1
|
Johnson AR, Said A, Acevedo J, Taylor R, Wu K, Ray WZ, Patterson JM, Mackinnon SE. An Updated Evaluation of the Management of Nerve Gaps: Autografts, Allografts, and Nerve Transfers. Semin Neurol 2025; 45:157-175. [PMID: 39393799 DOI: 10.1055/s-0044-1791665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Within the past decade, there have been multiple innovations in the field of nerve surgery. In this review, we highlight critical changes and innovations that have helped advance the field and present opportunities for further study. This includes the modification and clarification of the classification schema for nerve injuries which informs prognosis and treatment, and a refined understanding and application of electrodiagnostic studies to guide patient selection. We provide indications for operative intervention based on this nerve injury classification and propose strategies best contoured for varying injury presentations at differing time points. Lastly, we discuss new developments in surgical techniques and approaches based on these advancements.
Collapse
Affiliation(s)
- Anna Rose Johnson
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Abdullah Said
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jesus Acevedo
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ruby Taylor
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kitty Wu
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - J Megan Patterson
- Department of Orthopedic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Acevedo Cintrón JA, Mackinnon SE. Discussion: GalT Knockout Porcine Nerve Xenografts Support Axonal Regeneration in a Rodent Sciatic Nerve Model. Plast Reconstr Surg 2025; 155:101-104. [PMID: 39700246 DOI: 10.1097/prs.0000000000011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
|
3
|
King NC, Tsui JM, Bejar-Chapa M, Marshall MS, Kogosov AS, Fan Y, Hansdorfer MA, Locascio JJ, Randolph MA, Winograd JM. GalT Knockout Porcine Nerve Xenografts Support Axonal Regeneration in a Rodent Sciatic Nerve Model. Plast Reconstr Surg 2025; 155:91-100. [PMID: 38548707 DOI: 10.1097/prs.0000000000011441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
BACKGROUND Nerve xenografts harvested from transgenic α1,3-galactosyltransferase knockout pigs lack the epitope responsible for hyperacute rejection in pig-to-primate transplants. It is unknown whether these cold-preserved nerve grafts support axonal regeneration in another species during and after immunosuppression. The authors compared outcomes between autografts and cold-preserved xenografts in a rat sciatic model of nerve gap repair. METHODS Fifty male Lewis rats had a 1-cm sciatic nerve defect repaired using autograft and suture ( n = 10); 1-week or 4-week cold-preserved xenograft and suture ( n = 10 per group); or 1-week or 4-week cold-preserved xenograft and photochemical tissue bonding using a human amnion wrap ( n = 10 per group). Rats with xenografts were given tacrolimus until 4 months postoperatively. At 4 and 7 months, rats were killed and nerve sections were harvested. Monthly sciatic functional index (SFI) scores were calculated. RESULTS All groups showed increases in SFI scores by 4 and 7 months. The autograft suture group had the highest axon density at 4 and 7 months. The largest decrease in axon density from 4 to 7 months was in the group with 1-week cold-preserved photochemical tissue bonding using a human amnion wrap. The only significant difference between group SFI scores occurred at 5 months, when both 1-week cold-preserved groups had significantly lower scores than the 4-week cold-preserved suture group. CONCLUSIONS The results suggest that α1,3-galactosyltransferase knockout nerve xenografts may be viable alternatives to autografts. Further studies of long-gap repair and comparison with acellular nerve allografts are needed. CLINICAL RELEVANCE STATEMENT This proof-of-concept study in the rat sciatic model demonstrates that cold-preserved α1,3-galactosyltransferase knockout porcine xenografts support axonal regeneration and viability following immunosuppression withdrawal. These results further suggest a role for both cold preservation and photochemical tissue bonding in modulating the immunological response at the nerve repair site.
Collapse
Affiliation(s)
- Nicholas C King
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Jane M Tsui
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Maria Bejar-Chapa
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Michael S Marshall
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Ann S Kogosov
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Yingfang Fan
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
- Wellman Center for Photomedicine, Massachusetts General Hospital
| | - Marek A Hansdorfer
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Joseph J Locascio
- Massachusetts General Research Institute, Harvard Catalyst Biostatistical Consulting Group, Harvard Medical School
| | - Mark A Randolph
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Jonathan M Winograd
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| |
Collapse
|
4
|
Yergeshov A, Zoughaib M, Dayob K, Kamalov M, Luong D, Zakirova A, Mullin R, Salakhieva D, Abdullin TI. Newly Designed PCL-Wrapped Cryogel-Based Conduit Activated with IKVAV Peptide Derivative for Peripheral Nerve Repair. Pharmaceutics 2024; 16:1569. [PMID: 39771548 PMCID: PMC11677967 DOI: 10.3390/pharmaceutics16121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. Methods: In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart. The optimized cryogel scaffold was combined with polycaprolactone (PCL)-based shell tube to form a suturable nerve conduit (NC) to be implanted into sciatic nerve diastasis in rats. Results: The NC constituents did not impair the viability of primary skin fibroblasts. Concentration-dependent effects of the peptide component on interrelated viscoelastic and swelling properties of the cryogels as well as on proliferation and morphological differentiation of neurogenic PC-12 cells were established, also indicating the existence of an optimal-density range of the introduced peptide. The in vivo implanted NC sustained the connection of the nerve stumps with partial degradation of the PCL tube over eight weeks, whereas the core-filling cryogel profoundly improved local electromyographic recovery and morphological repair of the nerve tissues, confirming the regenerative activity of the developed scaffold. Conclusions: These results provide proof-of-concept for the development of a newly designed PN conduit prototype based on IKVAV-activated cryogel, and they can be exploited to create other ECM-mimicking scaffolds.
Collapse
Affiliation(s)
- Abdulla Yergeshov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Mohamed Zoughaib
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Kenana Dayob
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Duong Luong
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Albina Zakirova
- Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, Department of Oncology and Plastic Surgery, 91 Volokolamsk Highway, 125371 Moscow, Russia
| | - Ruslan Mullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- State Autonomous Healthcare Institution Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, 138 Orenburg Highway, 420064 Kazan, Russia
| | - Diana Salakhieva
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
| | - Timur I. Abdullin
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
5
|
Mehrotra P, Jablonski J, Toftegaard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo KCS, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun 2024; 15:9218. [PMID: 39455585 PMCID: PMC11511891 DOI: 10.1038/s41467-024-53276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kelly C S Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary, Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| | - Kirkwood E Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Choi SJ, Han J, Shin YH, Kim JK. Increased efficiency of peripheral nerve regeneration using supercritical carbon dioxide-based decellularization in acellular nerve graft. Sci Rep 2024; 14:23696. [PMID: 39389997 PMCID: PMC11467423 DOI: 10.1038/s41598-024-72672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Acellular nerve grafts (ANGs) are a promising therapeutic for patients with nerve defects caused by injuries. Conventional decellularization methods utilize a variety of detergents and enzymes. However, these methods have disadvantages, such as long processing times and the presence of detergents that remain on the graft. In this study, we aimed to reduce process time and minimize the risks associated with residual detergents by replacing them with supercritical carbon dioxide (scCO2) and compared the effectiveness to Hudson's decellularization method, which uses several detergents. The dsDNA and the expression of MHC1 and 2 were significantly reduced in both decellularized groups, which confirmed the effective removal of cellular debris. The extracellular matrix proteins and various factors were found to be better preserved in the scCO2 ANGs compared to the detergent-ANGs. We conducted behavioral tests and histological analyses to assess the impact of scCO2 ANGs on peripheral nerve regeneration in animal models. Compared with Hudson's method, the scCO2 method effectively improved the efficacy of peripheral nerve regeneration. Therefore, the decellularization method using scCO2 is not only beneficial for ANG synthesis, but it may also be helpful for therapeutics by enhancing the efficacy of peripheral nerve regeneration.
Collapse
Affiliation(s)
| | | | - Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jae Kwang Kim
- Asan Institute for Life Sciences, Seoul, Korea.
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
7
|
Lapiņš J, Polita BSD, Kalniņa L, Grucki M, Ozols D, Ģīlis A, Irmejs A, Gardovskis J, Maksimenko J. Novel Nipple Reinnervation Technique Using N. Suralis Graft. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1533. [PMID: 39336573 PMCID: PMC11433809 DOI: 10.3390/medicina60091533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Following nipple-sparing mastectomy (NSM), patients commonly experience significant impairment or total loss of nipple sensitivity, which negatively impacts the patients' quality of life, whereas patients who retain nipple sensation postoperatively experience enhanced physical, psychosocial, and sexual well-being. Reinnervation techniques such as nerve allografting have been utilized to retain sensation. Despite the benefits of nerve allografts, such as lack of donor site morbidity, ease of use, and potentially shorter surgery time, there are shortcomings, such as the cost of commercially available acellular nerve allografts, and, most importantly, decreased sensory and motor function recovery for acellular nerve allografts with a diameter greater than 3 mm or a length greater than 50 mm. We present a technique where we performed immediate implant-based breast reconstruction combined with nipple-areola complex reinnervation using an autologous nerve graft. Following the procedure, the patient had improved sensory outcomes in the reconstructed breast and good quality-of-life indices. This report highlights the potential for sural nerve autografts in restoring breast sensation following mastectomy.
Collapse
Affiliation(s)
- Jānis Lapiņš
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
| | | | - Linda Kalniņa
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Michal Grucki
- Faculty of Medicine, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dzintars Ozols
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Pediatric Surgery, Children Clinical University Hospital, LV-1004 Riga, Latvia
| | - Ansis Ģīlis
- Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
| | - Arvīds Irmejs
- Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
- Institute of Oncolgy and Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Jānis Gardovskis
- Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Surgery, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Jeļena Maksimenko
- Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
- Institute of Oncolgy and Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
8
|
Abstract
Long-gap nerve injuries offer unique physiological and logistical treatment challenges to the reconstructive surgeon. Options include nerve autograft, processed nerve allograft, nerve transfers, and tendon transfers. This review provides an evidence-framed discussion regarding the pros and cons of these diverse approaches.
Collapse
Affiliation(s)
- Annabel Baek
- Division of Plastic and Reconstructive Surgery, Virginia Commonwealth University Health System, Richmond, VA
| | - Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Health System, Richmond, VA
| |
Collapse
|
9
|
Azapagic A, Agarwal J, Gale B, Shea J, Wojtalewicz S, Sant H. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model. Biomed Microdevices 2024; 26:34. [PMID: 39102047 DOI: 10.1007/s10544-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of in vitro experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent in vivo assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.
Collapse
Affiliation(s)
- Azur Azapagic
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA.
| | - Jayant Agarwal
- Department of Surgery, Division of Plastic Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Bruce Gale
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
- Department of Biomedical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Susan Wojtalewicz
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
| | - Himanshu Sant
- Department of Chemical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| |
Collapse
|
10
|
Isaacs JE, Drinane JJ. Nerve Allografts: Current Utility and Future Directions. Hand Clin 2024; 40:357-367. [PMID: 38972680 DOI: 10.1016/j.hcl.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Processed nerve allograft is a widely accepted tool for reconstructing peripheral nerve defects. Repair parameters that need to be considered include gap length, nerve diameter, nerve type (motor, sensory, or mixed), and the soft tissue envelope. Although the use of processed nerve allograft must be considered based on each unique clinical scenario, a rough algorithm can be formed based on the available animal and clinical literature. This article critically reviews the current surgical algorithm, defines the role of processed nerve allograft compared with nerve autograft, and discusses how this role may change in the future.
Collapse
Affiliation(s)
- Jonathan E Isaacs
- Division of Hand Surgery, Department of Orthopedic Surgery, Virginia Commonwealth University Health System, 1200 East Broad Street, Richmond, VA, USA.
| | - James J Drinane
- Division of Hand Surgery, Department of Orthopedic Surgery, Virginia Commonwealth University Health System, 1200 East Broad Street, Richmond, VA, USA
| |
Collapse
|
11
|
Marsh EB, Snyder-Warwick AK, Mackinnon SE, Wood MD. Interpretation of Data from Translational Rodent Nerve Injury and Repair Models. Hand Clin 2024; 40:429-440. [PMID: 38972687 PMCID: PMC11228394 DOI: 10.1016/j.hcl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This article highlights the use of rodents as preclinical models to evaluate the management of nerve injuries, describing the pitfalls and value from rodent nerve injury and regeneration outcomes, as well as treatments derived from these rodent models. The anatomic structure, size, and cellular and molecular differences and similarities between rodent and human nerves are summarized. Specific examples of success and failure when assessing outcome metrics are presented for context. Evidence for translation to clinical practice includes the topics of electrical stimulation, Tacrolimus (FK506), and acellular nerve allografts.
Collapse
Affiliation(s)
- Evan B Marsh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
12
|
Crabtree JR, Mulenga CM, Tran K, Feinberg K, Santerre JP, Borschel GH. Biohacking Nerve Repair: Novel Biomaterials, Local Drug Delivery, Electrical Stimulation, and Allografts to Aid Surgical Repair. Bioengineering (Basel) 2024; 11:776. [PMID: 39199733 PMCID: PMC11352148 DOI: 10.3390/bioengineering11080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The regenerative capacity of the peripheral nervous system is limited, and peripheral nerve injuries often result in incomplete healing and poor outcomes even after repair. Transection injuries that induce a nerve gap necessitate microsurgical intervention; however, even the current gold standard of repair, autologous nerve graft, frequently results in poor functional recovery. Several interventions have been developed to augment the surgical repair of peripheral nerves, and the application of functional biomaterials, local delivery of bioactive substances, electrical stimulation, and allografts are among the most promising approaches to enhance innate healing across a nerve gap. Biocompatible polymers with optimized degradation rates, topographic features, and other functions provided by their composition have been incorporated into novel nerve conduits (NCs). Many of these allow for the delivery of drugs, neurotrophic factors, and whole cells locally to nerve repair sites, mitigating adverse effects that limit their systemic use. The electrical stimulation of repaired nerves in the perioperative period has shown benefits to healing and recovery in human trials, and novel biomaterials to enhance these effects show promise in preclinical models. The use of acellular nerve allografts (ANAs) circumvents the morbidity of donor nerve harvest necessitated by the use of autografts, and improvements in tissue-processing techniques may allow for more readily available and cost-effective options. Each of these interventions aid in neural regeneration after repair when applied independently, and their differing forms, benefits, and methods of application present ample opportunity for synergistic effects when applied in combination.
Collapse
Affiliation(s)
- Jordan R. Crabtree
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khoa Tran
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Konstantin Feinberg
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - J. Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON M5S 3G9, Canada
| | - Gregory H. Borschel
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Bateman EA, Pripotnev S, Larocerie-Salgado J, Ross DC, Miller TA. Assessment, management, and rehabilitation of traumatic peripheral nerve injuries for non-surgeons. Muscle Nerve 2024. [PMID: 39030747 DOI: 10.1002/mus.28185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Electrodiagnostic evaluation is often requested for persons with peripheral nerve injuries and plays an important role in their diagnosis, prognosis, and management. Peripheral nerve injuries are common and can have devastating effects on patients' physical, psychological, and socioeconomic well-being; alongside surgeons, electrodiagnostic medicine specialists serve a central function in ensuring patients receive optimal treatment for these injuries. Surgical intervention-nerve grafting, nerve transfers, and tendon transfers-often plays a critical role in the management of these injuries and the restoration of patients' function. Increasingly, nerve transfers are becoming the standard of care for some types of peripheral nerve injury due to two significant advantages: first, they shorten the time to reinnervation of denervated muscles; and second, they confer greater specificity in directing motor and sensory axons toward their respective targets. As the indications for, and use of, nerve transfers expand, so too does the role of the electrodiagnostic medicine specialist in establishing or confirming the diagnosis, determining the injury's prognosis, recommending treatment, aiding in surgical planning, and supporting rehabilitation. Having a working knowledge of nerve and/or tendon transfer options allows the electrodiagnostic medicine specialist to not only arrive at the diagnosis and prognosticate, but also to clarify which nerves and/or muscles might be suitable donors, such as confirming whether the branch to supinator could be a nerve transfer donor to restore distal posterior interosseous nerve function. Moreover, post-operative testing can determine if nerve transfer reinnervation is occurring and progress patients' rehabilitation and/or direct surgeons to consider tendon transfers.
Collapse
Affiliation(s)
- Emma A Bateman
- Parkwood Institute, St Joseph's Health Care London, London, Canada
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Stahs Pripotnev
- Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care London, London, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | | | - Douglas C Ross
- Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care London, London, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Thomas A Miller
- Parkwood Institute, St Joseph's Health Care London, London, Canada
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
14
|
Acevedo Cintrón JA, Hunter DA, Schellhardt L, Pan D, Mackinnon SE, Wood MD. Limited Nerve Regeneration across Acellular Nerve Allografts (ANAs) Coincides with Changes in Blood Vessel Morphology and the Development of a Pro-Inflammatory Microenvironment. Int J Mol Sci 2024; 25:6413. [PMID: 38928119 PMCID: PMC11204013 DOI: 10.3390/ijms25126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.A.C.); (D.A.H.); (L.S.); (D.P.); (S.E.M.)
| |
Collapse
|
15
|
Vanický I, Blaško J, Tomori Z, Michalová Z, Székiová E. Rat ventral caudal nerve as a model for long distance regeneration. IBRO Neurosci Rep 2024; 16:476-484. [PMID: 39007082 PMCID: PMC11240296 DOI: 10.1016/j.ibneur.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/15/2024] [Indexed: 07/16/2024] Open
Abstract
In the rat, tail nerves are the longest peripheral nerves in their body. We suggest that ventral caudal nerve (VCN) may serve as a model for studying nerve injury and long distance regeneration. For this purpose, we have studied the anatomy and morphometry of the VCN in control animals. 10 cm long segment of the VCN was removed, and transversal sections were collected at 10 mm distances. The myelinated axons were counted, and the series of data were used to characterize the craniocaudal tapering of the nerve. In a separate group of animals, retrograde tracing with Fluorogold was used to localize and quantitate the spinal neurons projecting their axons into the VCN. After complete nerve transection, the time course of histopathological changes in the distal segment was studied. The primary goal was to define the time needed for axonal disintegration. In later periods, axonal debris removal and rearrangement of tissue elements was documented. After compression injury (axonotmesis), Wallerian degeneration was followed by spontaneous regeneration of axons. We show that the growing axons will span the 10 cm distance within 4-8 weeks. After different survival periods, the numbers of regenerating axons were counted at 10 mm distances. These data were used to characterize the dynamics of axonal regeneration during 4 months' survival period. In the present study we show that axonal regeneration across 10 cm distance can be studied and quantitatively analyzed in a small laboratory animal.
Collapse
Affiliation(s)
- Ivo Vanický
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| | - Juraj Blaško
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| | - Zoltán Tomori
- Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, Košice 04001, Slovakia
| | - Zuzana Michalová
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| | - Eva Székiová
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| |
Collapse
|
16
|
Omar Khudhur Z, Ziyad Abdulqadir S, Faqiyazdin Ahmed Mzury A, Aziz Rasoul A, Wasman Smail S, Ghayour MB, Abdolmaleki A. Epothilone B loaded in acellular nerve allograft enhanced sciatic nerve regeneration in rats. Fundam Clin Pharmacol 2024; 38:307-319. [PMID: 37857403 DOI: 10.1111/fcp.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Epothilone B (EpoB) is a microtubule-stabilizing agent with neuroprotective properties. OBJECTIVES This study examines the regenerative properties of ANA supplemented with EpoB on a sciatic nerve deficit in male Wistar rats. METHODS For this purpose, the 10 mm nerve gap was filled with acellular nerve allografts (ANAs) containing EpoB at 0.1, 1, and 10 nM concentrations. The sensorimotor recovery was evaluated up to 16 weeks after the operation. Real-time PCR, histomorphometry analysis, and electrophysiological evaluation were also used to evaluate the process of nerve regeneration. RESULTS ANA/EpoB (0.1 nM) significantly improved sensorimotor recovery in rats compared to ANA, ANA/EpoB (1 nM), and ANA/EpoB (10 nM) groups. This led to reduced muscle atrophy, improved sciatic functional index, and thermal paw withdrawal reflex latency, indicating nerve regeneration and target organ reinnervation. The electrophysiological and histomorphometry findings also confirmed the ANA/EpoB regenerative properties (0.1 nM). EpoB only enhanced ANA regenerative properties at 0.1 nM, with no therapeutic effects at higher concentrations. CONCLUSION Totally, we concluded that ANA loaded with 0.1 nM EpoB can effectively reconstruct the transected sciatic nerve in rats, likely by enhancing axonal sprouting and extension.
Collapse
Affiliation(s)
- Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | | | | | - Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| |
Collapse
|
17
|
Redolfi Riva E, Özkan M, Contreras E, Pawar S, Zinno C, Escarda-Castro E, Kim J, Wieringa P, Stellacci F, Micera S, Navarro X. Beyond the limiting gap length: peripheral nerve regeneration through implantable nerve guidance conduits. Biomater Sci 2024; 12:1371-1404. [PMID: 38363090 DOI: 10.1039/d3bm01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peripheral nerve damage results in the loss of sensorimotor and autonomic functions, which is a significant burden to patients. Furthermore, nerve injuries greater than the limiting gap length require surgical repair. Although autografts are the preferred clinical choice, their usage is impeded by their limited availability, dimensional mismatch, and the sacrifice of another functional donor nerve. Accordingly, nerve guidance conduits, which are tubular scaffolds engineered to provide a biomimetic environment for nerve regeneration, have emerged as alternatives to autografts. Consequently, a few nerve guidance conduits have received clinical approval for the repair of short-mid nerve gaps but failed to regenerate limiting gap damage, which represents the bottleneck of this technology. Thus, it is still necessary to optimize the morphology and constituent materials of conduits. This review summarizes the recent advances in nerve conduit technology. Several manufacturing techniques and conduit designs are discussed, with emphasis on the structural improvement of simple hollow tubes, additive manufacturing techniques, and decellularized grafts. The main objective of this review is to provide a critical overview of nerve guidance conduit technology to support regeneration in long nerve defects, promote future developments, and speed up its clinical translation as a reliable alternative to autografts.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Melis Özkan
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Estefania Contreras
- Integral Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Sujeet Pawar
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Enrique Escarda-Castro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jaehyeon Kim
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Francesco Stellacci
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Institute Guttmann Foundation, Hospital of Neurorehabilitation, Badalona, Spain
| |
Collapse
|
18
|
Broeren BO, Hundepool CA, Kumas AH, Duraku LS, Walbeehm ET, Hooijmans CR, Power DM, Zuidam JM, De Jong T. The effectiveness of acellular nerve allografts compared to autografts in animal models: A systematic review and meta-analysis. PLoS One 2024; 19:e0279324. [PMID: 38295088 PMCID: PMC10829984 DOI: 10.1371/journal.pone.0279324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/07/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Treatment of nerve injuries proves to be a worldwide clinical challenge. Acellular nerve allografts are suggested to be a promising alternative for bridging a nerve gap to the current gold standard, an autologous nerve graft. OBJECTIVE To systematically review the efficacy of the acellular nerve allograft, its difference from the gold standard (the nerve autograft) and to discuss its possible indications. MATERIAL AND METHODS PubMed, Embase and Web of Science were systematically searched until the 4th of January 2022. Original peer reviewed paper that presented 1) distinctive data; 2) a clear comparison between not immunologically processed acellular allografts and autologous nerve transfers; 3) was performed in laboratory animals of all species and sex. Meta analyses and subgroup analyses (for graft length and species) were conducted for muscle weight, sciatic function index, ankle angle, nerve conduction velocity, axon count diameter, tetanic contraction and amplitude using a Random effects model. Subgroup analyses were conducted on graft length and species. RESULTS Fifty articles were included in this review and all were included in the meta-analyses. An acellular allograft resulted in a significantly lower muscle weight, sciatic function index, ankle angle, nerve conduction velocity, axon count and smaller diameter, tetanic contraction compared to an autologous nerve graft. No difference was found in amplitude between acellular allografts and autologous nerve transfers. Post hoc subgroup analyses of graft length showed a significant reduced muscle weight in long grafts versus small and medium length grafts. All included studies showed a large variance in methodological design. CONCLUSION Our review shows that the included studies, investigating the use of acellular allografts, showed a large variance in methodological design and are as a consequence difficult to compare. Nevertheless, our results indicate that treating a nerve gap with an allograft results in an inferior nerve recovery compared to an autograft in seven out of eight outcomes assessed in experimental animals. In addition, based on our preliminary post hoc subgroup analyses we suggest that when an allograft is being used an allograft in short and medium (0-1cm, > 1-2cm) nerve gaps is preferred over an allograft in long (> 2cm) nerve gaps.
Collapse
Affiliation(s)
- Berend O. Broeren
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Caroline A. Hundepool
- Department of Plastic & Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Ali H. Kumas
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Liron S. Duraku
- Department of Plastic, Reconstructive & Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik T. Walbeehm
- Department of Plastic, Reconstructive & Hand Surgery, Haga Hospital and Xpert Clinic, Den Haag, The Netherlands
| | - Carlijn R. Hooijmans
- Department for Health Evidence Unit SYRCLE, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dominic M. Power
- Department of Hand & Peripheral Nerve Surgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - J. Michiel Zuidam
- Department of Plastic & Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Tim De Jong
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Mehrotra P, Jablonski J, Toftegard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo K, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. RESEARCH SQUARE 2024:rs.3.rs-3463557. [PMID: 38260278 PMCID: PMC10802751 DOI: 10.21203/rs.3.rs-3463557/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. The onset of PNI is characterized by nerve degeneration distal to the nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generated a mouse model in which NANOG, a pluripotency-associated transcription factor can be expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulated the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression led to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation, and downregulation of key muscle atrophy genes. Further, NANOG mice demonstrated extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice showed greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming the muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY 14214, USA
| | - John Toftegard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kelly Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Susan B. Udin
- Department of Physiology and Biophysics, University at Buffalo, Amherst, NY 14203, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260, USA
| | - Kirkwood E. Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY 14214, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
20
|
Hromada C, Szwarc-Hofbauer D, Quyen Nguyen M, Tomasch J, Purtscher M, Hercher D, Teuschl-Woller AH. Strain-induced bands of Büngner formation promotes axon growth in 3D tissue-engineered constructs. J Tissue Eng 2024; 15:20417314231220396. [PMID: 38249993 PMCID: PMC10798132 DOI: 10.1177/20417314231220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Treatment of peripheral nerve lesions remains a major challenge due to poor functional recovery; hence, ongoing research efforts strive to enhance peripheral nerve repair. In this study, we aimed to establish three-dimensional tissue-engineered bands of Büngner constructs by subjecting Schwann cells (SCs) embedded in fibrin hydrogels to mechanical stimulation. We show for the first time that the application of strain induces (i) longitudinal alignment of SCs resembling bands of Büngner, and (ii) the expression of a pronounced repair SC phenotype as evidenced by upregulation of BDNF, NGF, and p75NTR. Furthermore, we show that mechanically aligned SCs provide physical guidance for migrating axons over several millimeters in vitro in a co-culture model with rat dorsal root ganglion explants. Consequently, these constructs hold great therapeutic potential for transplantation into patients and might also provide a physiologically relevant in vitro peripheral nerve model for drug screening or investigation of pathologic or regenerative processes.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dorota Szwarc-Hofbauer
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mai Quyen Nguyen
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michaela Purtscher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - David Hercher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
21
|
Fuentes-Flores A, Geronimo-Olvera C, Girardi K, Necuñir-Ibarra D, Patel SK, Bons J, Wright MC, Geschwind D, Hoke A, Gomez-Sanchez JA, Schilling B, Rebolledo DL, Campisi J, Court FA. Senescent Schwann cells induced by aging and chronic denervation impair axonal regeneration following peripheral nerve injury. EMBO Mol Med 2023; 15:e17907. [PMID: 37860842 DOI: 10.15252/emmm.202317907] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Following peripheral nerve injury, successful axonal growth and functional recovery require Schwann cell (SC) reprogramming into a reparative phenotype, a process dependent upon c-Jun transcription factor activation. Unfortunately, axonal regeneration is greatly impaired in aged organisms and following chronic denervation, which can lead to poor clinical outcomes. While diminished c-Jun expression in SCs has been associated with regenerative failure, it is unclear whether the inability to maintain a repair state is associated with the transition into an axonal growth inhibition phenotype. We here find that reparative SCs transition into a senescent phenotype, characterized by diminished c-Jun expression and secretion of inhibitory factors for axonal regeneration in aging and chronic denervation. In both conditions, the elimination of senescent SCs by systemic senolytic drug treatment or genetic targeting improved nerve regeneration and functional recovery, increased c-Jun expression and decreased nerve inflammation. This work provides the first characterization of senescent SCs and their influence on axonal regeneration in aging and chronic denervation, opening new avenues for enhancing regeneration and functional recovery after peripheral nerve injuries.
Collapse
Affiliation(s)
- Andrés Fuentes-Flores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Cristian Geronimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Karina Girardi
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - David Necuñir-Ibarra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Megan C Wright
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel Geschwind
- Departments of Neurology, Psychiatry, and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Instituto de Neurociencias de Alicante, UMH-CSIC, San Juan de Alicante, Spain
| | | | - Daniela L Rebolledo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
22
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
23
|
Khaled MM, Ibrahium AM, Abdelgalil AI, El-Saied MA, El-Bably SH. Regenerative Strategies in Treatment of Peripheral Nerve Injuries in Different Animal Models. Tissue Eng Regen Med 2023; 20:839-877. [PMID: 37572269 PMCID: PMC10519924 DOI: 10.1007/s13770-023-00559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Peripheral nerve damage mainly resulted from traumatic or infectious causes; the main signs of a damaged nerve are the loss of sensory and/or motor functions. The injured nerve has limited regenerative capacity and is recovered by the body itself, the recovery process depends on the severity of damage to the nerve, nowadays the use of stem cells is one of the new and advanced methods for treatment of these problems. METHOD Following our review, data are collected from different databases "Google scholar, Springer, Elsevier, Egyptian Knowledge Bank, and PubMed" using different keywords such as Peripheral nerve damage, Radial Nerve, Sciatic Nerve, Animals, Nerve regeneration, and Stem cell to investigate the different methods taken in consideration for regeneration of PNI. RESULT This review contains tables illustrating all forms and types of regenerative medicine used in treatment of peripheral nerve injuries (PNI) including different types of stem cells " adipose-derived stem cells, bone marrow stem cells, Human umbilical cord stem cells, embryonic stem cells" and their effect on re-constitution and functional recovery of the damaged nerve which evaluated by physical, histological, Immuno-histochemical, biochemical evaluation, and the review illuminated the best regenerative strategies help in rapid peripheral nerve regeneration in different animal models included horse, dog, cat, sheep, monkey, pig, mice and rat. CONCLUSION Old surgical attempts such as neurorrhaphy, autogenic nerve transplantation, and Schwann cell implantation have a limited power of recovery in cases of large nerve defects. Stem cell therapy including mesenchymal stromal cells has a high potential differentiation capacity to renew and form a new nerve and also restore its function.
Collapse
Affiliation(s)
- Mona M Khaled
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Asmaa M Ibrahium
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Samah H El-Bably
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| |
Collapse
|
24
|
Janes LE, Kelsey LJ, Sasson DC, Applebaum S, Ledwon JK, Gosain AK. Drop-off in axonal regeneration along the length of a cross-face nerve graft: An experimental study in rats. Microsurgery 2023; 43:694-701. [PMID: 37162480 DOI: 10.1002/micr.31053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION The average nerve graft length utilized in cross-face nerve grafting for reconstruction of facial nerve palsy is 20-22 cm. While the graft length is thought to be one of the greatest determinants of muscle strength, the mechanism through which this happens remains unknown. We studied changes in axonal regeneration along the length of a 2 cm cross-face nerve graft in a rat model. The hypothesis was that axon count would decrease along the length of the graft. METHODS A 2 cm nerve graft (sciatic nerve) was used as a cross-face nerve graft in 16 adult female, 210-250 g, Sprague Dawley rats. Thirteen weeks later, 5 mm nerve biopsies were taken at four sites: the facial nerve trunk (control), proximal graft, midpoint of graft (1 cm distal to coaptation) and distal graft (2 cm distal to coaptation). Retrograde nerve labeling with FluoroGold was performed at the biopsied nerve site and the facial motor nucleus was taken 1 week later. Microscopic imaging and manual counting of axons and labeled motor nuclei was performed. RESULTS Retrograde-labeled motor neuron counts were decreased at the midway point of the graft compared to the facial trunk (1517 ± 335 axons, Δ% = 92.5, p = .01) and even further decreased at the distal end of the graft (269 ± 293 axons, Δ% = 175.5, p = .006). Analysis of the nerve biopsies demonstrated no significant differences in myelinated axon count between the nerve trunk and over the length of the nerve graft (range 6207-7179 axons, Δ% = 14.5, p = .07). CONCLUSION In a rat model, the number of regenerating motor neurons drops off along the length of the graft and axon count is preserved due to axon sprouting. How this pattern correlates to ultimate muscle strength remains unknown, but this study provides insight into why shorter grafts may afford better outcomes.
Collapse
Affiliation(s)
- Lindsay E Janes
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lauren J Kelsey
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel C Sasson
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Applebaum
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joanna K Ledwon
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arun K Gosain
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
25
|
Isaacs J, Nydick JA, Means KR, Merrell GA, Ilyas A, Levin LS. A Multicenter Prospective Randomized Comparison of Conduits Versus Decellularized Nerve Allograft for Digital Nerve Repairs. J Hand Surg Am 2023; 48:904-913. [PMID: 37530686 DOI: 10.1016/j.jhsa.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/06/2023] [Accepted: 05/24/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE While there are advantages and disadvantages to both processed nerve allografts (PNA) and conduits, a large, well-controlled prospective study is needed to compare the efficacy and to delineate how each of these repair tools can be best applied to digital nerve injuries. We hypothesized that PNA digital nerve repairs would achieve superior functional recovery for longer length gaps compared with conduit-based repairs. METHODS Patients (aged 18-69 years) presenting with suspected acute or subacute (less than 24 weeks old) digital nerve injuries were recruited to prticipate at 20 medical centers across the United States. After stratification to short (5-14 mm) and long (15-25 mm) gap subgroups, the patients were randomized (1:1) to repair with either a commercially available PNA or collagen conduit. Baseline and outcomes assessments were obtained either before or immediately after surgery and planned at 3-, 6-, 9-, and 12-months after surgery. All assessors and patients were blinded to the treatment arm. RESULTS In total, 220 patients were enrolled, and 183 patients completed an acceptable last evaluable visit (at least 6 months and not more than 15 months postrepair). At last follow-up, for the short gap repair groups, average static two-point discrimination was 7.3 ± 2.8 mm for PNA and 7.5 ± 3.1 mm for conduit repairs. For the long gap group, average static two-point discrimination was significantly lower at 6.1 ± 3.3 mm for PNA compared with 7.5 ± 2.4 mm for conduit repairs. Normal sensation (American Society for Surgery of the Hand scale) was achieved in 40% of PNA long gap repairs, which was significantly more than the 18% observed in long conduit patients. Long gap conduits had more clinical failures (lack of protective sensation) than short gap conduits. CONCLUSIONS Although supporting similar levels of nerve regeneration for short gap length digital nerve repairs, PNA was clinically superior to conduits for long gap reconstructions. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic I.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Virginia Commonwealth University Medical Center, Richmond, VA.
| | | | | | | | | | - L Scott Levin
- University of Pennsylvania, Penn Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Leversedge FJ, Safa B, Lin WC, Iorio ML, Merced-O’Neill O, Tajdaran K. Histologic Comparison of the Fascicular Area of Processed Nerve Allograft Versus Cabled Sural Nerve Autograft. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5201. [PMID: 37600836 PMCID: PMC10435049 DOI: 10.1097/gox.0000000000005201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Background The use of multiple cables of sural nerve autograft is common for peripheral nerve reconstruction when injured nerve caliber exceeds the nerve graft caliber. Although the optimal matching of neural to nonneural elements and its association with functional outcomes are unknown, it is reasonable to consider maximizing the neural tissue structure available for nerve regeneration. No prior studies have compared directly the cross-sectional fascicular area between cabled nerve autografts and size-selected nerve allografts. This study evaluated the cross-sectional fascicular area between native nerve stumps and two reconstructive nerve grafting methods: cabled sural nerve autograft (CSNA) and processed nerve allograft (PNA). Methods CSNA from matched cadaveric specimens and PNA were used to reconstruct nerve defects in the median and ulnar nerves of six pairs of cadaveric specimens. Nerve reconstructions were done by fellowship-trained hand surgeons. The total nerve area, fascicular area, and nonfascicular area were measured histologically. Results The CSNA grafts had significantly less fascicular area than PNA and caliber-matched native nerve. The PNA grafts had a significantly higher percent fascicular area compared with the intercalary CNSA graft. Conclusions Fascicular area was significantly greater in PNA versus CSNA. The PNA consistently demonstrated a match in fascicular area closer to the native nerve stumps than CSNA, where CSNA had significantly smaller fascicular area compared with native nerve stumps.
Collapse
Affiliation(s)
- Fraser J. Leversedge
- From the Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, Colo
| | - Bauback Safa
- Department of Plastic and Reconstructive Surgery, The Buncke Clinic, San Francisco, Calif
| | - Walter C. Lin
- Department of Plastic and Reconstructive Surgery, The Buncke Clinic, San Francisco, Calif
| | - Matthew L. Iorio
- Division of Plastic Surgery, University of Colorado School of Medicine, Aurora, Colo
| | | | | |
Collapse
|
27
|
Weber MB, Isaacs JE. Digital Nerve Injury: Assessment and Treatment. J Am Acad Orthop Surg 2023; Publish Ahead of Print:00124635-990000000-00703. [PMID: 37205873 DOI: 10.5435/jaaos-d-23-00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Undertreated digital nerve injuries may result in sensory deficits and pain. Early recognition and treatment will optimize outcomes, and providers should maintain a high index of suspicion when assessing patients with open wounds. Acute, sharp lacerations may be amenable to direct repair while avulsion injuries or delayed repairs require adequate resection and bridging with nerve autograft, processed nerve allograft, or conduits. Conduits are most appropriate for gaps less than 15 mm, and processed nerve allografts have demonstrated reliable outcomes across longer gaps.
Collapse
Affiliation(s)
- Matthew B Weber
- From the Virginia Commonwealth University Medical Center, Richmond, VA
| | | |
Collapse
|
28
|
Bell JA, Trotter C, Gittings D, Schur M, Mohty KM, Lefebvre R, Stevanovic M. Neuroma Treatment With the Acellular Nerve Allograft Reconstruction Technique. Cureus 2023; 15:e39567. [PMID: 37378218 PMCID: PMC10292632 DOI: 10.7759/cureus.39567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Treatment of a painful neuroma is a challenging problem for both the patient and the providers. Current surgical treatment options typically include excision of the neuroma and stump relation. However, with both treatment options, patients have high rates of persistent pain and rates of neuroma recurrence. We describe two patients with neuromas treated with our acellular nerve allograft reconstruction technique. This technique involves the excision of the neuroma and bridging the proximal nerve end to the surrounding tissue with an acellular nerve allograft. Both patients had immediate resolution of their neuropathic pain that was maintained at their final follow-up. Acellular nerve allograft reconstruction is a promising treatment option for the treatment of painful neuromas.
Collapse
Affiliation(s)
- Jennifer A Bell
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, USA
| | - Collean Trotter
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Daniel Gittings
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, USA
| | - Mathew Schur
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Kurt M Mohty
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, USA
| | - Rachel Lefebvre
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Milan Stevanovic
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, Los Angeles, USA
| |
Collapse
|
29
|
Liebendorfer A, Finnan MJ, Schofield JB, Pinni SL, Acevedo-Cintrón JA, Schellhardt L, Snyder-Warwick AK, Mackinnon SE, Wood MD. Loss of Gata1 decreased eosinophils, macrophages, and type 2 cytokines in regenerating nerve and delayed axon regeneration after a segmental nerve injury. Exp Neurol 2023; 362:114327. [PMID: 36682399 PMCID: PMC10189758 DOI: 10.1016/j.expneurol.2023.114327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The immune system has garnered attention for its role in peripheral nerve regeneration, particularly as it pertains to regeneration across segmental injuries. Previous work demonstrated that eosinophils are recruited to regenerating nerve and express interleukin-4, amongst potential cytokines. These results suggest a direct role for eosinophils in promoting nerve regeneration. Therefore, we further considered eosinophils roles in nerve regeneration using a segmental nerve injury and Gata1 knockout (KO) mice, which are severely eosinophil deficient, compared to wild-type BALB/c mice (WT). Mice receiving a sciatic nerve gap injury demonstrated distinct cytokine expression and leukocytes within regenerating nerve. Compared to controls, Gata1 KO regenerated nerves contained decreased expression of type 2 cytokines, including Il-5 and Il-13, and decreased recruitment of eosinophils and macrophages. At this early time point during ongoing regeneration, the macrophages within Gata1 KO nerves also demonstrated significantly less M2 polarization compared to controls. Subsequently, motor and sensory axon regeneration across the gap injury was decreased in Gata1 KO compared to WT during ongoing nerve regeneration. Over longer observation to allow for more complete nerve regeneration, behavioral recovery measured by grid-walk assessment was not different comparing groups but modestly delayed in Gata1 KO compared to WT. The extent of final axon regeneration was not different amongst groups. Our data provide additional evidence suggesting eosinophils contribute to nerve regeneration across a nerve gap injury, but are not essential to regeneration in this context. Our evidence also suggests eosinophils may regulate cytokines that promote distinct macrophage phenotypes and axon regeneration.
Collapse
Affiliation(s)
- Adam Liebendorfer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Finnan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathon Blake Schofield
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sai L Pinni
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesús A Acevedo-Cintrón
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Peters BR, Wood MD, Hunter DA, Mackinnon SE. Acellular Nerve Allografts in Major Peripheral Nerve Repairs: An Analysis of Cases Presenting With Limited Recovery. Hand (N Y) 2023; 18:236-243. [PMID: 33880944 PMCID: PMC10035101 DOI: 10.1177/15589447211003175] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acellular nerve allografts have been used successfully and with increasing frequency to reconstruct nerve injuries. As their use has been expanded to treat longer gap, larger diameter nerve injuries, some failed cases have been reported. We present the histomorphometry of 5 such cases illustrating these limitations and review the current literature of acellular nerve allografts. METHODS Between 2014 and 2019, 5 patients with iatrogenic nerve injuries to the median or ulnar nerve reconstructed with an AxoGen AVANCE nerve allograft at an outside hospital were treated in our center with allograft excision and alternative reconstruction. These patients had no clinical or electrophysiological evidence of recovery, and allograft specimens at the time of surgery were sent for histomorphological examination. RESULTS Three patients with a median and 2 with ulnar nerve injury were included. Histology demonstrated myelinated axons present in all proximal native nerve specimens. In 2 cases, axons failed to regenerate into the allograft and in 3 cases, axonal regeneration diminished or terminated within the allograft. CONCLUSIONS The reported cases demonstrate the importance of evaluating the length and the function of nerves undergoing acellular nerve allograft repair. In long length, large-diameter nerves, the use of acellular nerve allografts should be carefully considered.
Collapse
Affiliation(s)
- Blair R. Peters
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Oregon Health & Science Univeristy, Portland, OR, USA
| | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Birenbaum NK, Yan Y, Odabas A, Chandra NS, Ray WZ, MacEwan MR. Multiple sessions of therapeutic electrical stimulation using implantable thin-film wireless nerve stimulators improve functional recovery after sciatic nerve isograft repair. Muscle Nerve 2023; 67:244-251. [PMID: 36533970 DOI: 10.1002/mus.27776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION/AIMS Although therapeutic electrical stimulation (TES) of injured peripheral nerve promotes axon regeneration and functional recovery, clinical applications of this therapy are limited to the intraoperative timeframe. Implantable, thin-film wireless nerve stimulators offer a potential solution to this problem by enabling delivery of electrical stimuli to an injured nerve over a period of several days post-surgery. The aim of this study was to determine the optimal time course of stimulation for maximizing functional recovery in a rat sciatic nerve isograft repair model. METHODS Adult male Lewis rats underwent thin-film wireless nerve stimulator implantation following sciatic nerve transection and 40 mm nerve isograft repair. Immediately after surgery, animals began a daily regimen of TES for up to 12 consecutive days. Functional recovery was assessed by compound muscle action potential (CMAP), evoked muscle force, wet muscle mass, and axon counting. RESULTS Serial CMAP measurements increased in amplitude over the course of the study, yet no significant difference between cohorts for serial or terminal CMAPs was observed. Axon counts and wet muscle mass measurements were greatest in the 6-day stimulation group, which correlated with a significant increase in evoked muscle force for the 6-day stimulation group at the terminal time point. DISCUSSION Six daily sessions of TES were found to be most effective for augmenting functional recovery compared to other time courses of stimulation. Future studies should incorporate additional subjects and track axonal sprouting or measure neurotrophin levels during the therapeutic window to further elucidate the mechanisms behind, and ideal amount of, TES.
Collapse
Affiliation(s)
- Nathan K Birenbaum
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Arman Odabas
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Nikhil S Chandra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wilson Z Ray
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Neves Atti V, Fernandes M, Santiago de Lima Figueiredo G, Roth F, Gomes Valente S, Nakachima LR, Fernandes CH, Gomes Dos Santos JB. Peripheral nerve regeneration in rats using nerve graft in a vein conduit pre-filled with platelet-rich fibrin (PRF). HAND SURGERY & REHABILITATION 2023; 42:61-68. [PMID: 36496199 DOI: 10.1016/j.hansur.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Treatment of peripheral nerve injury is not always satisfactory. To improve results, specific adjuvant methods have been used, such as platelet-rich fibrin (PRF) and vein conduits. The goal of this study was to assess whether use of PRF and vein conduits after nerve suture improves nerve regeneration as measured by a functional score and histomorphometry analysis. Ten isogenic spontaneously hypertensive rats were randomly assigned to 4 experimental procedures: 1) Sham group (n = 10); 2) Nerve graft (NG) group (n = 10); 3) Nerve graft covered with a vein conduit (NGVC) (n = 10); and 4) Nerve graft covered with a vein conduit pre-filled with PRF (NGVCP) (n = 10). Nerve repair results were evaluated on: sciatic functional index (SFI) at 0, 30, 60 and 90 days; morphometric and morphologic analysis of the distal nerve; and histological analysis of Fluoro-Gold® stained motor neurons in the anterior horn of the spinal cord. Compared to the Sham control group, the NGVC and NGVCP groups exhibited lower SFI on all measures. The NGVC group showed improvement in SFI at day 90, which was significant compared to the NG group. Fiber and axon diameters were comparable in the NGVC and NGVCP groups, which were both significantly lower than in the Sham and NG groups. Significant improvement was expected with PRF, but in fact the release of factors from this substance was not as effective as hoped.
Collapse
Affiliation(s)
- V Neves Atti
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| | - M Fernandes
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| | - G Santiago de Lima Figueiredo
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil.
| | - F Roth
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| | - S Gomes Valente
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| | - L R Nakachima
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| | - C H Fernandes
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| | - J B Gomes Dos Santos
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Federal University of São Paulo, Borges Lagoa Street 786, 04038-001 São Paulo, Brazil
| |
Collapse
|
33
|
Li Z, Jiang Z, Lu L, Liu Y. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics 2023; 15:pharmaceutics15010210. [PMID: 36678839 PMCID: PMC9862045 DOI: 10.3390/pharmaceutics15010210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Physical injuries and neurodegenerative diseases often lead to irreversible damage to the organizational structure of the central nervous system (CNS) and peripheral nervous system (PNS), culminating in physiological malfunctions. Investigating these complex and diverse biological processes at the macro and micro levels will help to identify the cellular and molecular mechanisms associated with nerve degeneration and regeneration, thereby providing new options for the development of new therapeutic strategies for the functional recovery of the nervous system. Due to their distinct advantages, modern microfluidic platforms have significant potential for high-throughput cell and organoid cultures in vitro, the synthesis of a variety of tissue engineering scaffolds and drug carriers, and observing the delivery of drugs at the desired speed to the desired location in real time. In this review, we first introduce the types of nerve damage and the repair mechanisms of the CNS and PNS; then, we summarize the development of microfluidic platforms and their application in drug carriers. We also describe a variety of damage models, tissue engineering scaffolds, and drug carriers for nerve injury repair based on the application of microfluidic platforms. Finally, we discuss remaining challenges and future perspectives with regard to the promotion of nerve injury repair based on engineered microfluidic platform technology.
Collapse
|
34
|
Hill EJ, Patterson JMM, Yee A, Crock LW, Mackinnon SE. What is Operative? Conceptualizing Neuralgia: Neuroma, Compression Neuropathy, Painful Hyperalgesia, and Phantom Nerve Pain. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023; 5:126-132. [PMID: 36704371 PMCID: PMC9870794 DOI: 10.1016/j.jhsg.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023] Open
Abstract
Neuralgia, or nerve pain, is a common presenting complaint for the hand surgeon. When the nerve at play is easily localized, and the cause of the pain is clear (eg, carpal tunnel syndrome), the patient may be easily treated with excellent results. However, in more complex cases, the underlying pathophysiology and cause of neuralgia can be more difficult to interpret; if incorrectly managed, this leads to frustration for both the patient and surgeon. Here we offer a way to conceptualize neuralgia into 4 categories-compression neuropathy, neuroma, painful hyperalgesia, and phantom nerve pain-and offer an illustrative clinical vignette and strategies for optimal management of each. Further, we delineate the reasons why compression neuropathy and neuroma are amenable to surgery, while painful hyperalgesia and phantom nerve pain are not.
Collapse
Affiliation(s)
- Elspeth J.R. Hill
- Department of Orthopedic Surgery, Division of Hand and Microsurgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | | | - Andrew Yee
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Lara W. Crock
- Division of Pain Management, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
35
|
Li WY, Li ZG, Fu XM, Wang XY, Lv ZX, Sun P, Zhu XF, Wang Y. Transgenic Schwann cells overexpressing POU6F1 promote sciatic nerve regeneration within acellular nerve allografts. J Neural Eng 2022; 19. [PMID: 36317259 DOI: 10.1088/1741-2552/ac9e1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Objective.Acellular nerve allograft (ANA) is an effective surgical approach used to bridge the sciatic nerve gap. The molecular regulators of post-surgical recovery are not well-known. Here, we explored the effect of transgenic Schwann cells (SCs) overexpressing POU domain class 6, transcription factor 1 (POU6F1) on sciatic nerve regeneration within ANAs. We explored the functions of POU6F1 in nerve regeneration by using a cell model of H2O2-induced SCs injury and transplanting SCs overexpressing POU6F1 into ANA to repair sciatic nerve gaps.Approach.Using RNA-seq, Protein-Protein Interaction network analysis, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we identified a highly and differentially expressed transcription factor, POU6F1, following ANA treatment of sciatic nerve gap. Expressing a high degree of connectivity, POU6F1 was predicted to play a role in peripheral nervous system myelination.Main results.To test the role of POU6F1 in nerve regeneration after ANA, we infected SCs with adeno-associated virus-POU6F1, demonstrating that POU6F1 overexpression promotes proliferation, anti-apoptosis, and migration of SCsin vitro. We also found that POU6F1 significantly upregulated JNK1/2 and c-Jun phosphorylation and that selective JNK1/2 inhibition attenuated the effects of POU6F1 on proliferation, survival, migration, and JNK1/2 and c-Jun phosphorylation. The direct interaction of POU6F1 and activated JNK1/2 was subsequently confirmed by co-immunoprecipitation. In rat sciatic nerve injury model with a 10 mm gap, we confirmed the pattern of POU6F1 upregulation and co-localization with transplanted SCs. ANAs loaded with POU6F1-overexpressing SCs demonstrated the enhanced survival of transplanted SCs, axonal regeneration, myelination, and functional motor recovery compared to the ANA group loaded by SCs-only in line within vitrofindings.Significance.This study identifies POU6F1 as a novel regulator of post-injury sciatic nerve repair, acting through JNK/c-Jun signaling in SCs to optimize therapeutic outcomes in the ANA surgical approach.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhi-Gang Li
- The Second Department of General Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical College, Chengde 067000, People's Republic of China.,Hebei Key Laboratory of Nerve Injury and Repair, Chengde 067000, People's Republic of China
| | - Xiao-Yu Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhong-Xiao Lv
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ping Sun
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiao-Feng Zhu
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| |
Collapse
|
36
|
Smith DH, Burrell JC, Browne KD, Katiyar KS, Ezra MI, Dutton JL, Morand JP, Struzyna LA, Laimo FA, Chen HI, Wolf JA, Kaplan HM, Rosen JM, Ledebur HC, Zager EL, Ali ZS, Cullen DK. Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs. SCIENCE ADVANCES 2022; 8:eabm3291. [PMID: 36332027 PMCID: PMC9635828 DOI: 10.1126/sciadv.abm3291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously "bridge" missing nerve segments and "babysit" regenerative capacity by providing living axons to guide host axons and maintain the distal pathway. TENGs were biofabricated using porcine neurons and "stretch-grown" axon tracts. TENG neurons survived and elicited axon-facilitated axon regeneration to accelerate regrowth across both short (1 cm) and long (5 cm) segmental nerve defects in pigs. TENG axons also closely interacted with host Schwann cells to maintain proregenerative capacity. TENGs drove regeneration across 5-cm defects in both motor and mixed motor-sensory nerves, resulting in dense axon regeneration and electrophysiological recovery at levels similar to autograft repairs. This approach of accelerating axon regeneration while maintaining the pathway for long-distance regeneration may achieve recovery after currently unrepairable PNIs.
Collapse
Affiliation(s)
- Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical LLC, Philadelphia, PA, USA
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Kritika S. Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical LLC, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Mindy I. Ezra
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L. Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph P. Morand
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A. Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Franco A. Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Hilton M. Kaplan
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Joseph M. Rosen
- Division of Plastic Surgery, Dartmouth Hitchcock Medical Center, Dartmouth College, Lebanon, NH, USA
| | | | - Eric L. Zager
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zarina S. Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical LLC, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Abstract
Partial nerve recovery either after expectant observation following an injury in-continuity or after nerve repair is not an uncommon occurrence. Historically, treatment strategies in these situations-late repair, revision repair, or acceptance of a mediocre result-were unsatisfying. The reverse end-to-side, or supercharging, nerve transfer was conceived to offer a more palatable option. Partially validated primarily through small animal research, supercharging has been rapidly translated to clinical practice. Many have extended the indications beyond the original intent, though the final place of this technique in the peripheral nerve surgeon's armamentarium is still yet to be determined.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Virginia Commonwealth University Medical Center, Richmond, USA
| |
Collapse
|
38
|
Shvedova M, Samdavid Thanapaul RJR, Thompson EL, Niedernhofer LJ, Roh DS. Cellular Senescence in Aging, Tissue Repair, and Regeneration. Plast Reconstr Surg 2022; 150:4S-11S. [PMID: 36170430 PMCID: PMC9529244 DOI: 10.1097/prs.0000000000009667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Society and our healthcare system are facing unprecedented challenges due to the expansion of the older population. As plastic surgeons, we can improve care of our older patients through understanding the mechanisms of aging that inevitably impact their outcomes and well-being. One of the major hallmarks of aging, cellular senescence, has recently become the focus of vigorous research in academia and industry. Senescent cells, which are metabolically active but in a state of stable cell cycle arrest, are implicated in causing aging and numerous age-related diseases. Further characterization of the biology of senescence revealed that it can be both detrimental and beneficial to organisms depending on tissue context and senescence chronicity. Here, we review the role of cellular senescence in aging, wound healing, tissue regeneration, and other domains relevant to plastic surgery. We also review the current state of research on therapeutics that modulate senescence to improve conditions of aging.
Collapse
Affiliation(s)
- Maria Shvedova
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Elizabeth L Thompson
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Laura J Niedernhofer
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Daniel S Roh
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| |
Collapse
|
39
|
Sun S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial soft tissue injuries. Front Bioeng Biotechnol 2022; 10:978980. [PMID: 36159691 PMCID: PMC9490317 DOI: 10.3389/fbioe.2022.978980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tissue is an important soft tissue; for instance, craniofacial nerves govern several aspects of human behavior, including the expression of speech, emotion transmission, sensation, and motor function. Therefore, nerve repair to promote functional recovery after craniofacial soft tissue injuries is indispensable. However, the repair and regeneration of craniofacial nerves are challenging due to their intricate anatomical and physiological characteristics. Currently, nerve transplantation is an irreplaceable treatment for segmental nerve defects. With the development of emerging technologies, transplantation donors have become more diverse. The present article reviews the traditional and emerging alternative materials aimed at advancing cutting-edge research on craniofacial nerve repair and facilitating the transition from the laboratory to the clinic. It also provides a reference for donor selection for nerve repair after clinical craniofacial soft tissue injuries. We found that autografts are still widely accepted as the first options for segmental nerve defects. However, allogeneic composite functional units have a strong advantage for nerve transplantation for nerve defects accompanied by several tissue damages or loss. As an alternative to autografts, decellularized tissue has attracted increasing attention because of its low immunogenicity. Nerve conduits have been developed from traditional autologous tissue to composite conduits based on various synthetic materials, with developments in tissue engineering technology. Nerve conduits have great potential to replace traditional donors because their structures are more consistent with the physiological microenvironment and show self-regulation performance with improvements in 3D technology. New materials, such as hydrogels and nanomaterials, have attracted increasing attention in the biomedical field. Their biocompatibility and stimuli-responsiveness have been gradually explored by researchers in the regeneration and regulation of neural networks.
Collapse
Affiliation(s)
- Sishuai Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| |
Collapse
|
40
|
Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. Int J Mol Sci 2022; 23:ijms23158746. [PMID: 35955880 PMCID: PMC9369339 DOI: 10.3390/ijms23158746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Injuries to large peripheral nerves are often associated with tissue defects and require reconstruction using autologous nerve grafts, which have limited availability and result in donor site morbidity. Peripheral nerve-derived hydrogels could potentially supplement or even replace these grafts. In this study, three decellularization protocols based on the ionic detergents sodium dodecyl sulfate (P1) and sodium deoxycholate (P2), or the organic solvent tri-n-butyl phosphate (P3), were used to prepare hydrogels. All protocols resulted in significantly decreased amounts of genomic DNA, but the P2 hydrogel showed the best preservation of extracellular matrix proteins, cytokines, and chemokines, and reduced levels of sulfated glycosaminoglycans. In vitro P1 and P2 hydrogels supported Schwann cell viability, secretion of VEGF, and neurite outgrowth. Surgical repair of a 10 mm-long rat sciatic nerve gap was performed by implantation of tubular polycaprolactone conduits filled with hydrogels followed by analyses using diffusion tensor imaging and immunostaining for neuronal and glial markers. The results demonstrated that the P2 hydrogel considerably increased the number of axons and the distance of regeneration into the distal nerve stump. In summary, the method used to decellularize nerve tissue affects the efficacy of the resulting hydrogels to support regeneration after nerve injury.
Collapse
|
41
|
Grimm PD, Wheatley BM, Tomasino A, Leonhardt C, Hunter DA, Wood MD, Moore AM, Davis TA, Tintle SM. Controlling axonal regeneration with acellular nerve allograft limits neuroma formation in peripheral nerve transection: An experimental study in a swine model. Microsurgery 2022; 42:603-610. [PMID: 35925036 DOI: 10.1002/micr.30943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Symptomatic neuromata are a common indication for revision surgery following amputation. Previously described treatments, including traction neurectomy, nerve transposition, targeted muscle re-innervation, and nerve capping, have provided inconsistent results or are technically challenging. Prior research using acellular nerve allografts (ANA) has shown controlled termination of axonal regrowth in long grafts. The purpose of this study was to determine the ability of a long ANA to prevent neuroma formation following transection of a peripheral nerve in a swine model. MATERIALS AND METHODS Twenty-two adult female Yucatan miniature swine (Sus scrofa; 4-6 months, 15-25 kg) were assigned to control (ulnar nerve transection only, n = 10), treatment (ulnar transection and coaptation of 50 mm ANA, n = 10), or donor (n = 2) groups. Nerves harvested from donor group animals were treated to create the ANA. After 20 weeks, the transected nerves including any neuroma or graft were harvested. Both qualitative (nerve architecture, axonal sprouting) and quantitative histologic analyses (myelinated axon number, cross sectional area of nerve tissue) were performed. RESULTS Qualitative histologic analysis of control specimens revealed robust axon growth into dense scar tissue. In contrast, the treatment group revealed dwindling axons in the terminal tissue, consistent with attenuated neuroma formation. Quantitative analysis revealed a significantly decreased number of myelinated axons in the treatment group (1232 ± 540) compared to the control group (44,380 ± 7204) (p < .0001). Cross sectional area of nerve tissue was significantly smaller in treatment group (2.83 ± 1.53 mm2 ) compared to the control group (9.14 ± 1.19 mm2 ) (p = .0012). CONCLUSIONS Aberrant axonal growth is controlled to termination with coaptation of a 50 mm ANA in a swine model of nerve injury. These early results suggest further investigation of this technique to prevent and/or treat neuroma formation.
Collapse
Affiliation(s)
- Patrick D Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| | - Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| | - Allison Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Crystal Leonhardt
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Scott M Tintle
- Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Lauer H, Prahm C, Thiel JT, Kolbenschlag J, Daigeler A, Hercher D, Heinzel JC. The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury. Biomedicines 2022; 10:biomedicines10081878. [PMID: 36009423 PMCID: PMC9405835 DOI: 10.3390/biomedicines10081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Johannes Tobias Thiel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|
43
|
Verschueren A, Palminha C, Delmont E, Attarian S. Changes in neuromuscular function in elders: Novel techniques for assessment of motor unit loss and motor unit remodeling with aging. Rev Neurol (Paris) 2022; 178:780-787. [PMID: 35863917 DOI: 10.1016/j.neurol.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Functional muscle fiber denervation is a major contributor to the decline in physical function observed with aging and is now a recognized cause of sarcopenia, a muscle disorder characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength. There is an interrelationship between muscle strength, motor unit (MU) number, and aging, which suggests that a portion of muscle weakness in seniors may be attributable to the loss of functional MUs. During normal aging, there is a time-related progression of MU loss, an adaptive sprouting followed by a maladaptive sprouting, and continuing recession of terminal Schwann cells leading to a reduced capacity for compensatory reinnervation in elders. In amyotrophic lateral sclerosis, increasing age at onset predicts worse survival ALS and it is possible that age-related depletion of the motor neuron pool may worsen motor neuron disease. MUNE methods are used to estimate the number of functional MU, data from MUNIX arguing for motor neuron loss with aging will be reviewed. Recently, a new MRI technique MU-MRI could be used to assess the MU recruitment or explore the activity of a single MU. This review presents published studies on the changes of neuromuscular function with aging, then focusing on these two novel techniques for assessment of MU loss and MU remodeling.
Collapse
Affiliation(s)
- A Verschueren
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France.
| | - C Palminha
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - E Delmont
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - S Attarian
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| |
Collapse
|
44
|
Abstract
BACKGROUND Acellular nerve allograft (ANA) occupies an increasingly prominent role in the treatment of peripheral nerve reconstruction. There is demonstrable efficacy; however, some grafts fail to support axonal regrowth and the reasons for this are unclear. This study examines the ANA experience in a specialized peripheral nerve surgery department to discuss the clinical and histological findings in failed cases. METHOD Failed ANA grafts were identified from a prospective database using Medical Research Council Classification (MRCC) S3 and M3 as thresholds for success. Cases in which ANA grafting was indicated for nerve related pain and dysesthesia but where no subjective improvement in symptoms occurred were also included. Patients requiring revision surgery after ANA grafting were also considered failures. Cases were then examined in conjunction with a literature review to identify possible mechanisms of failure, including detailed histological analysis in 2 cases. RESULTS Eight failed procedures were identified from a database of 99 separate allograft records on 74 patients. This included procedures for 2 tibial nerves, 2 superficial radial nerves, 2 median nerves, 1 digital nerve and a lateral cord brachial plexus injury (male/female, 5:3; age range, 24-54 years). Allograft length range 25 to 120 mm. One postoperative infection was identified. Histological findings in 2 cases included adequate vascularization of allograft material without subsequent axonal regeneration, a reduction of large myelinated fibers proximal to a tibial nerve allograft in the setting of a chronic injury, and a preference for small rather than large fiber regeneration. CONCLUSIONS This article reports instances of ANA graft failure in a variety of contexts, for which the primary reasons for failure remain unclear. The etiology is likely to be multifactorial with both patient, graft and surgeon factors contributing to failure. Further clinical and histological analysis of ANA failures will improve our understanding of the mechanisms of graft failure.
Collapse
Affiliation(s)
- Calum Thomson
- From the Department of Peripheral Nerve Surgery, Queen Elizabeth Hospital
| | | | - Ute Pohl
- Department of Cellular Pathology
| | - Dominic M Power
- The Birmingham Peripheral Nerve Injury Service, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
45
|
Rao Z, Lin Z, Song P, Quan D, Bai Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. Front Cell Neurosci 2022; 16:926222. [PMID: 35836742 PMCID: PMC9273721 DOI: 10.3389/fncel.2022.926222] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Schwann cells (SCs) dominate the regenerative behaviors after peripheral nerve injury by supporting axonal regrowth and remyelination. Previous reports also demonstrated that the existence of SCs is beneficial for nerve regeneration after traumatic injuries in central nervous system. Therefore, the transplantation of SCs/SC-like cells serves as a feasible cell therapy to reconstruct the microenvironment and promote nerve functional recovery for both peripheral and central nerve injury repair. However, direct cell transplantation often leads to low efficacy, due to injection induced cell damage and rapid loss in the circulatory system. In recent years, biomaterials have received great attention as functional carriers for effective cell transplantation. To better mimic the extracellular matrix (ECM), many biodegradable materials have been engineered with compositional and/or topological cues to maintain the biological properties of the SCs/SCs-like cells. In addition, ECM components or factors secreted by SCs also actively contribute to nerve regeneration. Such cell-free transplantation approaches may provide great promise in clinical translation. In this review, we first present the current bio-scaffolds engineered for SC transplantation and their achievement in animal models and clinical applications. To this end, we focus on the physical and biological properties of different biomaterials and highlight how these properties affect the biological behaviors of the SCs/SC-like cells. Second, the SC-derived biomaterials are also reviewed and discussed. Finally, the relationship between SCs and functional biomaterials is summarized, and the trends of their future development are predicted toward clinical applications.
Collapse
Affiliation(s)
- Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zudong Lin
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Panpan Song
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Hromada C, Hartmann J, Oesterreicher J, Stoiber A, Daerr A, Schädl B, Priglinger E, Teuschl-Woller AH, Holnthoner W, Heinzel J, Hercher D. Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules 2022; 12:820. [PMID: 35740945 PMCID: PMC9221261 DOI: 10.3390/biom12060820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Jaana Hartmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Oesterreicher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anton Stoiber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anna Daerr
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Heinzel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany
| | - David Hercher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| |
Collapse
|
47
|
Zhu Y, Peng N, Wang J, Jin Z, Zhu L, Wang Y, Chen S, Hu Y, Zhang T, Song Q, Xie F, Yan L, Li Y, Xiao J, Li X, Jiang B, Peng J, Wang Y, Luo Y. Peripheral nerve defects repaired with autogenous vein grafts filled with platelet-rich plasma and active nerve microtissues and evaluated by novel multimodal ultrasound techniques. Biomater Res 2022; 26:24. [PMID: 35690849 PMCID: PMC9188244 DOI: 10.1186/s40824-022-00264-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developing biocompatible nerve conduits that accelerate peripheral nerve regeneration, lengthening and functional recovery remains a challenge. The combined application of nerve microtissues and platelet-rich plasma (PRP) provides abundant Schwann cells (SCs) and various natural growth factors and can compensate for the deficiency of SCs in the nerve bridge, as well as the limitations of applying a single type of growth factor. Multimodal ultrasound evaluation can provide additional information on the stiffness and microvascular flow perfusion of the tissue. This study was designed to investigate the effectiveness of a novel tissue-engineered nerve graft composed of an autogenous vein, nerve microtissues and PRP in reconstructing a 12-mm tibial nerve defect and to explore the value of multimodal ultrasound techniques in evaluating the prognosis of nerve repair. METHODS In vitro, nerve microtissue activity was first investigated, and the effects on SC proliferation, migration, factor secretion, and axonal regeneration of dorsal root ganglia (DRG) were evaluated by coculture with nerve microtissues and PRP. In vivo, seventy-five rabbits were equally and randomly divided into Hollow, PRP, Micro-T (Microtissues), Micro-T + PRP and Autograft groups. By analysing the neurological function, electrophysiological recovery, and the comparative results of multimodal ultrasound and histological evaluation, we investigated the effect of these new nerve grafts in repairing tibial nerve defects. RESULTS Our results showed that the combined application of nerve microtissues and PRP could significantly promote the proliferation, secretion and migration of SCs and the regeneration of axons in the early stage. The Micro-T + PRP group and Autograft groups exhibited the best nerve repair 12 weeks postoperatively. In addition, the changes in target tissue stiffness and microvascular perfusion on multimodal ultrasound (shear wave elastography; contrast-enhanced ultrasonography; Angio PlaneWave UltrasenSitive, AngioPLUS) were significantly correlated with the histological results, such as collagen area percentage and VEGF expression, respectively. CONCLUSION Our novel tissue-engineered nerve graft shows excellent efficacy in repairing 12-mm defects of the tibial nerve in rabbits. Moreover, multimodal ultrasound may provide a clinical reference for prognosis by quantitatively evaluating the stiffness and microvescular flow of nerve grafts and targeted muscles.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Peng
- Department of Geriatric Rehabilitation, The Second Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhuang Jin
- General hospital of Northern Theater Command, Liaoning, China
| | - Lianhua Zhu
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Anesthesiology, JiangXi PingXiang People's Hospital, Jiangxi, China
| | - Tieyuan Zhang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Xie
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Yan
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yingying Li
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Xiao
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Xinyang Li
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Jiang
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China. .,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.
| | - Yukun Luo
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
48
|
Woo JH, Daeschler SC, Mireskandari K, Borschel GH, Ali A. Minimally Invasive Corneal Neurotization Provides Sensory Function, Protects Against Recurrent Ulceration, and Improves Visual Acuity. Am J Ophthalmol 2022; 241:179-189. [PMID: 35513030 DOI: 10.1016/j.ajo.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To measure sensory recovery after minimally invasive corneal neurotization, and to identify and quantify the extent to which patient and technical factors influence sensory recovery, ulceration rate, and visual outcomes. DESIGN Retrospective case series. METHODS This study included 23 patients with neurotrophic keratopathy who underwent indirect corneal neurotization. The primary outcome measure was corneal sensitivity with Cochet-Bonnet aesthesiometry (CBA), and the secondary outcome measure was epithelial breakdown. RESULTS Over a 7-year period, 28 eyes of 23 patients (mean age, 15.6 ± 13.6 years) were included in the study. The CBA measurements improved from 3.5 ± 9.1 mm at baseline to 44.1 ± 18.2 mm at 24 months after surgery (P < .001). Maximum CBA was reached after 11.1 ± 6.2 months (median, 9 months). Compared to eyes neurotized with a contralateral donor nerve, eyes with an ipsilateral donor nerve achieved a higher mean CBA (36.0 ± 10.9 vs 10.4 ± 14.0 mm, P = .001) at 3 months. Both the number of fascicles (Spearman correlation coefficient, rs -0.474, P = .11) and insertions (rs -0.458, P = .014) negatively correlated with the final CBA. Nine eyes (32.1%) experienced at least 1 episode of epithelial breakdown after surgery. Visual acuity improved in the neurotized corneas from logMAR 0.57 ± 0.79 at baseline to 0.39 ± 0.66 at 12 months (P = .043). CONCLUSIONS Corneal sensation improves over time after corneal neurotization. There is resultant improvement in visual acuity and protection against epithelial breakdown. It is important to maximize sensory recovery to protect against recurrent ulceration.
Collapse
|
49
|
Effects of Mild Traumatic Brain Injury on Resting State Brain Network Connectivity in Older Adults. Brain Imaging Behav 2022; 16:1863-1872. [PMID: 35394617 PMCID: PMC9279274 DOI: 10.1007/s11682-022-00662-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Older age is associated with worsened outcome after mild traumatic brain injury (mTBI) and a higher risk of developing persistent post-traumatic complaints. However, the effects of mTBI sequelae on brain connectivity at older age and their association with post-traumatic complaints remain understudied.We analyzed multi-echo resting-state functional magnetic resonance imaging data from 25 older adults with mTBI (mean age: 68 years, SD: 5 years) in the subacute phase (mean injury to scan interval: 38 days, SD: 9 days) and 20 age-matched controls. Severity of complaints (e.g. fatigue, dizziness) was assessed using self-reported questionnaires. Group independent component analysis was used to identify intrinsic connectivity networks (ICNs). The effects of group and severity of complaints on ICNs were assessed using spatial maps intensity (SMI) as a measure of within-network connectivity, and (static) functional network connectivity (FNC) as a measure of between-network connectivity.Patients indicated a higher total severity of complaints than controls. Regarding SMI measures, we observed hyperconnectivity in left-mid temporal gyrus (cognitive-language network) and hypoconnectivity in the right-fusiform gyrus (visual-cerebellar network) that were associated with group. Additionally, we found interaction effects for SMI between severity of complaints and group in the visual(-cerebellar) domain. Regarding FNC measures, no significant effects were found.In older adults, changes in cognitive-language and visual(-cerebellar) networks are related to mTBI. Additionally, group-dependent associations between connectivity within visual(-cerebellar) networks and severity of complaints might indicate post-injury (mal)adaptive mechanisms, which could partly explain post-traumatic complaints (such as dizziness and balance disorders) that are common in older adults during the subacute phase.
Collapse
|
50
|
Zhang S, Zhou Y, Xian H, Shi Y, Liu Y, Li Z, Huang Y. Nerve regeneration in rat peripheral nerve allografts: An assessment of the role of endogenous neurotrophic factors in nerve cryopreservation and regeneration. Eur J Neurosci 2022; 55:1895-1916. [PMID: 35332602 DOI: 10.1111/ejn.15655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury is a common clinical problem that often leads to significant functional impairment or even complete paralysis. Allograft has been proposed as a potential repair strategy for peripheral nerve injuries. Furthermore, peripheral nerve cryopreservation may result in nearly unlimited supply of grafts. However, the concentration of neurotrophic factors secreted by Schwann cells (SCs) in the local microenvironment after transplantation may not be sufficient for the survival of neuronal soma and axonal regeneration. Here, we investigated the effect of endogenous neurotrophic factors (ENTFs) on nerve regeneration in rats after the allograft of a cryopreserved sciatic nerve. ENTFs were highly expressed in the sciatic nerves pretreated for 14 days. Although the number of surviving cells in the sciatic nerves and their immunogenicity were low in the 14-day group after 4 weeks of cryopreservation, they continued to express high levels of ENTFs in vitro. At one week postoperation, the 14-day Allo group showed low plasma levels of interleukin-2, interferon-gamma, and tumour necrosis factor-alpha and low cellular immune response. At 20 weeks postoperation, nerve regeneration and functional recovery in the 14-day Allo group was similar to that in the fresh isograft group but better than that in the cryopreserved fresh allograft and fresh allograft groups. Thus, ENTFs were induced in vitro after pretreatment of the sciatic nerve. Following cryopreservation, the sciatic nerves with high levels of ENTFs continued to express high levels of ENTFs in vitro. The immune response after allograft was weak, which promoted recipient nerve regeneration.
Collapse
Affiliation(s)
- Song Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.,Yubei District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Zhou
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Hua Xian
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yifeng Shi
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yunxiao Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Zijian Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.,Nanchong Hospital of Traditional Chinese Medicine, Nanchong, China
| | - Yingru Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| |
Collapse
|