1
|
Rodi M, de Lastic AL, Panagoulias I, Aggeletopoulou I, Kelaidonis K, Matsoukas J, Apostolopoulos V, Mouzaki A. Myelin Oligodendrocyte Glycoprotein (MOG)35-55 Mannan Conjugate Induces Human T-Cell Tolerance and Can Be Used as a Personalized Therapy for Multiple Sclerosis. Int J Mol Sci 2024; 25:6092. [PMID: 38892275 PMCID: PMC11172913 DOI: 10.3390/ijms25116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35-55 (OM-MOG35-55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35-55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35-55 or MOG-35-55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35-55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-β1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35-55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35-55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.
Collapse
Affiliation(s)
- Maria Rodi
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Kostas Kelaidonis
- NewDrug P.C., Patras Science Park, 26504 Patras, Greece; (K.K.); (J.M.)
| | - John Matsoukas
- NewDrug P.C., Patras Science Park, 26504 Patras, Greece; (K.K.); (J.M.)
- Immunology and Translational Research, Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N1N4, Canada
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Vasso Apostolopoulos
- Immunology and Translational Research, Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| |
Collapse
|
2
|
Gkika A, Androutsou ME, Aletras AJ, Tselios T. Competitive ELISA for the identification of 35-55 myelin oligodendrocyte glycoprotein immunodominant epitope conjugated with mannan. J Pept Sci 2023; 29:e3493. [PMID: 37041122 DOI: 10.1002/psc.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
Analogs of immunodominant myelin peptides involved in multiple sclerosis (MS: the most common autoimmune disease) have been extensively used to modify the immune response over the progression of the disease. The immunodominant 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG35-55 ) is an autoantigen appearing in MS and stimulates the encephalitogenic T cells, whereas mannan polysaccharide (Saccharomyces cerevisiae) is a carrier toward the mannose receptor of dendritic cells and macrophages. The conjugate of mannan-MOG35-55 has been extensively studied for the inhibition of chronic experimental autoimmune encephalomyelitis (EAE: an animal model of MS) by inducing antigen-specific immune tolerance against the clinical symptoms of EAE in mice. Moreover, it presents a promising approach for the immunotherapy of MS under clinical investigation. In this study, a competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect the MOG35-55 peptide that is conjugated to mannan. Intra- and inter-day assay experiments proved that the proposed ELISA methodology is accurate and reliable and could be used in the following applications: (i) to identify the peptide (antigen) while it is conjugated to mannan and (ii) to adequately address the alterations that the MOG35-55 peptide may undergo when it is bound to mannan during production and stability studies.
Collapse
Affiliation(s)
- Areti Gkika
- Department of Chemistry, University of Patras, Rion Patras, Greece
| | | | | | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion Patras, Greece
| |
Collapse
|
3
|
Carey ST, Bridgeman C, Jewell CM. Biomaterial Strategies for Selective Immune Tolerance: Advances and Gaps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205105. [PMID: 36638260 PMCID: PMC10015875 DOI: 10.1002/advs.202205105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease-causing cells. New immunotherapies that induce potent and selective antigen-specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting-or even reversing-disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen-specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Collapse
Affiliation(s)
- Sean T. Carey
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher Bridgeman
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
4
|
Triantafyllakou I, Clemente N, Khetavat RK, Dianzani U, Tselios T. Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG 35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol Pharm 2022; 19:3795-3805. [PMID: 36098508 DOI: 10.1021/acs.molpharmaceut.2c00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.
Collapse
Affiliation(s)
- Iro Triantafyllakou
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece.,Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ravi Kumar Khetavat
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece
| |
Collapse
|
5
|
Dagkonaki A, Papalambrou A, Avloniti M, Gkika A, Evangelidou M, Androutsou ME, Tselios T, Probert L. Maturation of circulating Ly6ChiCCR2+ monocytes by mannan-MOG induces antigen-specific tolerance and reverses autoimmune encephalomyelitis. Front Immunol 2022; 13:972003. [PMID: 36159850 PMCID: PMC9501702 DOI: 10.3389/fimmu.2022.972003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Autoimmune diseases affecting the CNS not only overcome immune privilege mechanisms that protect neural tissues but also peripheral immune tolerance mechanisms towards self. Together with antigen-specific T cells, myeloid cells are main effector cells in CNS autoimmune diseases such as multiple sclerosis, but the relative contributions of blood-derived monocytes and the tissue resident macrophages to pathology and repair is incompletely understood. Through the study of oxidized mannan-conjugated myelin oligodendrocyte glycoprotein 35-55 (OM-MOG), we show that peripheral maturation of Ly6ChiCCR2+ monocytes to Ly6ChiMHCII+PD-L1+ cells is sufficient to reverse spinal cord inflammation and demyelination in MOG-induced autoimmune encephalomyelitis. Soluble intradermal OM-MOG drains directly to the skin draining lymph node to be sequestered by subcapsular sinus macrophages, activates Ly6ChiCCR2+ monocytes to produce MHC class II and PD-L1, prevents immune cell trafficking to spinal cord, and reverses established lesions. We previously showed that protection by OM-peptides is antigen specific. Here, using a neutralizing anti-PD-L1 antibody in vivo and dendritic cell-specific Pdl1 knockout mice, we further demonstrate that PD-L1 in non-dendritic cells is essential for the therapeutic effects of OM-MOG. These results show that maturation of circulating Ly6ChiCCR2+ monocytes by OM-myelin peptides represents a novel mechanism of immune tolerance that reverses autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Anastasia Dagkonaki
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Athina Papalambrou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Avloniti
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Areti Gkika
- Department of Chemistry, University of Patras, Patras, Greece
| | - Maria Evangelidou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
- *Correspondence: Lesley Probert,
| |
Collapse
|
6
|
Lazaridis K, Fernandez-Santoscoy M, Baltatzidou V, Andersson JO, Christison R, Grünberg J, Tzartos S, Löwenadler B, Fribert C. A Recombinant Acetylcholine Receptor α1 Subunit Extracellular Domain Is a Promising New Drug Candidate for Treatment Of Myasthenia Gravis. Front Immunol 2022; 13:809106. [PMID: 35720339 PMCID: PMC9204200 DOI: 10.3389/fimmu.2022.809106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aims Myasthenia gravis (MG) is a T-cell dependent antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen, comprising several T and B cell auto-epitopes. We hypothesized that an efficacious drug candidate for antigen-specific therapy in MG should comprise a broad range of these auto-epitopes and be administered in a noninflammatory and tolerogenic context. Methods We used a soluble mutated form of the extracellular domain of the α1 chain of the AChR (α1-ECDm), which represents the major portion of auto-epitopes involved in MG, and investigated, in a well-characterized rat model of experimental autoimmune myasthenia gravis (EAMG) whether its intravenous administration could safely and efficiently treat the autoimmune disease. Results We demonstrated that intravenous administration of α1-ECDm abrogates established EAMG, in a dose and time dependent manner, as assessed by clinical symptoms, body weight, and compound muscle action potential (CMAP) decrement. Importantly, the effect was more pronounced compared to drugs representing current standard of care for MG. The protein had a short plasma half-life, most of what could be recovered was sequestered in the liver, kidneys and spleen. Further, we did not observe any signs of toxicity or intolerability in animals treated with α1-ECDm. Conclusion We conclude that intravenous treatment with α1-ECDm is safe and effective in suppressing EAMG. α1-ECDm is in preclinical development as a promising new drug candidate for MG.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Tzartos NeuroDiagnostics, Athens, Greece
| | | | | |
Collapse
|
7
|
Matsoukas J, Deraos G, Kelaidonis K, Hossain MK, Feehan J, Tzakos AG, Matsoukas E, Topoglidis E, Apostolopoulos V. Myelin Peptide-Mannan Conjugate Multiple Sclerosis Vaccines: Conjugation Efficacy and Stability of Vaccine Ingredient. Vaccines (Basel) 2021; 9:vaccines9121456. [PMID: 34960201 PMCID: PMC8708491 DOI: 10.3390/vaccines9121456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Myelin peptide–mannan conjugates have been shown to be potential vaccines in the immunotherapy of multiple sclerosis. The conjugates are comprised from the epitope peptide and the polysaccharide mannan which transfers as a carrier the antigenic peptide to dendritic cells that process and present antigenic peptides at their surface in complex with MHC class I or class II resulting in T-cell stimulation. The conjugation of antigenic peptide with mannan occurs through the linker (Lys–Gly)5, which connects the peptide with the oxidized mannose units of mannan. This study describes novel methods for the quantification of the vaccine ingredient peptide within the conjugate, a prerequisite for approval of clinical trials in the pursuit of multiple sclerosis therapeutics. Myelin peptides, such as MOG35–55, MBP83–99, and PLP131–145 in linear or cyclic form, as altered peptide ligands or conjugated to appropriate carriers, possess immunomodulatory properties in experimental models and are potential candidates for clinical trials.
Collapse
Affiliation(s)
- John Matsoukas
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (J.M.); (V.A.)
| | - George Deraos
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
| | - Kostas Kelaidonis
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
| | - Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
| | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Elizabeth Matsoukas
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence: (J.M.); (V.A.)
| |
Collapse
|
8
|
Matsoukas JM, Ligielli I, Chasapis CT, Kelaidonis K, Apostolopoulos V, Mavromoustakos T. Novel Approaches in the Immunotherapy of Multiple Sclerosis: Cyclization of Myelin Epitope Peptides and Conjugation with Mannan. Brain Sci 2021; 11:1583. [PMID: 34942885 PMCID: PMC8699547 DOI: 10.3390/brainsci11121583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Multiple Sclerosis (MS) is a serious autoimmune disease. The patient in an advanced state of the disease has restrained mobility and remains handicapped. It is therefore understandable that there is a great need for novel drugs and vaccines for the treatment of MS. Herein we summarise two major approaches applied for the treatment of the disease using peptide molecules alone or conjugated with mannan. The first approach focuses on selective myelin epitope peptide or peptide mimetic therapy alone or conjugated with mannan, and the second on immune-therapy by preventing or controlling disease through the release of appropriate cytokines. In both approaches the use of cyclic peptides offers the advantage of increased stability from proteolytic enzymes. In these approaches, the synthesis of myelin epitope peptides conjugated to mannan is of particular interest as this was found to protect mice against experimental autoimmune encephalomyelitis, an animal model of MS, in prophylactic and therapeutic protocols. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation. The aim of the studies of these peptide epitope analogs is to understand their molecular basis of interactions with human autoimmune T-cell receptor and a MS-associated human leucocyte antigen (HLA)-DR2b. This knowledge will lead the rational design to new beneficial non-peptide mimetic analogs for the treatment of MS. Some issues of the use of nanotechnology will also be addressed as a future trend to tackle the disease. We highlight novel immunomodulation and vaccine-based research against MS based on myelin epitope peptides and strategies developed in our laboratories.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 265 04 Platani, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Irene Ligielli
- Department of Chemistry, University of Athens, 157 72 Athens, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, Institute of Chemical, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
- Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 265 04 Patra, Greece
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Melbourne, VIC 3021, Australia
| | | |
Collapse
|
9
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
10
|
Karampetsou K, Koutsoni OS, Gogou G, Angelis A, Skaltsounis LA, Dotsika E. Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. PLoS Negl Trop Dis 2021; 15:e0008968. [PMID: 33428610 PMCID: PMC7799795 DOI: 10.1371/journal.pntd.0008968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leishmaniasis is a serious multifactorial parasitic disease with limited treatment options. Current chemotherapy is mainly consisted of drugs with serious drawbacks such as toxicity, variable efficacy and resistance. Alternative bioactive phytocompounds may provide a promising source for discovering new anti-leishmanial drugs. Extra Virgin Olive Oil (EVOO), a key-product in the Mediterranean diet, is rich in phenols which are associated with anti-inflammatory, anti-cancer and anti-microbial effects. In this study, we investigate the anti-leishmanial effect of Total Phenolic Fraction (TPF) derived from EVOO in both in vitro and in vivo systems by investigating the contributing mechanism of action. METHODOLOGY/PRINCIPAL FINDINGS We tested the ability of TPF to cause apoptotic-like programmed cell death in L. infantum and L. major exponential-phase promastigotes by evaluating several apoptotic indices, such as reduction of proliferation rate, sub-G0/G1 phase cell cycle arrest, phosphatidylserine externalization, mitochondrial transmembrane potential disruption and increased ROS production, by using flow cytometry and microscopy techniques. Moreover, we assessed the therapeutic effect of TPF in L. major-infected BALB/c mice by determining skin lesions, parasite burden in popliteal lymph nodes, Leishmania-specific antibodies and biomarkers of tissue site cellular immune response, five weeks post-treatment termination. Our results show that TPF triggers cell-cycle arrest and apoptotic-like changes in Leishmania spp. promastigotes. Moreover, TPF treatment induces significant reduction of parasite burden in draining lymph nodes together with an antibody profile indicative of the polarization of Th1/Th2 immune balance towards the protective Th1-type response, characterized by the presence of IFN-γ-producing CD4+ T-cells and increased Tbx21/GATA-3 gene expression ratio in splenocytes. CONCLUSIONS/SIGNIFICANCE TPF exhibits chemotherapeutic anti-leishmanial activity by inducing programmed cell death on cell-free promastigotes and immunomodulatory properties that induce in vivo T cell-mediated responses towards the protective Th1 response in experimental cutaneous leishmaniasis. These findings enable deeper understanding of TPF's dual mode of action that encourages further studies.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
11
|
Dagkonaki A, Avloniti M, Evangelidou M, Papazian I, Kanistras I, Tseveleki V, Lampros F, Tselios T, Jensen LT, Möbius W, Ruhwedel T, Androutsou ME, Matsoukas J, Anagnostouli M, Lassmann H, Probert L. Mannan-MOG35-55 Reverses Experimental Autoimmune Encephalomyelitis, Inducing a Peripheral Type 2 Myeloid Response, Reducing CNS Inflammation, and Preserving Axons in Spinal Cord Lesions. Front Immunol 2020; 11:575451. [PMID: 33329540 PMCID: PMC7711156 DOI: 10.3389/fimmu.2020.575451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
CNS autoantigens conjugated to oxidized mannan (OM) induce antigen-specific T cell tolerance and protect mice against autoimmune encephalomyelitis (EAE). To investigate whether OM-peptides treat EAE initiated by human MHC class II molecules, we administered OM-conjugated murine myelin oligodendrocyte glycoprotein peptide 35-55 (OM-MOG) to humanized HLA-DR2b transgenic mice (DR2b.Ab°), which are susceptible to MOG-EAE. OM-MOG protected DR2b.Ab° mice against MOG-EAE by both prophylactic and therapeutic applications. OM-MOG reversed clinical symptoms, reduced spinal cord inflammation, demyelination, and neuronal damage in DR2b.Ab° mice, while preserving axons within lesions and inducing the expression of genes associated with myelin (Mbp) and neuron (Snap25) recovery in B6 mice. OM-MOG-induced tolerance was peptide-specific, not affecting PLP178-191-induced EAE or polyclonal T cell proliferation responses. OM-MOG-induced immune tolerance involved rapid induction of PD-L1- and IL-10-producing myeloid cells, increased expression of Chi3l3 (Ym1) in secondary lymphoid organs and characteristics of anergy in MOG-specific CD4+ T cells. The results show that OM-MOG treats MOG-EAE in a peptide-specific manner, across mouse/human MHC class II barriers, through induction of a peripheral type 2 myeloid cell response and T cell anergy, and suggest that OM-peptides might be useful for suppressing antigen-specific CD4+ T cell responses in the context of human autoimmune CNS demyelination.
Collapse
Affiliation(s)
- Anastasia Dagkonaki
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Avloniti
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Evangelidou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Irini Papazian
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Kanistras
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Fotis Lampros
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - John Matsoukas
- Department of Chemistry, University of Patras, Patras, Greece
| | - Maria Anagnostouli
- Immunogenetics Laboratory, First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
12
|
Androutsou ME, Nteli A, Gkika A, Avloniti M, Dagkonaki A, Probert L, Tselios T, Golič Grdadolnik S. Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:E7566. [PMID: 33066323 PMCID: PMC7593956 DOI: 10.3390/ijms21207566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Mannan (polysaccharide) conjugated with a myelin oligodendrocyte glycoprotein (MOG) peptide, namely (KG)5MOG35-55, represents a potent and promising new approach for the immunotherapy of Multiple Sclerosis (MS). The MOG35-55 epitope conjugated with the oxidized form of mannan (poly-mannose) via a (KG)5 linker was found to inhibit the symptoms of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) in mice using prophylactic and therapeutic vaccinated protocols. Deamidation is a common modification in peptide and protein sequences, especially for Gln and Asn residues. In this study, the structural solution motif of deaminated peptides and their functional effects in an animal model for MS were explored. Several peptides based on the MOG35-55 epitope have been synthesized in which the Asn53 was replaced with Ala, Asp, or isoAsp. Our results demonstrate that the synthesized MOG peptides were formed to the deaminated products in basic conditions, and the Asn53 was mainly modified to Asp. Moreover, both peptides (wild type and deaminated derivative) conjugated with mannan (from Saccharomyces cerevisiae) independently inhibited the development of neurological symptoms and inflammatory demyelinating spinal cord lesions in MOG35-55-induced EAE. To conclude, mannan conjugated with a deamidated product did not affect the efficacy of the parent peptide.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (A.N.); (A.G.)
| | - Areti Gkika
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (A.N.); (A.G.)
| | - Maria Avloniti
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; (M.A.); (A.D.); (L.P.)
| | - Anastasia Dagkonaki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; (M.A.); (A.D.); (L.P.)
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; (M.A.); (A.D.); (L.P.)
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (A.N.); (A.G.)
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
13
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
14
|
Apostolopoulos V, Rostami A, Matsoukas J. The Long Road of Immunotherapeutics against Multiple Sclerosis. Brain Sci 2020; 10:E288. [PMID: 32403377 PMCID: PMC7287601 DOI: 10.3390/brainsci10050288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
This commentary highlights novel immunomodulation and vaccine-based research against multiple sclerosis (MS) and reveals the amazing story that triggered this cutting-edge MS research in Greece and worldwide. It further reveals the interest and solid support of some of the world's leading scientists, including sixteen Nobel Laureates who requested from European leadership to take action in supporting Greece and its universities in the biggest ever financial crisis the country has encountered in the last decades. This support endorsed vaccine-based research on MS, initiated in Greece and Australia, leading to a worldwide network aiming to treat or manage disease outcomes. Initiatives by bright and determined researchers can result in frontiers science. We shed light on a unique story behind great research on MS which is a step forward in our efforts to develop effective treatments for MS.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
| | | | | |
Collapse
|
15
|
Amlexanox attenuates experimental autoimmune encephalomyelitis by inhibiting dendritic cell maturation and reprogramming effector and regulatory T cell responses. J Neuroinflammation 2019; 16:52. [PMID: 30823934 PMCID: PMC6396467 DOI: 10.1186/s12974-019-1438-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Amlexanox (ALX), a TBK1 inhibitor, can modulate immune responses and has anti-inflammatory properties. To investigate its role in regulating the progression of experimental autoimmune encephalomyelitis (EAE), we studied the effect of ALX on the maturation of dendritic cells (DCs) and the responses of effector and regulatory T cells (Tregs). Methods In vitro, bone marrow-derived DCs (BMDCs) were cultured and treated with ALX. Their proliferation, maturation, and their stimulatory function to induce T cells responses were detected. In vivo, the development of EAE from different groups was recorded. At the peak stage of disease, HE, LFB, and electronic microscope (EM) were used to evaluate inflammation and demyelination. Maturation of splenic DC and Th1/Th17/Treg response in the CNS and peripheral were also detected. To further explore the mechanism underlying the action of ALX in DC maturation, the activation of TBK1, IRF3, and AKT was analyzed. Results Our data indicated that ALX significantly inhibited the proliferation and maturation of BMDCs, characterized by the reduced MHCII, a co-stimulatory molecule, IL12, and IL-23 expression, along with morphological alterations. Co-culture of ALX-treated BMDCs inhibited allogeneic T cell proliferation and MOG-specific T cell response. In EAE mice, ALX significantly attenuated the EAE development by decreasing inflammatory infiltration and demyelination in the spinal cords, accompanied by reduced frequency of splenic pathogenic Th1 and Th17 cells and increased Tregs. Moreover, ALX treatment decreased Th1 and Th17 cytokines, but increased Treg cytokines in the CNS and spleen. Notably, ALX treatment reduced the frequency and expression of CD80 and CD86 on splenic DCs and lowered IL-12 and IL-23 secretion, further supporting an impaired maturation of splenic DCs. In addition, ALX potently reduced the phosphorylation of IRF3 and AKT in BMDC and splenic DCs, both of which are substrates of TBK1 and associated with DC maturation. Conclusions ALX, a TBK1 inhibitor, mitigated EAE development by inhibiting DC maturation and subsequent pathogenic Th1 and Th17 responses while increasing Treg responses through attenuating the TBK1/AKT and TBK1/IRF3 signaling.
Collapse
|
16
|
Deraos G, Kritsi E, Matsoukas MT, Christopoulou K, Kalbacher H, Zoumpoulakis P, Apostolopoulos V, Matsoukas J. Design of Linear and Cyclic Mutant Analogues of Dirucotide Peptide (MBP 82⁻98) against Multiple Sclerosis: Conformational and Binding Studies to MHC Class II. Brain Sci 2018; 8:brainsci8120213. [PMID: 30518150 PMCID: PMC6316436 DOI: 10.3390/brainsci8120213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system. MS is a T cell-mediated disease characterized by the proliferation, infiltration, and attack of the myelin sheath by immune cells. Previous studies have shown that cyclization provides molecules with strict conformation that could modulate the immune system. Methods: In this study, we synthesized peptide analogues derived from the myelin basic protein (MBP)82–98 encephalitogenic sequence (dirucotide), the linear altered peptide ligand MBP82–98 (Ala91), and their cyclic counterparts. Results: The synthesized peptides were evaluated for their binding to human leukocyte antigen (HLA)-DR2 and HLA-DR4 alleles, with cyclic MBP82–98 being a strong binder with the HLA-DR2 allele and having lower affinity binding to the HLA-DR4 allele. In a further step, conformational analyses were performed using NMR spectroscopy in solution to describe the conformational space occupied by the functional amino acids of both linear and cyclic peptide analogues. This structural data, in combination with crystallographic data, were used to study the molecular basis of their interaction with HLA-DR2 and HLA-DR4 alleles. Conclusion: The cyclic and APL analogues of dirucotide are promising leads that should be further evaluated for their ability to alter T cell responses for therapeutic benefit against MS.
Collapse
Affiliation(s)
- George Deraos
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| | - Eftichia Kritsi
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | - Konstantina Christopoulou
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tubingen, 72076 Tubingen, Germany.
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia.
| | - John Matsoukas
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| |
Collapse
|
17
|
Novel vaccines targeting dendritic cells by coupling allergoids to mannan. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Benito-Villalvilla C, Soria I, Subiza JL, Palomares O. Novel vaccines targeting dendritic cells by coupling allergoids to mannan. ACTA ACUST UNITED AC 2018; 27:256-262. [PMID: 30546997 PMCID: PMC6267119 DOI: 10.1007/s40629-018-0069-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 01/27/2023]
Abstract
Allergen-specific immunotherapy (AIT) is the single disease-modifying treatment for allergy. Clinical trials show AIT to be safe and effective for many patients; however, it still faces problems related to efficacy, safety, long treatment duration and low patient adherence. There has been intensive research to develop alternative strategies, including novel administration routes, adjuvants or hypoallergenic molecules. Promising results are reported for some of them, but clinical progress is still moderate. Allergoids conjugated to nonoxidized mannan from Saccharomyces cerevisiae have emerged as a novel concept of vaccine targeting dendritic cells (DCs). Preclinical human and animal models demonstrated that allergoids conjugated to mannan enhance allergen uptake, promote healthy responses to allergens by inducing Th1 and T regulatory (Treg) cells, and show clinical efficacy in veterinary medicine. Dose-finding phase II clinical trials in humans are currently ongoing. We review the current stage of allergoids conjugated to mannan as next generation vaccines for AIT.
Collapse
Affiliation(s)
- Cristina Benito-Villalvilla
- 1Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | - Oscar Palomares
- 1Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Kontos C, Androutsou ME, Vlamis-Gardikas A, Tselios T. Recovery and quantification of a myelin oligodendrocyte glycoprotein peptide from rat plasma after protein precipitation. Anal Biochem 2017; 538:71-73. [PMID: 28958915 DOI: 10.1016/j.ab.2017.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
The recovery of high molecular weight peptides from complex biological samples is a challenging task. Herein, a reliable, cost effective and rapid methodology was developed for the recovery and quantification of a myelin oligodendrocyte glycoprotein epitope namely (LysGly)5MOG35-55, from rat plasma. Removal of plasma proteins before quantification of the peptide was achieved after precipitation by an acetonitrile/water/formic acid solution. Using the developed protocol, average recoveries of the peptide from plasma ranged between 83.3 and 90.3%.
Collapse
Affiliation(s)
- Christos Kontos
- Department of Chemistry, University of Patras, Rion, 26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea, 14671, Greece
| | | | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion, 26504, Greece.
| |
Collapse
|
20
|
Tapeinou A, Giannopoulou E, Simal C, Hansen BE, Kalofonos H, Apostolopoulos V, Vlamis-Gardikas A, Tselios T. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP 85-99) epitope: Towards selective immunosuppression. Eur J Med Chem 2017; 143:621-631. [PMID: 29216561 DOI: 10.1016/j.ejmech.2017.11.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 02/09/2023]
Abstract
Anthraquinone type compounds, especially di-substituted amino alkylamino anthraquinones have been widely studied as immunosuppressants. The anthraquinone ring is part of mitoxandrone that has been used for the treatment of multiple sclerosis (MS) and several types of tumors. A desired approach for the treatment of MS would be the immunosuppression and elimination of specific T cells that are responsible for the induction of the disease. Herein, the development of a peptide compound bearing an anthraquinone derivative with the potential to specifically destroy the encephalitogenic T cells responsible for the onset of MS is described. The compound consists of the myelin basic protein (MBP) 85-99 immunodominant epitope (MBP85-99) coupled to an anthraquinone type molecule (AQ) via a disulfide (S-S) and 6 amino hexanoic acid (Ahx) residues (AQ-S-S-(Ahx)6MBP85-99). AQ-S-S-(Ahx)6MBP85-99 could bind to HLA II DRB1*-1501 antigen with reasonable affinity (IC50 of 56 nM) The compound was localized to the nucleus of Jurkat cells (an immortalized line of human T lymphocytes) 10 min after its addition to the medium and resulted in lowered Bcl-2 levels (apoptosis). Entrance of the compound was abolished when cells were pre-treated with cisplatin, an inhibitor of thioredoxin reductase. Accordingly, levels of free thiols were elevated in the culture supernatants of Jurkat cells exposed to N-succinimidyl 3-(2-pyridyldithio) propionate coupled to (Ahx)6MBP85-99 via a disulphide (SPDP-S-S-(Ahx)6MBP85-99) but returned to normal after exposure to cisplatin. These results raise the possibility of AQ-S-S-(Ahx)6MBP85-99 being used as an eliminator of encephalitogenic T cells via implication of the thioredoxin system for the generation of the toxic, thiol-containing moiety (AQ-SH). Future experiments would ideally determine whether SPDP-S-S-(Ahx)6MBP85-99 could incorporate into HLA II DRB1*-1501 tetramers and neutralize encephalitogenic T cell lines sensitized to MBP85-99.
Collapse
Affiliation(s)
- Anthi Tapeinou
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Carmen Simal
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Bjarke E Hansen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Haralabos Kalofonos
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | | - Theodore Tselios
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece.
| |
Collapse
|
21
|
Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci 2017; 7:brainsci7070078. [PMID: 28686222 PMCID: PMC5532591 DOI: 10.3390/brainsci7070078] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The treatment of multiple sclerosis (MS) has changed over the last 20 years. All immunotherapeutic drugs target relapsing remitting MS (RRMS) and it still remains a medical challenge in MS to develop a treatment for progressive forms. The most common injectable disease-modifying therapies in RRMS include β-interferons 1a or 1b and glatiramer acetate. However, one of the major challenges of injectable disease-modifying therapies has been poor treatment adherence with approximately 50% of patients discontinuing the therapy within the first year. Herein, we go back to the basics to understand the immunopathophysiology of MS to gain insights in the development of new improved drug treatments. We present current disease-modifying therapies (interferons, glatiramer acetate, dimethyl fumarate, teriflunomide, fingolimod, mitoxantrone), humanized monoclonal antibodies (natalizumab, ofatumumb, ocrelizumab, alentuzumab, daclizumab) and emerging immune modulating approaches (stem cells, DNA vaccines, nanoparticles, altered peptide ligands) for the treatment of MS.
Collapse
|
22
|
Cyclic MOG 35-55 ameliorates clinical and neuropathological features of experimental autoimmune encephalomyelitis. Bioorg Med Chem 2017. [PMID: 28642030 DOI: 10.1016/j.bmc.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
EAE is induced to susceptible mice using linear peptides of myelin proteins of the central nervous system. Specific peptide motifs within the peptide-binding groove of the MHC peptide-complex determines the affinity of the peptide in each animal and the consequent T-cell receptor recognition and activation of the cell. Altered peptide ligand (APL) vaccination is a novel approach based on an effort to induce T-cell tolerance or alter cytokine profile from pro-inflammatory to anti-inflammatory. In the present study we synthesized the MOG35-55 peptide and altered its 3-dimensional conformation to make it a cyclic one (c-MOG35-55). EAE was induced in C57BL/6 mice and pathology was studied on acute and chronic phase of the disease. Our data indicates that c-MOG35-55 peptide alone induces a mild transient acute phase without chronic axonopathy. Administration of the c-MOG35-55 peptide at a 1:1 ratio during disease induction significantly ameliorates clinical disease and underlying pathology, such as demyelination and axonopathy in the acute and chronic phases. Binding and structural studies revealed milder interactions between the c-MOG35-55 and mouse or human MHC class II alleles (H2-IAb and HLA-DR2). Collectively, we provide data supporting for the first time the concept that the cyclic modification of an established encephalitogenic peptide ameliorates the clinical outcomes and underlying pathological processes of EAE. Such a cyclic modification of linear peptides could provide a novel treatment approach for future, patient-selective, immunomodulative treatments of multiple sclerosis.
Collapse
|
23
|
Dasgupta S, Dasgupta S. Antigen presentation for priming T cells in central system. Int J Biochem Cell Biol 2016; 82:41-48. [PMID: 27903432 DOI: 10.1016/j.biocel.2016.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Generation of myelin antigen-specific T cells is a major event in neuroimmune responses that causes demyelination. The antigen-priming of T cells and its location is important in chronic and acute inflammation. In autoimmune multiple sclerosis, the effector T cells are considered to generate in periphery. However, the reasons for chronic relapsing-remitting events are obscure. Considering mechanisms, a feasible aim of research is to investigate the role of antigen-primed T cells in lupus cerebritis. Last thirty years of investigations emphasize the relevance of microglia and infiltrated dendritic cells/macrophages as antigen presenting cells in the central nervous system. The recent approach towards circulating B-lymphocytes is an important area in the context. Here, we analyze the existing findings on antigen presentation in the central nervous system. The aim is to visualize signaling events of myelin antigen presentation to T cells and lead to the strategy of future goals on immunotherapy research.
Collapse
Affiliation(s)
| | - Subhajit Dasgupta
- Microbiology, Immunology and Biochemistry, Saint James School of Medicine, P.O. Box 318, Albert Lake Drive, The Quarter, AI-2640, British West Indies, Anguilla.
| |
Collapse
|
24
|
Rodi M, Dimisianos N, de Lastic AL, Sakellaraki P, Deraos G, Matsoukas J, Papathanasopoulos P, Mouzaki A. Regulatory Cell Populations in Relapsing-Remitting Multiple Sclerosis (RRMS) Patients: Effect of Disease Activity and Treatment Regimens. Int J Mol Sci 2016; 17:ijms17091398. [PMID: 27571060 PMCID: PMC5037678 DOI: 10.3390/ijms17091398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) of autoimmune etiology that results from an imbalance between CNS-specific T effector cells and peripheral suppressive mechanisms mediated by regulatory cells (RC). In this research, we collected blood samples from 83 relapsing remitting MS (RRMS) patients and 45 healthy persons (HC), to assess the sizes of their RC populations, including CD4⁺CD25(high)Foxp3⁺ (nTregs), CD3⁺CD4⁺HLA(-)G⁺, CD3⁺CD8⁺CD28(-), CD3⁺CD56⁺, and CD56(bright) cells, and how RC are affected by disease activity (acute phase or remission) and types of treatment (methylprednisolone, interferon, or natalizumab). In addition, we isolated peripheral blood mononuclear cells (PBMC) and cultured them with peptides mapping to myelin antigens, to determine RC responsiveness to autoantigens. The results showed decreased levels of nTregs in patients in the acute phase ± methylprednisolone and in remission + natalizumab, but HC levels in patients in remission or receiving interferon. Patients + interferon had the highest levels of CD3⁺CD4⁺HLA(-)G⁺ and CD3⁺CD8⁺CD28(-) RC, and patients in the acute phase + methylprednisolone the lowest. Patients in remission had the highest levels of CD3⁺CD56⁺, and patients in remission + natalizumab the highest levels of CD56(bright) cells. Only nTregs responded to autoantigens in culture, regardless of disease activity or treatment. The highest suppressive activity was exhibited by nTregs from patients in remission. In conclusion, in RRMS disease activity and type of treatment affect different RC populations. nTregs respond to myelin antigens, indicating that it is possible to restore immunological tolerance through nTreg induction.
Collapse
Affiliation(s)
- Maria Rodi
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - Nikolaos Dimisianos
- Department of Neurology, Faculty of Medicine & University Hospital, University of Patras, Patras GR-26500, Greece.
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - Panagiota Sakellaraki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - George Deraos
- Eldrug S.A., Pharmaceutical Company, Platani, Patras GR-26504, Greece.
| | - John Matsoukas
- Eldrug S.A., Pharmaceutical Company, Platani, Patras GR-26504, Greece.
| | - Panagiotis Papathanasopoulos
- Department of Neurology, Faculty of Medicine & University Hospital, University of Patras, Patras GR-26500, Greece.
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| |
Collapse
|
25
|
Ntountaniotis D, Vanioti Μ, Kordopati GG, Kellici TF, Marousis KD, Mavromoustakos T, Spyroulias GA, Golic Grdadolnik S, Tselios TV. A combined NMR and molecular dynamics simulation study to determine the conformational properties of rat/mouse 35-55 myelin oligodendrocyte glycoprotein epitope implicated in the induction of experimental autoimmune encephalomyelitis. J Biomol Struct Dyn 2016; 35:1559-1567. [PMID: 27483998 DOI: 10.1080/07391102.2016.1188418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dimitrios Ntountaniotis
- a Department of Chemistry , National and Kapodistrian University of Athens , Zografou 15771 , Athens , Greece
| | - Μarianna Vanioti
- a Department of Chemistry , National and Kapodistrian University of Athens , Zografou 15771 , Athens , Greece
| | - Golfo G Kordopati
- b Department of Chemistry , University of Patras , Patras 26504 , Greece
| | - Tahsin F Kellici
- a Department of Chemistry , National and Kapodistrian University of Athens , Zografou 15771 , Athens , Greece.,c Department of Chemistry , University of Ioannina , Ioannina 45110 , Greece
| | | | - Thomas Mavromoustakos
- a Department of Chemistry , National and Kapodistrian University of Athens , Zografou 15771 , Athens , Greece
| | | | - Simona Golic Grdadolnik
- e Department of Biomolecular Structure , National Institute of Chemistry , Hajdrihova 19, SI-1001 Ljubljana , Slovenia
| | - Theodore V Tselios
- b Department of Chemistry , University of Patras , Patras 26504 , Greece
| |
Collapse
|
26
|
Schülke S, Vieths S. Dendritic cell targeting with C-type lectins for improvement of allergen immunotherapy. J Allergy Clin Immunol 2016; 138:568-70. [DOI: 10.1016/j.jaci.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 01/02/2023]
|
27
|
Scheiblhofer S, Machado Y, Feinle A, Thalhamer J, Hüsing N, Weiss R. Potential of nanoparticles for allergen-specific immunotherapy - use of silica nanoparticles as vaccination platform. Expert Opin Drug Deliv 2016; 13:1777-1788. [PMID: 27321476 DOI: 10.1080/17425247.2016.1203898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Yoan Machado
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Andrea Feinle
- b Department of Chemistry and Physics of Materials, Materials Chemistry Division , University of Salzburg , Salzburg , Austria
| | - Josef Thalhamer
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Nicola Hüsing
- b Department of Chemistry and Physics of Materials, Materials Chemistry Division , University of Salzburg , Salzburg , Austria
| | - Richard Weiss
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| |
Collapse
|
28
|
Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance. Clin Immunol 2016; 169:36-46. [PMID: 27327113 DOI: 10.1016/j.clim.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
Abstract
Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance.
Collapse
|
29
|
Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1. J Allergy Clin Immunol 2016; 138:558-567.e11. [PMID: 27177779 DOI: 10.1016/j.jaci.2016.02.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. OBJECTIVES We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). METHODS Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. RESULTS PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. CONCLUSIONS Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases.
Collapse
|
30
|
Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development. Neuroscience 2016; 317:130-40. [PMID: 26762804 DOI: 10.1016/j.neuroscience.2015.12.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/14/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis is a chronic, inflammatory and demyelinating disease of the central nervous system (CNS). As there is no cure for this disease, new therapeutic strategies and prophylactic measures are necessary. We recently described the therapeutic activity of the association between myelin oligodendrocyte glycoprotein peptide (MOG) and active vitamin D3 (VitD) against experimental autoimmune encephalomyelitis (EAE). The objective of this work was to evaluate the prophylactic potential of this association in EAE. C57BL/6 mice were vaccinated with MOG in the presence of VitD and then subjected to EAE induction. Animals were euthanized 7 and 19days after disease induction and the following parameters were evaluated: body weight, clinical score, inflammatory process in the CNS, amount of dendritic cells (DCs) and regulatory T cells in the spleen and cytokine production by spleen and CNS cell cultures. Vaccination with MOG associated with VitD determined a drastic reduction in clinical score, body weight loss, CNS inflammation, DCs maturation and also in the production of cytokines by CNS and spleen cell cultures. Collectively, our data indicate that this association prevents EAE development. A similar effect from specific self-antigens associated with VitD is expected in other autoimmune conditions and deserves to be experimentally appraised.
Collapse
|
31
|
Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation. J Neuroimmunol 2015; 286:59-70. [PMID: 26298325 DOI: 10.1016/j.jneuroim.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a debilitating condition in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Specific myelin basic protein (MBP) peptides are encephalitogenic, and myelin-derived altered peptide ligands (APLs) are capable of preventing and ameliorating EAE. We investigated the effects of active immunisation with a weakly encephalitogenic epitope of MBP (MBP87-99) and its mutant APL (Cyclo-87-99[A(91),A(96)]MBP87-99) on pain hypersensitivity and neuroinflammation in Lewis rats. MBP-treated rats exhibited significant mechanical and thermal pain hypersensitivity associated with infiltration of T cells, MHC class II expression and microglia activation in the spinal cord, without developing clinical signs of paralysis. Co-immunisation with APL significantly decreased pain hypersensitivity and neuroinflammation emphasising the important role of neuroimmune crosstalk in neuropathic pain.
Collapse
|
32
|
Tapeinou A, Androutsou ME, Kyrtata K, Vlamis-Gardikas A, Apostolopoulos V, Matsoukas J, Tselios T. Conjugation of a peptide to mannan and its confirmation by tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 2015; 485:43-5. [PMID: 26079707 DOI: 10.1016/j.ab.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
The conjugation of polysaccharides to peptides is essential for antigen delivery and vaccine development. Herein, we show that tricine SDS-PAGE in combination with Coomassie Blue staining was adequate to determine the conjugation efficacy of a peptide (epitope 35-55 of myelin oligodendrocyte glycoprotein) to mannan. In addition, tricine SDS-PAGE and periodic acid-Schiff stains were able to monitor the redox state of mannan. Using the described protocol, more than 99.9% of a peptide containing five lysines at its N-terminus was confirmed conjugated to mannan.
Collapse
Affiliation(s)
- Anthi Tapeinou
- Department of Chemistry, University of Patras, GR-26504 Rion, Greece
| | - Maria-Eleni Androutsou
- Department of Chemistry, University of Patras, GR-26504 Rion, Greece; Eldrug S.A., Pharmaceutical Company, GR-26504 Platani, Greece
| | | | | | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - John Matsoukas
- Eldrug S.A., Pharmaceutical Company, GR-26504 Platani, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, GR-26504 Rion, Greece.
| |
Collapse
|