1
|
Cannabidiol effect in pentylenetetrazole-induced seizures depends on PI3K. Pharmacol Rep 2022; 74:1099-1106. [DOI: 10.1007/s43440-022-00391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
2
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Kang DH, Choi BY, Lee SH, Kho AR, Jeong JH, Hong DK, Kang BS, Park MK, Song HK, Choi HC, Lim MS, Suh SW. Effects of Cerebrolysin on Hippocampal Neuronal Death After Pilocarpine-Induced Seizure. Front Neurosci 2020; 14:568813. [PMID: 33177978 PMCID: PMC7596733 DOI: 10.3389/fnins.2020.568813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common and severe brain diseases. The exact cause of epilepsy is unclear. Epilepsy often occurs following brain damage, such as traumatic brain injury (TBI) and ischemia. Cerebrolysin is a porcine brain peptide that is a unique neurotropic and neuroprotective agent. Cerebrolysin has been reported to increase neuroprotective effects after TBI, ischemia, and other CNS diseases. However, the effects of cerebrolysin on seizures are not known. Therefore, this study aimed to investigate the effects of neuropeptide cerebrolysin on neuronal death in the hippocampus after a seizure. To confirm the effects of cerebrolysin, we used a pilocarpine-induced seizure animal model. Cerebrolysin (2.5 ml/kg, i.p., once per day for 7 days) was immediately injected after a seizure induction. After 1 week, we obtained brain tissues and performed staining to histologically evaluate the potentially protective effects of cerebrolysin on seizure-induced neuronal death in the hippocampus. We found that cerebrolysin decreased hippocampal neuronal death after a seizure. In addition, an increase in brain-derived neurotrophic factor (BDNF) was confirmed through Western blot analysis to further support our hypothesis. Therefore, the present study suggests that the administration of cerebrolysin can be a useful therapeutic tool for preventing neuronal death after a seizure.
Collapse
Affiliation(s)
- Dong Hyeon Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
- Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong Ki Song
- Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
- Hallym Institute of Epilepsy Research, Chuncheon, South Korea
| | - Hui Chul Choi
- Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
- Hallym Institute of Epilepsy Research, Chuncheon, South Korea
| | - Man-Sup Lim
- Department of Medical Education, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
4
|
Phosphoinositide-3-Kinase γ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity. eNeuro 2020; 7:ENEURO.0311-20.2020. [PMID: 33067365 PMCID: PMC7769883 DOI: 10.1523/eneuro.0311-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia are dynamic cells whose extensive interactions with neurons and glia during development allow them to regulate neuronal development and function. The microglial P2Y12 receptor is crucial for microglial responsiveness to extracellular ATP and mediates numerous microglial functions, including ATP-dependent directional motility, microglia-neuron interactions, and experience-dependent synaptic plasticity. However, little is known about the downstream signaling effectors that mediate these diverse actions of P2Y12. Phosphoinositide-3-kinase γ (PI3Kγ), a lipid kinase activated downstream of Gi-protein-coupled receptors such as P2Y12, could translate localized extracellular ATP signals into directed microglial action and serve as a broad effector of P2Y12-dependent signaling. Here, we used pharmacological and genetic methods to manipulate P2Y12 and PI3Kγ signaling to determine whether inhibiting PI3Kγ phenocopied the loss of P2Y12 signaling in mouse microglia. While pan-inhibition of all PI3K activity substantially affected P2Y12-dependent microglial responses, our results suggest that PI3Kγ specifically is only a minor part of the P2Y12 signaling pathway. PI3Kγ was not required to maintain homeostatic microglial morphology or their dynamic surveillance in vivo Further, PI3Kγ was not strictly required for P2Y12-dependent microglial responses ex vivo or in vivo, although we did observe subtle deficits in the recruitment of microglial process toward sources of ATP. Finally, PI3Kγ was not required for ocular dominance plasticity, a P2Y12-dependent form of experience-dependent synaptic plasticity that occurs in the developing visual cortex. Overall, our results demonstrate that PI3Kγ is not the major mediator of P2Y12 function in microglia, but may have a role in amplifying or fine-tuning the chemotactic response.
Collapse
|
5
|
Cannabidiol anticonvulsant effect is mediated by the PI3Kγ pathway. Neuropharmacology 2020; 176:108156. [DOI: 10.1016/j.neuropharm.2020.108156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
6
|
Bellozi PMQ, Gomes GF, da Silva MCM, Lima IVDA, Batista CRÁ, Carneiro Junior WDO, Dória JG, Vieira ÉLM, Vieira RP, de Freitas RP, Ferreira CN, Candelario-Jalil E, Wyss-Coray T, Ribeiro FM, de Oliveira ACP. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 2019; 160:107785. [PMID: 31541651 DOI: 10.1016/j.neuropharm.2019.107785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | | | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Claudia Natália Ferreira
- Clinical Pathology Sector of COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
7
|
Vilela LR, Lima IV, Kunsch ÉB, Pinto HPP, de Miranda AS, Vieira ÉLM, de Oliveira ACP, Moraes MFD, Teixeira AL, Moreira FA. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: Pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav 2017; 75:29-35. [PMID: 28821005 DOI: 10.1016/j.yebeh.2017.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022]
Abstract
Cannabidiol (CBD), the main nonpsychotomimetic compound from Cannabis sativa, inhibits experimental seizures in animal models and alleviates certain types of intractable epilepsies in patients. Its pharmacological profile, however, is still uncertain. Here we tested the hypothesis that CBD anticonvulsant mechanisms are prevented by cannabinoid (CB1 and CB2) and vanilloid (TRPV1) receptor blockers. We also investigated its effects on electroencephalographic (EEG) activity and hippocampal cytokines in the pentylenetetrazole (PTZ) model. Pretreatment with CBD (60mg/kg) attenuated seizures induced by intraperitoneal, subcutaneous, and intravenous PTZ administration in mice. The effects were reversed by CB1, CB2, and TRPV1 selective antagonists (AM251, AM630, and SB366791, respectively). Additionally, CBD delayed seizure sensitization resulting from repeated PTZ administration (kindling). This cannabinoid also prevented PTZ-induced EEG activity and interleukin-6 increase in prefrontal cortex. In conclusion, the robust anticonvulsant effects of CBD may result from multiple pharmacological mechanisms, including facilitation of endocannabinoid signaling and TRPV1 mechanisms. These findings advance our understanding on CBD inhibition of seizures, EEG activity, and cytokine actions, with potential implications for the development of new treatments for certain epileptic syndromes.
Collapse
Affiliation(s)
- Luciano R Vilela
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Isabel V Lima
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Érica B Kunsch
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Hyorrana Priscila P Pinto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Aline S de Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Érica Leandro M Vieira
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | | | - Marcio Flávio D Moraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Antônio L Teixeira
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil.
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
8
|
Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H. TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 2017; 310:38-45. [PMID: 28778443 DOI: 10.1016/j.jneuroim.2017.06.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) initiates inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioural impairment. Toll-like receptor 4 (TLR4), predominantly expressed by microglia, recognizes damage-associated molecular patterns (DAMPs) and regulates inflammatory processes. Interestingly, the switch of microglial M1/M2 phenotypes after TBI is highly important regarding damage and restoration of neurological function. Therefore, we investigated the role and mechanisms of the TLR4 signalling pathway in regulating microglial M1/M2 phenotypes. Using a controlled cortical impact (CCI) model, we found that TLR4 knockout (KO) mice exhibited decreased infarct volumes and improved outcomes in behavioural tests. In addition, mice lacking TLR4 had higher expression of M2 phenotype biomarkers but lower expression of M1 phenotype biomarkers. Compared with microglia derived from wild-type (WT) mice, increased expression of M2 phenotype biomarkers and decreased expression of M1 phenotype biomarkers were also noted in primary cultures of microglia from TLR4 KO mice. In TLR4 KO mice, the expression levels of downstream signalling molecules of TLR4, such as active Rac-1 and phospho-AKT, were higher, while MyD88 and phospho-NF-κB p65 expression levels were lower than in WT mice. Our results demonstrate that the absence of TLR4 induces microglial polarization toward the M2 phenotype and promotes microglial migration and, in turn, alleviates the development of neuroinflammation, which indicates potential neuroprotective effects in the TBI mouse model. Furthermore, up-regulation of IL-4 expression in TLR4 KO mice could contribute to anti-inflammatory functions and promote microglial polarization toward the M2 phenotype, which might be mediated by active Rac-1 expression. Taken together, TLR4 deficiency contributes to regulating microglia to switch to the M2 phenotype, which ameliorates neurological impairment after TBI.
Collapse
Affiliation(s)
- Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Ding
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Pengjie Yue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
9
|
Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice. Eur J Pharmacol 2017; 810:15-25. [PMID: 28583427 DOI: 10.1016/j.ejphar.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Seizures increase prostaglandin and cytokine levels in the brain. However, it remains to be determined whether cyclooxygenase-2 (COX-2) derived metabolites play a role in seizure-induced cytokine increase in the brain and whether anticonvulsant activity is shared by all COX-2 inhibitors. In this study we investigated whether three different COX-2 inhibitors alter pentylenetetrazol (PTZ)-induced seizures and increase of interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) levels in the hippocampus and cerebral cortex of mice. Adult male albino Swiss mice received nimesulide, celecoxib or etoricoxib (0.2, 2 or 20mg/kg in 0.1% carboxymethylcellulose (CMC) in 5% Tween 80, p.o.). Sixty minutes thereafter the animals were injected with PTZ (50mg/kg, i.p.) and the latency to myoclonic jerks and to generalized tonic-clonic seizures were recorded. Twenty minutes after PTZ injection animals were killed and cytokine levels were measured. PTZ increased cytokine levels in the cerebral cortex and hippocampus. While celecoxib and nimesulide attenuated PTZ -induced increase of proinflammatory cytokines in the cerebral cortex, etoricoxib did not. Nimesulide was the only COX-2 inhibitors that attenuated PTZ-induced seizures. This effect coincided with an increase of IL-10 levels in the cerebral cortex and hippocampus, constituting circumstantial evidence that IL-10 increase may be involved in the anticonvulsant effect of nimesulide.
Collapse
|
10
|
Lima IVDA, Campos ACD, Bellozi PMQ, Doria JG, Ribeiro FM, Moraes MFD, de Oliveira ACP. Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy Behav 2016; 64:83-89. [PMID: 27736661 DOI: 10.1016/j.yebeh.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. The pilocarpine (PILO) experimental model of TLE portrays behavioral and pathophysiological changes in rodents that are very similar to those found in humans with TLE. However, this model is associated with an unfortunate high mortality rate. Studies have shown that intrahippocampal injection of PILO, while having a much smaller mortality rate, induces status epilepticus (SE) that secondarily leads to TLE. To the best of our knowledge, the present study was the first to evaluate the cognitive and histological alterations 72h after intrahippocampal microinjection of PILO in C57BL/6 mice. Seventy percent of mice developed status epilepticus (SE) after PILO administration, and all animals survived after SE. Seventy-two hours after SE, mice presented memory impairment in both Novel Object Recognition (recognition index - vehicle: 67.57±4.46% vs PILO: 52.33±3.29%) and Contextual Fear Conditioning (freezing time - vehicle: 203±20.43 vs PILO: 107.80±25.17s) tasks. Moreover, using Nissl and NeuN staining, we observed in PILO-treated mice a significant decrease in cell viability and an increase in neuronal loss in all three hippocampal regions analyzed, cornus ammonis (CA) 1, CA3, and dentate gyrus (DG), in comparison with the control group. Additionally, using Iba-1 staining, we observed in PILO-treated mice a significant increase in microglial proliferation in CA1, CA3, and DG of the hippocampus. Therefore, intrahippocampal PILO microinjection is an efficient route to induce SE and acute postictal epileptogenic-like alterations in C57BL/6 mice.
Collapse
Affiliation(s)
| | | | | | - Juliana Guimaraes Doria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Fabiola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marcio Flavio Dutra Moraes
- Department of Biophysics and Physiology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | | |
Collapse
|
11
|
Bellozi PMQ, Lima IVDA, Dória JG, Vieira ÉLM, Campos AC, Candelario-Jalil E, Reis HJ, Teixeira AL, Ribeiro FM, de Oliveira ACP. Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1-42 induced neurotoxicity and memory impairment. Sci Rep 2016; 6:25226. [PMID: 27142962 PMCID: PMC4855228 DOI: 10.1038/srep25226] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the main cause of dementia. Substantial evidences indicate that there is over-activation of the PI3K/Akt/mTOR axis in AD. Therefore, the aim of the present study was to investigate the effects of NVP-BEZ235 (BEZ; dactolisib), a dual PI3K/mTOR inhibitor that is under phase I/II clinical trials for the treatment of some types of cancer, in hippocampal neuronal cultures stimulated with amyloid-β (Aβ) 1-42 and in mice injected with Aβ 1-42 in the hippocampus. In cell cultures, BEZ reduced neuronal death induced by Aβ. BEZ, but not rapamycin, a mTOR inhibitor, or LY294002, a PI3K inhibitor that also inhibits mTOR, reduced the memory impairment induced by Aβ. The effect induced by Aβ was also prevented in PI3Kγ(-/-) mice. Neuronal death and microgliosis induced by Aβ were reduced by BEZ. In addition, the compound increased IL-10 and TNF-α levels in the hippocampus. Finally, BEZ did not change the phosphorylation of Akt and p70s6K, suggesting that the involvement of PI3K and mTOR in the effects induced by BEZ remains controversial. Therefore, BEZ represents a potential strategy to prevent the pathological outcomes induced by Aβ and should be investigated in other models of neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Alline Cristina Campos
- Department of Pharmacology, Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil
| | | | - Helton José Reis
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|