrant behaviors come about has been of keen interest to open up these therapeutic options more widely and one major underlying theory is the effects of these approaches on the plasticity of synapses within the basal ganglia. This review uniquely brings together developments in understanding the role of striatal synaptic plasticity in both L-DOPA and GID to guide and stimulate further investigations on the important striatal plasticity.
Collapse
Affiliation(s)
- Daniella Rylander Ottosson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | - Emma Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
14
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
15
|
Alò R, Mele M, Avolio E, Fazzari G, Canonaco M. Distinct Amygdalar AMPAergic/GABAergic Mechanisms Promote Anxiolitic-Like Effects in an Unpredictable Stress Model of the Hamster. J Mol Neurosci 2014; 55:541-51. [DOI: 10.1007/s12031-014-0386-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 01/16/2023]
|
16
|
Finlay C, Duty S. Therapeutic potential of targeting glutamate receptors in Parkinson's disease. J Neural Transm (Vienna) 2014; 121:861-80. [PMID: 24557498 DOI: 10.1007/s00702-014-1176-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Clare Finlay
- Wolfson Centre for Age-Related Diseases, King's College London, WW1.28. Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|