1
|
Best FV, Hartings JA, Ngwenya LB. Repetitive cortical spreading depolarizations are prolonged early after experimental traumatic brain injury. Exp Neurol 2024; 385:115120. [PMID: 39710241 DOI: 10.1016/j.expneurol.2024.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Cortical spreading depolarizations (CSDs) are the most common electrophysiological dysfunction following a traumatic brain injury (TBI), and clustered CSDs (≥3 CSDs in 2 h) are associated with poor outcomes 6 months after TBI. While many experimental studies have investigated a single CSD after injury, no known studies have investigated how time after injury affects the characteristics and impact of a CSD cluster. This study sought to determine the characteristics of a cluster of repetitive CSDs when induced at three different time points after moderate experimental TBI. Adult male Sprague Dawley rats underwent a lateral fluid percussion or sham injury, and repetitive CSDs were induced 0-, 3-, or 7-days post injury (dpi). Properties were analyzed from 2-h-long electrocorticographic (ECoG) and laser Doppler flowmetry (LDF) recordings. We did not observe deterioration of CSDs (2-Way ANOVA, p = 0.3572), depressions of background electrical activity (p = 0.0991), or hemodynamic responses (p = 0.1298) over the course of the recording. Repetitive CSD direct current shift durations were the longest when induced at 0dpi (p = 0.0161), while the durations of CSDs induced at 3dpi and 7dpi were similar to CSD durations in uninjured tissue (p = 0.9857). No differences were seen in the depression of background activity duration (p = 0.1901), and normal hemodynamic responses were observed at each time point. These findings confirm that CSDs are prolonged in impaired tissue and suggest that the impaired tissue may be more at risk of further damage when repetitive CSDs occur early after injury.
Collapse
Affiliation(s)
- Faith V Best
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Pál B. On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res 2024; 19:2602-2612. [PMID: 38595279 PMCID: PMC11168512 DOI: 10.4103/nrr.nrr-d-23-01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extrasynaptic N-methyl-D-aspartate receptors with the contribution of astrocytes. These events are significantly slower than the excitatory postsynaptic currents. Parameters of slow inward currents are determined by several factors including the mechanisms of astrocytic activation and glutamate release, as well as the diffusion pathways from the release site towards the extrasynaptic receptors. Astrocytes are stimulated by neuronal network activity, which in turn excite neurons, forming an astrocyte-neuron feedback loop. Mostly as a consequence of brain edema, astrocytic swelling can also induce slow inward currents under pathological conditions. There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level. These events often occur in synchrony on neurons located in the same astrocytic domain. Besides synchronization of neuronal excitability, slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity. In addition, slow inward currents are also subject to non-synaptic plasticity triggered by long-lasting stimulation of the excitatory inputs. Of note, there might be important region-specific differences in the roles and actions triggering slow inward currents. In greater networks, the pathophysiological roles of slow inward currents can be better understood than physiological ones. Slow inward currents are identified in the pathophysiological background of autism, as slow inward currents drive early hypersynchrony of the neural networks. Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes. These events are related to epilepsy, but also found in Alzheimer's disease, Parkinson's disease, and stroke, leading to the decline of cognitive functions. Events with features overlapping with slow inward currents (excitatory, N-methyl-D-aspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke, traumatic brain injury, or epilepsy. One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation. However, to state this, more experimental evidence from greater neuronal networks or the level of the individual is needed. In this review, I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Bakaeva Z, Goncharov M, Frolov F, Krasilnikova I, Sorokina E, Zgodova A, Smolyarchuk E, Zavadskiy S, Andreeva L, Myasoedov N, Fisenko A, Savostyanov K. Regulatory Peptide Pro-Gly-Pro Accelerates Neuroregeneration of Primary Neuroglial Culture after Mechanical Injury in Scratch Test. Int J Mol Sci 2024; 25:10886. [PMID: 39456669 PMCID: PMC11507231 DOI: 10.3390/ijms252010886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The scratch test is used as an experimental in vitro model of mechanical damage to primary neuronal cultures to study the mechanisms of cell death in damaged areas. The involvement of NMDA receptors in processes leading to delayed neuronal death, due to calcium dysregulation and synchronous mitochondrial depolarization, has been previously demonstrated. In this study, we explored the neuroregenerative potential of Pro-Gly-Pro (PGP)-an endogenous regulatory peptide with neuroprotective and anti-inflammatory properties and a mild chemoattractant effect. Mechanical injury to the primary neuroglial culture in the form of a scratch caused acute disruption of calcium homeostasis and mitochondrial functions. This was accompanied by neuronal death alongside changes in the profile of neuronal markers (BDNF, NSE and GFAP). In another series of experiments, under subtoxic doses of glutamate (Glu, 33 μM), delayed changes in [Ca2+]i and ΔΨm, i.e., several days after scratch application, were more pronounced in cells in damaged neuroglial cultures. The percentage of cells that restored the initial level of [Ca2+]i (p < 0.05) and the rate of recovery of ΔΨm (p < 0.01) were decreased compared with undamaged cells. Prophylactic application of PGP (100 μM, once) prevented the increase in [Ca2+]i and the sharp drop in mitochondrial potential [ΔΨm] at the time of scratching. Treatment with PGP (30 μM, three or six days) reduced the delayed Glu-induced disturbances in calcium homeostasis and cell death. In the post-glutamate period, the surviving neurons more effectively restored the initial levels of [Ca2+]i (p < 0.001) and Ψm (p < 0.0001). PGP also increased intracellular levels of BDNF and reduced extracellular NSE. In the context of the peptide's therapeutic effect, the recovery of the damaged neuronal network occurred faster due to reduced astrogliosis and increased migration of neurons to the scratch area. Thus, the peptide PGP has a neuroprotective effect, increasing the survival of neuroglial cells after mechanical trauma in vitro by reducing cellular calcium overload and preventing mitochondrial dysfunction. Additionally, the tripeptide limits the post-traumatic consequences of mechanical damage: it reduces astrogliosis and promotes neuronal regeneration.
Collapse
Affiliation(s)
- Zanda Bakaeva
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
- Kalmyk State University Named after B.B. Gorodovikov, 358000 Elista, Russia
| | - Mikhail Goncharov
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany;
| | - Fyodor Frolov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Irina Krasilnikova
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Elena Sorokina
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Arina Zgodova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Elena Smolyarchuk
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Sergey Zavadskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Liudmila Andreeva
- National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute»), 123182 Moscow, Russia; (L.A.); (N.M.)
| | - Nikolai Myasoedov
- National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute»), 123182 Moscow, Russia; (L.A.); (N.M.)
| | - Andrey Fisenko
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Kirill Savostyanov
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| |
Collapse
|
4
|
Weisend JE, Carlson AP, Shuttleworth CW. Spreading Depolarization Induces a Transient Potentiation of Excitatory Synaptic Transmission. Neuroscience 2024; 551:323-332. [PMID: 38821241 PMCID: PMC11246225 DOI: 10.1016/j.neuroscience.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.
Collapse
Affiliation(s)
- Jordan E Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Lindquist BE. Spreading depolarizations pose critical energy challenges in acute brain injury. J Neurochem 2024; 168:868-887. [PMID: 37787065 PMCID: PMC10987398 DOI: 10.1111/jnc.15966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Spreading depolarization (SD) is an electrochemical wave of neuronal depolarization mediated by extracellular K+ and glutamate, interacting with voltage-gated and ligand-gated ion channels. SD is increasingly recognized as a major cause of injury progression in stroke and brain trauma, where the mechanisms of SD-induced neuronal injury are intimately linked to energetic status and metabolic impairment. Here, I review the established working model of SD initiation and propagation. Then, I summarize the historical and recent evidence for the metabolic impact of SD, transitioning from a descriptive to a mechanistic working model of metabolic signaling and its potential to promote neuronal survival and resilience. I quantify the energetic cost of restoring ionic gradients eroded during SD, and the extent to which ion pumping impacts high-energy phosphate pools and the energy charge of affected tissue. I link energy deficits to adaptive increases in the utilization of glucose and O2, and the resulting accumulation of lactic acid and CO2 downstream of catabolic metabolic activity. Finally, I discuss the neuromodulatory and vasoactive paracrine signaling mediated by adenosine and acidosis, highlighting these metabolites' potential to protect vulnerable tissue in the context of high-frequency SD clusters.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurology, University of California, San Francisco, California, USA
- Gladstone Institute of Neurological Diseases, San Francisco, California, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
6
|
Bennett MC, Reinhart KM, Weisend JE, Morton RA, Carlson AP, Shuttleworth CW. Synaptic Zn 2+ contributes to deleterious consequences of spreading depolarizations. Neurobiol Dis 2024; 191:106407. [PMID: 38199272 PMCID: PMC10869643 DOI: 10.1016/j.nbd.2024.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.
Collapse
Affiliation(s)
- Michael C Bennett
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Katelyn M Reinhart
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jordan E Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
7
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive spreading depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. Front Cell Neurosci 2023; 17:1292661. [PMID: 38162001 PMCID: PMC10757627 DOI: 10.3389/fncel.2023.1292661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jordan E. Weisend
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrew P. Carlson
- Department of Neurosurgery, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Russell A. Morton
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - David N. Linsenbardt
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - C. William Shuttleworth
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
8
|
Bennett MC, Morton RA, Carlson AP, Shuttleworth CW. Synaptic Zn 2+ contributes to deleterious consequences of spreading depolarizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564408. [PMID: 37961648 PMCID: PMC10634912 DOI: 10.1101/2023.10.27.564408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX-1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX-1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.
Collapse
Affiliation(s)
- Michael C Bennett
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
9
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive Spreading Depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530317. [PMID: 36909568 PMCID: PMC10002705 DOI: 10.1101/2023.02.27.530317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (versus sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex versus tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Jordan E. Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Russell A. Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
10
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
11
|
Fomitcheva IV, Sword J, Shi Y, Kirov SA. Plasticity of perisynaptic astroglia during ischemia-induced spreading depolarization. Cereb Cortex 2023; 33:5469-5483. [PMID: 36368909 PMCID: PMC10152098 DOI: 10.1093/cercor/bhac434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
Abstract
High astroglial capacity for glutamate and potassium clearance aids in recovering spreading depolarization (SD)-evoked disturbance of ion homeostasis during stroke. Since perisynaptic astroglia cannot be imaged with diffraction-limited light microscopy, nothing is known about the impact of SD on the ultrastructure of a tripartite synapse. We used serial section electron microscopy to assess astroglial synaptic coverage in the sensorimotor cortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. At the subcellular level, astroglial mitochondria were remarkably resilient to SD compared to dendritic mitochondria that were fragmented by SD. Overall, 482 synapses in `Sham' during `SD' and `Recovery' groups were randomly selected and analyzed in 3D. Perisynaptic astroglia was present at the axon-spine interface (ASI) during SD and after recovery. Astrocytic processes were more likely found at large synapses on mushroom spines after recovery, while the length of the ASI perimeter surrounded by astroglia has also significantly increased at large synapses. These findings suggest that as larger synapses have a bigger capacity for neurotransmitter release during SD, they attract astroglial processes to their perimeter during recovery, limiting extrasynaptic glutamate escape and further enhancing the astrocytic ability to protect synapses in stroke.
Collapse
Affiliation(s)
- Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Sergei A Kirov
- Department of Neurosurgery, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| |
Collapse
|
12
|
Sugimoto K, Yang J, Fischer P, Takizawa T, Mulder I, Qin T, Erdogan TD, Yaseen MA, Sakadžić S, Chung DY, Ayata C. Optogenetic Spreading Depolarizations Do Not Worsen Acute Ischemic Stroke Outcome. Stroke 2023; 54:1110-1119. [PMID: 36876481 PMCID: PMC10050120 DOI: 10.1161/strokeaha.122.041351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Spreading depolarizations (SDs) are believed to contribute to injury progression and worsen outcomes in focal cerebral ischemia because exogenously induced SDs have been associated with enlarged infarct volumes. However, previous studies used highly invasive methods to trigger SDs that can directly cause tissue injury (eg, topical KCl) and confound the interpretation. Here, we tested whether SDs indeed enlarge infarcts when induced via a novel, noninjurious method using optogenetics. METHODS Using transgenic mice expressing channelrhodopsin-2 in neurons (Thy1-ChR2-YFP), we induced 8 optogenetic SDs to trigger SDs noninvasively at a remote cortical location in a noninjurious manner during 1-hour distal microvascular clip or proximal an endovascular filament occlusion of the middle cerebral artery. Laser speckle imaging was used to monitor cerebral blood flow. Infarct volumes were then quantified at 24 or 48 hours. RESULTS Infarct volumes in the optogenetic SD arm did not differ from the control arm in either distal or proximal middle cerebral artery occlusion, despite a 6-fold and 4-fold higher number of SDs, respectively. Identical optogenetic illumination in wild-type mice did not affect the infarct volume. Full-field laser speckle imaging showed that optogenetic stimulation did not affect the perfusion in the peri-infarct cortex. CONCLUSIONS Altogether, these data show that SDs induced noninvasively using optogenetics do not worsen tissue outcomes. Our findings compel a careful reexamination of the notion that SDs are causally linked to infarct expansion.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 7558505, Japan
| | - Joanna Yang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Paul Fischer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Tsubasa Takizawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Inge Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Taylan D. Erdogan
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Mohammad A. Yaseen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - David Y. Chung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
13
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Vinokurova D, Zakharov A, Chernova K, Burkhanova-Zakirova G, Horst V, Lemale CL, Dreier JP, Khazipov R. Depth-profile of impairments in endothelin-1 - induced focal cortical ischemia. J Cereb Blood Flow Metab 2022; 42:1944-1960. [PMID: 35702017 PMCID: PMC9536115 DOI: 10.1177/0271678x221107422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of ischemic lesions has primarily been studied in horizontal cortical space. However, how ischemic lesions develop through the cortical depth remains largely unknown. We explored this question using direct current coupled recordings at different cortical depths using linear arrays of iridium electrodes in the focal epipial endothelin-1 (ET1) ischemia model in the rat barrel cortex. ET1-induced impairments were characterized by a vertical gradient with (i) rapid suppression of the spontaneous activity in the superficial cortical layers at the onset of ischemia, (ii) compartmentalization of spreading depolarizations (SDs) to the deep layers during progression of ischemia, and (iii) deeper suppression of activity and larger histological lesion size in superficial cortical layers. The level of impairments correlated strongly with the rate of spontaneous activity suppression, the rate of SD onset after ET1 application, and the amplitude of giant negative ultraslow potentials (∼-70 mV), which developed during ET1 application and were similar to the tent-shaped ultraslow potentials observed during focal ischemia in the human cortex. Thus, in the epipial ET1 ischemia model, ischemic lesions develop progressively from the surface to the cortical depth, and early changes in electrical activity at the onset of ET1-induced ischemia reliably predict the severity of ischemic damage.
Collapse
Affiliation(s)
- Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Department of Physiology, Kazan State Medical University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Viktor Horst
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| |
Collapse
|
15
|
Chau L, Davis HT, Jones T, Greene-Chandos D, Torbey M, Shuttleworth CW, Carlson AP. Spreading Depolarization as a Therapeutic Target in Severe Ischemic Stroke: Physiological and Pharmacological Strategies. J Pers Med 2022; 12:1447. [PMID: 36143232 PMCID: PMC9502975 DOI: 10.3390/jpm12091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spreading depolarization (SD) occurs nearly ubiquitously in malignant hemispheric stroke (MHS) and is strongly implicated in edema progression and lesion expansion. Due to this high burden of SD after infarct, it is of great interest whether SD in MHS patients can be mitigated by physiologic or pharmacologic means and whether this intervention improves clinical outcomes. Here we describe the association between physiological variables and risk of SD in MHS patients who had undergone decompressive craniectomy and present an initial case of using ketamine to target SD in MHS. METHODS We recorded SD using subdural electrodes and time-linked with continuous physiological recordings in five subjects. We assessed physiologic variables in time bins preceding SD compared to those with no SD. RESULTS Using multivariable logistic regression, we found that increased ETCO2 (OR 0.772, 95% CI 0.655-0.910) and DBP (OR 0.958, 95% CI 0.941-0.991) were protective against SD, while elevated temperature (OR 2.048, 95% CI 1.442-2.909) and WBC (OR 1.113, 95% CI 1.081-1.922) were associated with increased risk of SD. In a subject with recurrent SD, ketamine at a dose of 2 mg/kg/h was found to completely inhibit SD. CONCLUSION Fluctuations in physiological variables can be associated with risk of SD after MHS. Ketamine was also found to completely inhibit SD in one subject. These data suggest that use of physiological optimization strategies and/or pharmacologic therapy could inhibit SD in MHS patients, and thereby limit edema and infarct progression. Clinical trials using individualized approaches to target this novel mechanism are warranted.
Collapse
Affiliation(s)
- Lily Chau
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Herbert T. Davis
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Michel Torbey
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Andrew P. Carlson
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
16
|
Samejima S, Henderson R, Pradarelli J, Mondello SE, Moritz CT. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Exp Neurol 2022; 357:114178. [PMID: 35878817 DOI: 10.1016/j.expneurol.2022.114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injuries lead to permanent physical impairment despite most often being anatomically incomplete disruptions of the spinal cord. Remaining connections between the brain and spinal cord create the potential for inducing neural plasticity to improve sensorimotor function, even many years after injury. This narrative review provides an overview of the current evidence for spontaneous motor recovery, activity-dependent plasticity, and interventions for restoring motor control to residual brain and spinal cord networks via spinal cord stimulation. In addition to open-loop spinal cord stimulation to promote long-term neuroplasticity, we also review a more targeted approach: closed-loop stimulation. Lastly, we review mechanisms of spinal cord neuromodulation to promote sensorimotor recovery, with the goal of advancing the field of rehabilitation for physical impairments following spinal cord injury.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard Henderson
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chet T Moritz
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Center for Neurotechnology, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Andrew RD, Farkas E, Hartings JA, Brennan KC, Herreras O, Müller M, Kirov SA, Ayata C, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Dawson-Scully KD, Ullah G, Dreier JP. Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization. Neurocrit Care 2022; 37:11-30. [PMID: 35194729 PMCID: PMC9259542 DOI: 10.1007/s12028-021-01429-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.
Collapse
Affiliation(s)
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | - Cenk Ayata
- Harvard Medical School, Harvard University, Boston, MA USA
| | | | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Omer Revah
- School of Medicine, Stanford University, Stanford, CA USA
| | | | | | | | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Department of Neurology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
18
|
Owen B, Vangala A, Fritch C, Alsarah AA, Jones T, Davis H, Shuttleworth CW, Carlson AP. Cerebral Autoregulation Correlation With Outcomes and Spreading Depolarization in Aneurysmal Subarachnoid Hemorrhage. Stroke 2022; 53:1975-1983. [PMID: 35196873 PMCID: PMC9133018 DOI: 10.1161/strokeaha.121.037184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Delayed cerebral ischemia remains one of the principal therapeutic targets after aneurysmal subarachnoid hemorrhage. While large vessel vasospasm may contribute to ischemia, increasing evidence suggests that physiological impairment through disrupted impaired cerebral autoregulation (CA) and spreading depolarizations (SDs) also contribute to delayed cerebral ischemia and poor neurological outcome. This study seeks to explore the intermeasure correlation of different measures of CA, as well as correlation with SD and neurological outcome. METHODS Simultaneous measurement of 7 continuous indices of CA was calculated in 19 subjects entered in a prospective study of SD in aneurysmal subarachnoid hemorrhage undergoing surgical aneurysm clipping. Intermeasure agreement was assessed, and the association of each index with modified Rankin Scale score at 90 days and occurrence of SD was assessed. RESULTS There were 4102 hours of total monitoring time across the 19 subjects. In time-resolved assessment, no CA measures demonstrated significant correlation; however, most demonstrate significant correlation averaged over 1 hour. Pressure reactivity (PRx), oxygen reactivity, and oxygen saturation reactivity were significantly correlated with modified Rankin Scale score at 90 days. PRx and oxygen reactivity also were correlated with the occurrence of SD events. Across multiple CA measure reactivity indices, a threshold between 0.3 and 0.5 was most associated with intervals containing SD. CONCLUSIONS Different continuous CA indices do not correlate well with each other on a highly time-resolved basis, so should not be viewed as interchangeable. PRx and oxygen reactivity are the most reliable indices in identifying risk of worse outcome in patients with aneurysmal subarachnoid hemorrhage undergoing surgical treatment. SD occurrence is correlated with impaired CA across multiple CA measurement techniques and may represent the pathological mechanism of delayed cerebral ischemia in patients with impaired CA. Optimization of CA in patients with aneurysmal subarachnoid hemorrhage may lead to decreased incidence of SD and improved neurological outcomes. Future studies are needed to evaluate these hypotheses and approaches.
Collapse
Affiliation(s)
- Bryce Owen
- University of New Mexico, School of Medicine
| | - Adarsh Vangala
- University of Arizona College of Medicine, Department of Internal Medicine
| | - Chanju Fritch
- Penn State School of Medicine, Department of Neurosurgery
| | - Ali A. Alsarah
- University of New Mexico School of Medicine, Department of Neurology
| | - Tom Jones
- University of New Mexico School of Medicine, Department of Psychiatry
| | - Herbert Davis
- University of New Mexico School of Medicine, Department of Internal Medicine, Division of Epidemiology, Biostatistics, and Preventive Medicine
| | | | - Andrew P. Carlson
- University of New Mexico School of Medicine, Department of Neurosurgery
| |
Collapse
|
19
|
Carlson AP, Shuttleworth CW. Editorial. What causes excitotoxicity after concussion? J Neurosurg 2022; 136:1647-1648. [PMID: 34653981 DOI: 10.3171/2021.4.jns21835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Colpitts K, Desai MJ, Kogan M, Shuttleworth CW, Carlson AP. Brain Tsunamis in Human High-Grade Glioma: Preliminary Observations. Brain Sci 2022; 12:710. [PMID: 35741596 PMCID: PMC9221439 DOI: 10.3390/brainsci12060710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas make up nearly 40% of all central nervous system tumors, with over 50% of those being high-grade gliomas. Emerging data suggests that electrophysiologic events in the peri-tumoral region may play a role in the behavior and progression of high-grade gliomas. While seizures in the peri-tumoral zone are well described, much larger and slowly propagating waves of spreading depolarization (SD) may potentially have roles in both non-epileptic transient neurologic deficits and tumor progression. SD has only recently been observed in pre-clinical glioma models and it is not known whether these events occur clinically. We present a case of SD occurring in a human high-grade glioma using gold-standard subdural DC ECoG recordings. This finding could have meaningful implications for both clinical symptomatology and potentially for disease progression in these patients. Our observations and hypotheses are based on analogy with a large body of evidence in stroke and acute neurological injury that have recently established SD as cause of transient neurological deficits as well as a fundamental mechanism of ischemic expansion. Whether SD could represent a mechanistic target in this process to limit such progression is a high priority for further clinical investigations.
Collapse
Affiliation(s)
- Kayli Colpitts
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (K.C.); (M.K.)
| | - Masoom J. Desai
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (K.C.); (M.K.)
| | - C. William Shuttleworth
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (K.C.); (M.K.)
| |
Collapse
|
21
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
22
|
Foreman B, Lee H, Okonkwo DO, Strong AJ, Pahl C, Shutter LA, Dreier JP, Ngwenya LB, Hartings JA. The Relationship Between Seizures and Spreading Depolarizations in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2022; 37:31-48. [PMID: 35174446 DOI: 10.1007/s12028-022-01441-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Both seizures and spreading depolarizations (SDs) are commonly detected using electrocorticography (ECoG) after severe traumatic brain injury (TBI). A close relationship between seizures and SDs has been described, but the implications of detecting either or both remain unclear. We sought to characterize the relationship between these two phenomena and their clinical significance. METHODS We performed a post hoc analysis of a prospective observational clinical study of patients with severe TBI requiring neurosurgery at five academic neurotrauma centers. A subdural electrode array was placed intraoperatively and ECoG was recorded during intensive care. SDs, seizures, and high-frequency background characteristics were quantified offline using published standards and terminology. The primary outcome was the Glasgow Outcome Scale-Extended score at 6 months post injury. RESULTS There were 138 patients with valid ECoG recordings; the mean age was 47 ± 19 years, and 104 (75%) were men. Overall, 2,219 ECoG-detected seizures occurred in 38 of 138 (28%) patients in a bimodal pattern, with peak incidences at 1.7-1.8 days and 3.8-4.0 days post injury. Seizures detected on scalp electroencephalography (EEG) were diagnosed by standard clinical care in only 18 of 138 (13%). Of 15 patients with ECoG-detected seizures and contemporaneous scalp EEG, seven (47%) had no definite scalp EEG correlate. ECoG-detected seizures were significantly associated with the severity and number of SDs, which occurred in 83 of 138 (60%) of patients. Temporal interactions were observed in 17 of 24 (70.8%) patients with both ECoG-detected seizures and SDs. After controlling for known prognostic covariates and the presence of SDs, seizures detected on either ECoG or scalp EEG did not have an independent association with 6-month functional outcome but portended worse outcome among those with clustered or isoelectric SDs. CONCLUSIONS In patients with severe TBI requiring neurosurgery, seizures were half as common as SDs. Seizures would have gone undetected without ECoG monitoring in 20% of patients. Although seizures alone did not influence 6-month functional outcomes in this cohort, they were independently associated with electrographic worsening and a lack of motor improvement following surgery. Temporal interactions between ECoG-detected seizures and SDs were common and held prognostic implications. Together, seizures and SDs may occur along a dynamic continuum of factors critical to the development of secondary brain injury. ECoG provides information integral to the clinical management of patients with TBI.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA. .,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.
| | - Hyunjo Lee
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Clemens Pahl
- Department of Intensive Care Medicine, King's College Hospital, London, UK
| | - Lori A Shutter
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Laura B Ngwenya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Jed A Hartings
- Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
23
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
24
|
Schumm L, Lemale CL, Major S, Hecht N, Nieminen-Kelhä M, Zdunczyk A, Kowoll CM, Martus P, Thiel CM, Dreier JP, Woitzik J. Physiological variables in association with spreading depolarizations in the late phase of ischemic stroke. J Cereb Blood Flow Metab 2022; 42:121-135. [PMID: 34427143 PMCID: PMC8721769 DOI: 10.1177/0271678x211039628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Physiological effects of spreading depolarizations (SD) are only well studied in the first hours after experimental stroke. In patients with malignant hemispheric stroke (MHS), monitoring of SDs is restricted to the postoperative ICU stay, typically day 2-7 post-ictus. Therefore, we investigated the role of physiological variables (temperature, intracranial pressure, mean arterial pressure and cerebral perfusion pressure) in relationship to SD during the late phase after MHS in humans. Additionally, an experimental stroke model was used to investigate hemodynamic consequences of SD during this time window. In 60 patients with MHS, the occurrence of 1692 SDs was preceded by a decrease in mean arterial pressure (-1.04 mmHg; p = .02) and cerebral perfusion pressure (-1.04 mmHg; p = .03). Twenty-four hours after middle cerebral artery occlusion in 50 C57Bl6/J mice, hypothermia led to prolonged SD-induced hyperperfusion (+2.8 min; p < .05) whereas hypertension mitigated initial hypoperfusion (-1.4 min and +18.5%Δ rCBF; p < .01). MRI revealed that SDs elicited 24 hours after experimental stroke were associated with lesion progression (15.9 vs. 14.8 mm³; p < .01). These findings of small but significant effects of physiological variables on SDs in the late phase after ischemia support the hypothesis that the impact of SDs may be modified by adjusting physiological variables.
Collapse
Affiliation(s)
- Leonie Schumm
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Martus
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Berhouma M, Eker OF, Dailler F, Rheims S, Balanca B. Cortical Spreading Depolarizations in Aneurysmal Subarachnoid Hemorrhage: An Overview of Current Knowledge and Future Perspectives. Adv Tech Stand Neurosurg 2022; 45:229-244. [PMID: 35976452 DOI: 10.1007/978-3-030-99166-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite significant advances in the management of aneurysmal subarachnoid hemorrhage (SAH), morbidity and mortality remain devastating particularly for high-grade SAH. Poor functional outcome usually results from delayed cerebral ischemia (DCI). The pathogenesis of DCI during aneurysmal SAH has historically been attributed to cerebral vasospasm, but spreading depolarizations (SDs) are now considered to play a central role in DCI. During SAH, SDs may produce an inverse hemodynamic response leading to spreading ischemia. Several animal models have contributed to a better understanding of the pathogenesis of SDs during aneurysmal SAH and provided new therapeutic approaches including N-methyl-D-aspartate receptor antagonists and phosphodiesterase inhibitors. Herein we review the current knowledge in the field of SDs' pathogenesis and we detail the key experimental and clinical studies that have opened interesting new therapeutic approaches to prevent DCI in aneurysmal SAH.
Collapse
Affiliation(s)
- Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France.
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.
| | - Omer Faruk Eker
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
- Department of Interventional Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
| | - Frederic Dailler
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
- Lyon's Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| | - Baptiste Balanca
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
- Lyon's Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| |
Collapse
|
26
|
Dienel A, Kumar T P, Blackburn SL, McBride DW. Role of platelets in the pathogenesis of delayed injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2021; 41:2820-2830. [PMID: 34112003 PMCID: PMC8756481 DOI: 10.1177/0271678x211020865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) patients develop delayed cerebral ischemia and delayed deficits (DCI) within 2 weeks of aneurysm rupture at a rate of approximately 30%. DCI is a major contributor to morbidity and mortality after SAH. The cause of DCI is multi-factorial with contributions from microthrombi, blood vessel constriction, inflammation, and cortical spreading depolarizations. Platelets play central roles in hemostasis, inflammation, and vascular function. Within this review, we examine the potential roles of platelets in microthrombi formation, large artery vasospasm, microvessel constriction, inflammation, and cortical spreading depolarization. Evidence from experimental and clinical studies is provided to support the role(s) of platelets in each pathophysiology which contributes to DCI. The review concludes with a suggestion for future therapeutic targets to prevent DCI after aSAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
27
|
Reinhart KM, Humphrey A, Brennan KC, Carlson AP, Shuttleworth CW. Memantine Improves Recovery After Spreading Depolarization in Brain Slices and can be Considered for Future Clinical Trials. Neurocrit Care 2021; 35:135-145. [PMID: 34657268 PMCID: PMC9938764 DOI: 10.1007/s12028-021-01351-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Spreading depolarization (SD) has been identified as a key mediator of secondary lesion progression after acute brain injuries, and clinical studies are beginning to pharmacologically target SDs. Although initial work has focused on the N-Methyl-D-aspartate receptor antagonist ketamine, there is also interest in alternatives that may be better tolerated. We recently showed that ketamine can inhibit mechanisms linked to deleterious consequences of SD in brain slices. The present study tested the hypothesis that memantine improves recovery of brain slices after SD and explored the effects of memantine in a clinical case targeting SD. METHODS For mechanistic studies, electrophysiological and optical recordings were made from hippocampal area CA1 in acutely prepared brain slices from mice. SDs were initiated by localized microinjection of K+ in conditions of either normal or reduced metabolic substrate availability. Memantine effects were assessed from intrinsic optical signals and extracellular potential recordings. For the clinical report, a subdural strip electrode was used for continuous electrocorticographic recording after the surgical evacuation of a chronic subdural hematoma. RESULTS In brain slice studies, memantine (10-300 µM) did not prevent the initiation of SD, but impaired SD propagation rate and recovery from SD. Memantine reduced direct current (DC) shift duration and improved recovery of synaptic potentials after SD. In brain slices with reduced metabolic substrate availability, memantine reduced the evidence of structural disruption after the passage of SD. In our clinical case, memantine did not noticeably immediately suppress SD; however, it was associated with a significant reduction of SD duration and a reduction in the electrocorticographic (ECoG) suppression that occurs after SD. SD was completely suppressed, with improvement in neurological examination with the addition of a brief course of ketamine. CONCLUSIONS These data extend recent work showing that N-Methyl-D-aspartate receptor antagonists can improve recovery from SD. These results suggest that memantine could be considered for future clinical trials targeting SD, and in some cases as an adjunct or alternative to ketamine.
Collapse
Affiliation(s)
- Katelyn M Reinhart
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alanna Humphrey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
28
|
Ortiz-Villatoro NN, Reyes-Garcia SZ, Freitas L, Rodrigues LD, Santos LEC, Faber J, Cavalheiro EA, Finsterer J, Scorza FA, de Almeida ACG, Scorza CA. Amazon rainforest rodents (Proechimys) are resistant to post-stroke epilepsy. Sci Rep 2021; 11:16780. [PMID: 34408211 PMCID: PMC8373885 DOI: 10.1038/s41598-021-96235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
There are no clinical interventions to prevent post-injury epilepsy, a common and devastating outcome after brain insults. Epileptogenic events that run from brain injury to epilepsy are poorly understood. Previous studies in our laboratory suggested Proechimys, an exotic Amazonian rodent, as resistant to acquired epilepsy development in post-status epilepticus models. The present comparative study was conducted to assess (1) stroke-related brain responses 24-h and 30 days after cortical photothrombosis and (2) post-stroke epilepsy between Proechimys rodents and Wistar rats, a traditional animal used for laboratory research. Proechimys group showed smaller volume of ischemic infarction and lesser glial activation than Wistar group. In contrast to Wistar rats, post-stroke decreased levels of pro-inflammatory cytokines and increased levels of anti-inflammatory mediators and growth factors were found in Proechimys. Electrophysiological signaling changes assessed by cortical spreading depression, in vitro and in vivo, showed that Wistar's brain is most severely affected by stroke. Chronic electrocorticographic recordings showed that injury did not lead to epilepsy in Proechimys whereas 88% of the Wistar rats developed post-stroke epilepsy. Science gains insights from comparative studies on diverse species. Proechimys rodents proved to be a useful animal model to study antiepileptogenic mechanisms after brain insults and complement conventional animal models.
Collapse
Affiliation(s)
- Nancy N. Ortiz-Villatoro
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Selvin Z. Reyes-Garcia
- grid.10601.360000 0001 2297 2829Posgrado de Neurología, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Leandro Freitas
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Laís D. Rodrigues
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Luiz E. C. Santos
- grid.428481.30000 0001 1516 3599Neurociência Experimental e Computacional, Universidade Federal São João Del-Rey, São João del-Rei, Brazil
| | - Jean Faber
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Esper A. Cavalheiro
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Josef Finsterer
- grid.413303.60000 0004 0437 0893Krankenanstalt Rudolfstiftung, Mersserli Institute, Vienna, Austria
| | - Fulvio A. Scorza
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Antônio C. G. de Almeida
- grid.428481.30000 0001 1516 3599Neurociência Experimental e Computacional, Universidade Federal São João Del-Rey, São João del-Rei, Brazil
| | - Carla A. Scorza
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| |
Collapse
|
29
|
Parker PD, Suryavanshi P, Melone M, Sawant-Pokam PA, Reinhart KM, Kaufmann D, Theriot JJ, Pugliese A, Conti F, Shuttleworth CW, Pietrobon D, Brennan KC. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 2021; 109:611-628.e8. [PMID: 33321071 PMCID: PMC7889497 DOI: 10.1016/j.neuron.2020.11.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Migraine with aura is a common but poorly understood sensory circuit disorder. Monogenic models allow an opportunity to investigate its mechanisms, including spreading depolarization (SD), the phenomenon underlying migraine aura. Using fluorescent glutamate imaging, we show that awake mice carrying a familial hemiplegic migraine type 2 (FHM2) mutation have slower clearance during sensory processing, as well as previously undescribed spontaneous "plumes" of glutamate. Glutamatergic plumes overlapped anatomically with a reduced density of GLT-1a-positive astrocyte processes and were mimicked in wild-type animals by inhibiting glutamate clearance. Plume pharmacology and plume-like neural Ca2+ events were consistent with action-potential-independent spontaneous glutamate release, suggesting plumes are a consequence of inefficient clearance following synaptic release. Importantly, a rise in basal glutamate and plume frequency predicted the onset of SD in both FHM2 and wild-type mice, providing a novel mechanism in migraine with aura and, by extension, the other neurological disorders where SD occurs.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60020, Italy
| | - Punam A Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Katelyn M Reinhart
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Dan Kaufmann
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Jeremy J Theriot
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60020, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, 35131 Padova, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| |
Collapse
|
30
|
Fritch CD, Qeadan F, Shuttleworth CW, Carlson AP. Spreading depolarization occurs in repeating, recognizable, patient-specific patterns after human brain injury. Brain Inj 2021; 35:299-303. [PMID: 33529080 DOI: 10.1080/02699052.2020.1861480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background and Objective: Electrocorticographic (ECoG) measurement of spreading depolarization (SD) has led to significant advances in understanding of injury progression in neuro ICU patients. However, SD can be difficult to recognize in ECoG regions with high artifact. Heuristics for ECoG analysis within these regions would be highly valuable.Methods: Patients requiring craniotomy following subarachnoid hemorrhage, malignant hemispheric stroke, or traumatic brain injury were enrolled in this study. ECoG leads were placed intraoperatively and scoring of SDs was completed twice; once using traditional criteria and again with the intention of finding SD patterns. Utilizing covariance structures, graphical overlay and various measures surrounding DC shift, SDs were evaluated for patterns.Results: SD patterns were consistently observed and were unique to each patient and lead placement. No more than five different patterns were noted for any given patient, and statistical analysis utilizing covariance structures revealed high intra-pattern consistency.Conclusion: This validation of internal patient specific patterns offers more insight into ECoG readings of high artifact regions. This, in addition to traditional SD scoring heuristics, offers another scoring tool for the neuro-ICU care of patient experiencing SD. Furthermore, description of neurologic disease by its SD patterns may offer a new direction for precision medicine.
Collapse
Affiliation(s)
- Chanju D Fritch
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, USA
| | - Fares Qeadan
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
31
|
Schoknecht K, Kikhia M, Lemale CL, Liotta A, Lublinsky S, Mueller S, Boehm-Sturm P, Friedman A, Dreier JP. The role of spreading depolarizations and electrographic seizures in early injury progression of the rat photothrombosis stroke model. J Cereb Blood Flow Metab 2021; 41:413-430. [PMID: 32241203 PMCID: PMC7812510 DOI: 10.1177/0271678x20915801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spreading depolarization (SD) and seizures are pathophysiological events associated with cerebral ischemia. Here, we investigated their role for injury progression in the cerebral cortex. Cerebral ischemia was induced in anesthetized male Wistar rats using the photothrombosis (PT) stroke model. SD and spontaneous neuronal activity were recorded in the presence of either urethane or ketamine/xylazine anesthesia. Blood-brain barrier (BBB) permeability, cerebral perfusion, and cellular damage were assessed through a cranial window and repeated intravenous injection of fluorescein sodium salt and propidium iodide until 4 h after PT. Neuronal injury and early lesion volume were quantified by stereological cell counting and manual and automated assessment of ex vivo T2-weighted magnetic resonance imaging. Onset SDs originated at the thrombotic core and invaded neighboring cortex, whereas delayed SDs often showed opposite propagation patterns. Seizure induction by 4-aminopyridine caused no increase in lesion volume or neuronal injury in urethane-anesthetized animals. Ketamine/xylazine anesthesia was associated with a lower number of onset SDs, reduced lesion volume, and neuronal injury despite a longer duration of seizures. BBB permeability increase inversely correlated with the number of SDs at 3 and 4 h after PT. Our results provide further evidence that ketamine may counteract the early progression of ischemic injury.
Collapse
Affiliation(s)
- Karl Schoknecht
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Majed Kikhia
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agustin Liotta
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Svetlana Lublinsky
- Departments of Physiology & Cell Biology, Cognitive & Brain Sciences, the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Susanne Mueller
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Boehm-Sturm
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology & Cell Biology, Cognitive & Brain Sciences, the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Jens P Dreier
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
32
|
Mei YY, Lee MH, Cheng TC, Hsiao IH, Wu DC, Zhou N. NMDA receptors sustain but do not initiate neuronal depolarization in spreading depolarization. Neurobiol Dis 2020; 145:105071. [PMID: 32890774 DOI: 10.1016/j.nbd.2020.105071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Spreading depolarization (SD) represents a neurological process characterized by a massive, self-sustaining wave of brain cell depolarization. Understanding its mechanism is important for treating ischemic or hemorrhagic stroke and migraine with aura. Many believed that ion fluxes through NMDA receptors (NMDARs) are responsible for neuronal transmembrane currents of SD. However, the explicit role of NMDARs remains ambiguous. This is in part due to the limitation of traditional pharmacological approaches in resolving the contribution of NMDARs in different intercellular and intracellular processes of SD. Here, we applied single-cell blockade and genetic deletion methods to remove functional NMDARs from individual hippocampal CA1 neurons in order to examine the role of NMDARs in the depolarization mechanism without affecting the propagation of SD. We analyzed neuronal membrane potential changes to demonstrate that NMDARs are not required for initiating the depolarization. Consistently, neuronal input resistance (RN) revealed a sharp decline at the start of SD, which was unaffected by blocking NMDARs. Instead, the recovery of both membrane potential and RN during the late phase of SD was facilitated by inhibition of NMDARs, indicating that NMDARs are responsible for sustaining the depolarization. Our results strongly indicate that NMDAR activation is not a determinant of the initiation of depolarization but is important for sustaining transmembrane ion fluxes during SD.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ting-Chun Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Han Hsiao
- Department of Neurosurgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Dong Chuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
33
|
Rouleau N, Bonzanni M, Erndt-Marino JD, Sievert K, Ramirez CG, Rusk W, Levin M, Kaplan DL. A 3D Tissue Model of Traumatic Brain Injury with Excitotoxicity That Is Inhibited by Chronic Exposure to Gabapentinoids. Biomolecules 2020; 10:E1196. [PMID: 32824600 PMCID: PMC7463727 DOI: 10.3390/biom10081196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Injury progression associated with cerebral laceration is insidious. Following the initial trauma, brain tissues become hyperexcitable, begetting further damage that compounds the initial impact over time. Clinicians have adopted several strategies to mitigate the effects of secondary brain injury; however, higher throughput screening tools with modular flexibility are needed to expedite mechanistic studies and drug discovery that will contribute to the enhanced protection, repair, and even the regeneration of neural tissues. Here we present a novel bioengineered cortical brain model of traumatic brain injury (TBI) that displays characteristics of primary and secondary injury, including an outwardly radiating cell death phenotype and increased glutamate release with excitotoxic features. DNA content and tissue function were normalized by high-concentration, chronic administrations of gabapentinoids. Additional experiments suggested that the treatment effects were likely neuroprotective rather than regenerative, as evidenced by the drug-mediated decreases in cell excitability and an absence of drug-induced proliferation. We conclude that the present model of traumatic brain injury demonstrates validity and can serve as a customizable experimental platform to assess the individual contribution of cell types on TBI progression, as well as to screen anti-excitotoxic and pro-regenerative compounds.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Joshua D. Erndt-Marino
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Katja Sievert
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - Camila G. Ramirez
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - William Rusk
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| |
Collapse
|
34
|
Hartings JA, Andaluz N, Bullock MR, Hinzman JM, Mathern B, Pahl C, Puccio A, Shutter LA, Strong AJ, Vagal A, Wilson JA, Dreier JP, Ngwenya LB, Foreman B, Pahren L, Lingsma H, Okonkwo DO. Prognostic Value of Spreading Depolarizations in Patients With Severe Traumatic Brain Injury. JAMA Neurol 2020; 77:489-499. [PMID: 31886870 DOI: 10.1001/jamaneurol.2019.4476] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Importance Advances in treatment of traumatic brain injury are hindered by the inability to monitor pathological mechanisms in individual patients for targeted neuroprotective treatment. Spreading depolarizations, a mechanism of lesion development in animal models, are a novel candidate for clinical monitoring in patients with brain trauma who need surgery. Objective To test the null hypothesis that spreading depolarizations are not associated with worse neurologic outcomes. Design, Setting, and Participants This prospective, observational, multicenter cohort study was conducted from February 2009 to August 2013 in 5 level 1 trauma centers. Consecutive patients who required neurological surgery for treatment of acute brain trauma and for whom research consent could be obtained were enrolled; participants were excluded because of technical problems in data quality, patient withdrawal, or loss to follow-up. Primary statistical analysis took place from April to December 2018. Evaluators of outcome assessments were blinded to other measures. Interventions A 6-contact electrode strip was placed on the brain surface during surgery for continuous electrocorticography during intensive care. Main Outcomes and Measures Electrocorticography was scored for depolarizations, following international consensus procedures. Six-month outcomes were assessed by the Glasgow Outcome Scale-Extended score. Results A total of 157 patients were initially enrolled; 19 were subsequently excluded. The 138 remaining patients (104 men [75%]; median [interquartile range] age, 45 [29-64] years) underwent a median (interquartile range) of 75.5 (42.2-117.1) hours of electrocorticography. A total of 2837 spreading depolarizations occurred in 83 of 138 patients (60.1% incidence) who, compared with patients who did not have spreading depolarizations, had lower prehospital systolic blood pressure levels (mean [SD], 133 [31] mm Hg vs 146 [33] mm Hg; P = .03), more traumatic subarachnoid hemorrhage (depolarization incidences of 17 of 37 [46%], 18 of 32 [56%], 22 of 33 [67%], and 23 of 30 patients [77%] for Morris-Marshall Grades 0, 1, 2, and 3/4, respectively; P = .047), and worse radiographic pathology (in 38 of 73 patients [52%] and 42 of 60 patients [70%] for Rotterdam Scores 2-4 vs 5-6, respectively; P = .04). Of patients with depolarizations, 32 of 83 (39%) had only sporadic events that induced cortical spreading depression of spontaneous electrical activity, whereas 51 of 83 patients (61%) exhibited temporal clusters of depolarizations (≥3 in a 2-hour span). Nearly half of those with clusters (23 of 51 [45%]) also had depolarizations in an electrically silent area of the cortex (isoelectric spreading depolarization). Patients with clusters did not improve in motor neurologic examinations from presurgery to postelectrocorticography, while other patients did improve. In multivariate ordinal regression adjusting for baseline prognostic variables, the occurrence of depolarization clusters had an odds ratio of 2.29 (95% CI, 1.13-4.65; P = .02) for worse outcomes. Conclusions and Relevance In this cohort study of patients with acute brain trauma, spreading depolarizations were predominant but heterogeneous and independently associated with poor neurologic recovery. Monitoring the occurrence of spreading depolarizations may identify patients most likely to benefit from targeted management strategies.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Neurosurgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, Florida
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce Mathern
- Division of Neurosurgery, Virginia Commonwealth University, Richmond
| | - Clemens Pahl
- Department of Critical Care Medicine, King's College London, London, United Kingdom
| | - Ava Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lori A Shutter
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Achala Vagal
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - J Adam Wilson
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jens P Dreier
- Departments of Neurology, Experimental Neurology, and Neurosurgery and Centre for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandon Foreman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Laura Pahren
- Department of Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Hester Lingsma
- Department of Public Health, Centre for Medical Decision Making, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury. Exp Neurol 2020; 327:113246. [DOI: 10.1016/j.expneurol.2020.113246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
|
36
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
37
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|
38
|
Major S, Huo S, Lemale CL, Siebert E, Milakara D, Woitzik J, Gertz K, Dreier JP. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 2020; 42:57-80. [PMID: 31820363 PMCID: PMC7031471 DOI: 10.1007/s11357-019-00142-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain's gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue's energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.
Collapse
Affiliation(s)
- Sebastian Major
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Solution Centre for Image Guided Local Therapies (STIMULATE), Otto-von-Guericke-University, Magdeburg, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Karen Gertz
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Wang YC, Galeffi F, Wang W, Li X, Lu L, Sheng H, Hoffmann U, Turner DA, Yang W. Chemogenetics-mediated acute inhibition of excitatory neuronal activity improves stroke outcome. Exp Neurol 2020; 326:113206. [PMID: 31962128 DOI: 10.1016/j.expneurol.2020.113206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke significantly perturbs neuronal homeostasis leading to a cascade of pathologic events causing brain damage. In this study, we assessed acute stroke outcome after chemogenetic inhibition of forebrain excitatory neuronal activity. METHODS We generated hM4Di-TG transgenic mice expressing the inhibitory hM4Di, a Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic receptor, in forebrain excitatory neurons. Clozapine-N-oxide (CNO) was used to activate hM4Di DREADD. Ischemic stroke was induced by transient occlusion of the middle cerebral artery. Neurologic function and infarct volumes were evaluated. Excitatory neuronal suppression in the hM4Di-TG mouse forebrain was assessed electrophysiologically in vitro and in vivo, based on evoked synaptic responses, and in vivo based on occurrence of potassium-induced cortical spreading depolarizations. RESULTS Detailed characterization of hM4Di-TG mice confirmed that evoked synaptic responses in both in vitro hippocampal slices and in vivo motor cortex were significantly reduced after CNO-mediated activation of the inhibitory hM4Di DREADD. Further, CNO treatment had no obvious effects on physiology and motor function in either control or hM4Di-TG mice. Importantly, hM4Di-TG mice treated with CNO at either 10 min before ischemia or 30 min after reperfusion exhibited significantly improved neurologic function and smaller infarct volumes compared to CNO-treated control mice. Mechanistically, we showed that potassium-induced cortical spreading depression episodes were inhibited, including frequency and duration of DC shift, in CNO-treated hM4Di-TG mice. CONCLUSIONS Our data demonstrate that acute inhibition of a subset of excitatory neurons after ischemic stroke can prevent brain injury and improve functional outcome. This study, together with the previous work in optogenetic neuronal modulation during the chronic phase of stroke, supports the notion that targeting neuronal activity is a promising strategy in stroke therapy.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Wei Wang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Anesthesiology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xuan Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Liping Lu
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ulrike Hoffmann
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Research and Surgery Services, Durham VAMC, Durham, NC, USA; Departments of Neurosurgery, Neurobiology and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
40
|
Santos E, Olivares-Rivera A, Major S, Sánchez-Porras R, Uhlmann L, Kunzmann K, Zerelles R, Kentar M, Kola V, Aguilera AH, Herrera MG, Lemale CL, Woitzik J, Hartings JA, Sakowitz OW, Unterberg AW, Dreier JP. Lasting s-ketamine block of spreading depolarizations in subarachnoid hemorrhage: a retrospective cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:427. [PMID: 31888772 PMCID: PMC6937792 DOI: 10.1186/s13054-019-2711-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Objective Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-d-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. Methods We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. Results S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient − 1.83 (95% confidence intervals − 2.17; − 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1–2.0 mg/kg BW/h) and high-dose (2.1–7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, − 1.10 (− 1.71; − 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. Conclusions These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.
Collapse
Affiliation(s)
- Edgar Santos
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Arturo Olivares-Rivera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Renán Sánchez-Porras
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lorenz Uhlmann
- Institute of Medical Biometry and Informatics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Kevin Kunzmann
- Institute of Medical Biometry and Informatics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Roland Zerelles
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Modar Kentar
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adrian Hernández Aguilera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Mildred Gutierrez Herrera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Coline L Lemale
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Oliver W Sakowitz
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Andreas W Unterberg
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
41
|
Carlson AP, Shuttleworth CW, Major S, Lemale CL, Dreier JP, Hartings JA. Terminal spreading depolarizations causing electrocortical silencing prior to clinical brain death: case report. J Neurosurg 2019; 131:1773-1779. [PMID: 30544340 DOI: 10.3171/2018.7.jns181478] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022]
Abstract
The authors report on a 57-year-old woman in whom progression to brain death occurred on day 9 after aneurysmal subarachnoid hemorrhage without evidence of significant brain edema or vasospasm. Neuromonitoring demonstrated that brain death was preceded by a series of cortical spreading depolarizations that occurred in association with progressive hypoxic episodes. The depolarizations induced final electrical silence in the cortex and ended with a terminal depolarization that persisted > 7 hours. To the authors' knowledge, this is the first report of terminal spreading depolarization in the human brain prior to clinical brain death and major cardiopulmonary failure.
Collapse
Affiliation(s)
| | | | - Sebastian Major
- 3Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 4Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 5Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Coline L Lemale
- 3Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 4Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Jens P Dreier
- 3Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 4Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 5Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 6Bernstein Center for Computational Neuroscience Berlin
- 7Einstein Center for Neurosciences Berlin, Germany; and
| | - Jed A Hartings
- 8Department of Neurosurgery, University of Cincinnati, Ohio
| |
Collapse
|
42
|
Samper IC, Gowers SAN, Rogers ML, Murray DSRK, Jewell SL, Pahl C, Strong AJ, Boutelle MG. 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. LAB ON A CHIP 2019; 19:2038-2048. [PMID: 31094398 PMCID: PMC9209945 DOI: 10.1039/c9lc00044e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper presents the design, optimisation and fabrication of a mechanically robust 3D printed microfluidic device for the high time resolution online analysis of biomarkers in a microdialysate stream at microlitre per minute flow rates. The device consists of a microfluidic channel with secure low volume connections that easily integrates electrochemical biosensors for biomarkers such as glutamate, glucose and lactate. The optimisation process of the microfluidic channel fabrication, including for different types of 3D printer, is explained and the resulting improvement in sensor response time is quantified. The time resolution of the device is characterised by recording short lactate concentration pulses. The device is employed to record simultaneous glutamate, glucose and lactate concentration changes simulating the physiological response to spreading depolarisation events in cerebrospinal fluid dialysate. As a proof-of-concept study, the device is then used in the intensive care unit for online monitoring of a brain injury patient, demonstrating its capabilities for clinical monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Clemens Pahl
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | | |
Collapse
|
43
|
Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, Winkler MKL, Major S, Horst V, Jahnke P, Woitzik J, Kola V, Du Y, Hagen M, Jiang J, Dreier JP. Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 2019; 140:2673-2690. [PMID: 28969382 DOI: 10.1093/brain/awx214] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
See Ghoshal and Claassen (doi:10.1093/brain/awx226) for a scientific commentary on this article.
Early cortical infarcts are common in poor-grade patients after aneurysmal subarachnoid haemorrhage. There are no animal models of these lesions and mechanisms are unknown, although mass cortical spreading depolarizations are hypothesized as a requisite mechanism and clinical marker of infarct development. Here we studied acute sequelae of subarachnoid haemorrhage in the gyrencephalic brain of propofol-anaesthetized juvenile swine using subdural electrode strips (electrocorticography) and intraparenchymal neuromonitoring probes. Subarachnoid infusion of 1–2 ml of fresh blood at 200 µl/min over cortical sulci caused clusters of spreading depolarizations (count range: 12–34) in 7/17 animals in the ipsilateral but not contralateral hemisphere in 6 h of monitoring, without meaningful changes in other variables. Spreading depolarization clusters were associated with formation of sulcal clots (P < 0.01), a high likelihood of adjacent cortical infarcts (5/7 versus 2/10, P < 0.06), and upregulation of cyclooxygenase-2 in ipsilateral cortex remote from clots/infarcts. In a second cohort, infusion of 1 ml of clotted blood into a sulcus caused spreading depolarizations in 5/6 animals (count range: 4–20 in 6 h) and persistent thick clots with patchy or extensive infarction of circumscribed cortex in all animals. Infarcts were significantly larger after blood clot infusion compared to mass effect controls using fibrin clots of equal volume. Haematoxylin and eosin staining of infarcts showed well demarcated zones of oedema and hypoxic-ischaemic neuronal injury, consistent with acute infarction. The association of spreading depolarizations with early brain injury was then investigated in 23 patients [14 female; age (median, quartiles): 57 years (47, 63)] after repair of ruptured anterior communicating artery aneurysms by clip ligation (n = 14) or coiling (n = 9). Frontal electrocorticography [duration: 54 h (34, 66)] from subdural electrode strips was analysed over Days 0–3 after initial haemorrhage and magnetic resonance imaging studies were performed at ∼ 24–48 h after aneurysm treatment. Patients with frontal infarcts only and those with frontal infarcts and/or intracerebral haemorrhage were both significantly more likely to have spreading depolarizations (6/7 and 10/12, respectively) than those without frontal brain lesions (1/11, P’s < 0.05). These results suggest that subarachnoid clots in sulci/fissures are sufficient to induce spreading depolarizations and acute infarction in adjacent cortex. We hypothesize that the cellular toxicity and vasoconstrictive effects of depolarizations act in synergy with direct ischaemic effects of haemorrhage as mechanisms of infarct development. Results further validate spreading depolarizations as a clinical marker of early brain injury and establish a clinically relevant model to investigate causal pathologic sequences and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,UC Gardner Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA
| | - Jonathan York
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher P Carroll
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric Mahoney
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bryan Krueger
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany.,Department of Neurology, Charité University Medicine Berlin, Germany.,Department of Experimental Neurology, Charité University Medicine Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Paul Jahnke
- Department of Radiology Charité University Medicine Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Yifeng Du
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, USA
| | - Matthew Hagen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany.,Department of Neurology, Charité University Medicine Berlin, Germany.,Department of Experimental Neurology, Charité University Medicine Berlin, Germany
| |
Collapse
|
44
|
Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angew Chem Int Ed Engl 2019; 58:6616-6619. [DOI: 10.1002/anie.201901035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Huan Wei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
45
|
Dreier JP, Major S, Lemale CL, Kola V, Reiffurth C, Schoknecht K, Hecht N, Hartings JA, Woitzik J. Correlates of Spreading Depolarization, Spreading Depression, and Negative Ultraslow Potential in Epidural Versus Subdural Electrocorticography. Front Neurosci 2019; 13:373. [PMID: 31068779 PMCID: PMC6491820 DOI: 10.3389/fnins.2019.00373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, neuronal oedema and activity loss (=depression). The SD extreme in ischemic tissue, termed ‘terminal SD,’ shows prolonged depolarization, in addition to a slow baseline variation called ‘negative ultraslow potential’ (NUP). The NUP is the largest bioelectrical signal ever recorded from the human brain and is thought to reflect the progressive recruitment of neurons into death in the wake of SD. However, it is unclear whether the NUP is a field potential or results from contaminating sensitivities of platinum electrodes. In contrast to Ag/AgCl-based electrodes in animals, platinum/iridium electrodes are the gold standard for intracranial direct current (DC) recordings in humans. Here, we investigated the full continuum including short-lasting SDs under normoxia, long-lasting SDs under systemic hypoxia, and terminal SD under severe global ischemia using platinum/iridium electrodes in rats to better understand their recording characteristics. Sensitivities for detecting SDs or NUPs were 100% for both electrode types. Nonetheless, the platinum/iridium-recorded NUP was 10 times smaller in rats than humans. The SD continuum was then further investigated by comparing subdural platinum/iridium and epidural titanium peg electrodes in patients. In seven patients with either aneurysmal subarachnoid hemorrhage or malignant hemispheric stroke, two epidural peg electrodes were placed 10 mm from a subdural strip. We found that 31/67 SDs (46%) on the subdural strip were also detected epidurally. SDs that had longer negative DC shifts and spread more widely across the subdural strip were more likely to be observed in epidural recordings. One patient displayed an SD-initiated NUP while undergoing brain death despite continued circulatory function. The NUP’s amplitude was -150 mV subdurally and -67 mV epidurally. This suggests that the human NUP is a bioelectrical field potential rather than an artifact of electrode sensitivity to other factors, since the dura separates the epidural from the subdural compartment and the epidural microenvironment was unlikely changed, given that ventilation, arterial pressure and peripheral oxygen saturation remained constant during the NUP. Our data provide further evidence for the clinical value of invasive electrocorticographic monitoring, highlighting important possibilities as well as limitations of less invasive recording techniques.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
46
|
Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Huan Wei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
47
|
Morrison HW, Filosa JA. Stroke and the neurovascular unit: glial cells, sex differences, and hypertension. Am J Physiol Cell Physiol 2019; 316:C325-C339. [PMID: 30601672 DOI: 10.1152/ajpcell.00333.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A functional neurovascular unit (NVU) is central to meeting the brain's dynamic metabolic needs. Poststroke damage to the NVU within the ipsilateral hemisphere ranges from cell dysfunction to complete cell loss. Thus, understanding poststroke cell-cell communication within the NVU is of critical importance. Loss of coordinated NVU function exacerbates ischemic injury. However, particular cells of the NVU (e.g., astrocytes) and those with ancillary roles (e.g., microglia) also contribute to repair mechanisms. Epidemiological studies support the notion that infarct size and recovery outcomes are heterogeneous and greatly influenced by modifiable and nonmodifiable factors such as sex and the co-morbid condition common to stroke: hypertension. The mechanisms whereby sex and hypertension modulate NVU function are explored, to some extent, in preclinical laboratory studies. We present a review of the NVU in the context of ischemic stroke with a focus on glial contributions to NVU function and dysfunction. We explore the impact of sex and hypertension as modifiable and nonmodifiable risk factors and the underlying cellular mechanisms that may underlie heterogeneous stroke outcomes. Most of the preclinical investigative studies of poststroke NVU dysfunction are carried out primarily in male stroke models lacking underlying co-morbid conditions, which is very different from the human condition. As such, the evolution of translational medicine to target the NVU for improved stroke outcomes remains elusive; however, it is attainable with further research.
Collapse
|
48
|
Hobbs CN, Johnson JA, Verber MD, Mark Wightman R. An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. Analyst 2018; 142:2912-2920. [PMID: 28715004 DOI: 10.1039/c7an00508c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brain tissue injury is often accompanied by spreading depolarization (SD) events, marked by widespread cellular depolarization and cessation of neuronal firing. SD recruits viable tissue into the lesion, making it a focus for intervention. During SD, drastic fluctuations occur in ion gradients, extracellular neurotransmitter concentrations, cellular metabolism, and cerebral blood flow. Measuring SD requires a multimodal approach to capture the array of changes. However, the use of multiple sensors can inflict tissue damage. Here, we use carbon-fiber microelectrodes to characterize several aspects of SD with a single, minimally invasive sensor in the deep brain region of the nucleus accumbens. Fast-scan cyclic voltammetry detects large changes in oxygen, which reflect the balance between cerebral blood flow and energy consumption, and also supraphysiological release of electroactive neurotransmitters (i.e., dopamine). We verify waves of SD with concurrent single-unit or DC potential electrophysiological recordings. The single-unit recordings reveal bursts of action potentials followed by inactivity. The DC potentials exhibit a slow negative voltage shift in the extracellular space indicative of wide-spread cellular depolarization. Here, we characterize the multiple modalities of our sensor and demonstrate its utility for improved SD recordings.
Collapse
Affiliation(s)
- Caddy N Hobbs
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
49
|
Wellman SM, Cambi F, Kozai TD. The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials 2018; 183:200-217. [PMID: 30172245 PMCID: PMC6469877 DOI: 10.1016/j.biomaterials.2018.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes and their precursors are critical glial facilitators of neurophysiology, which is responsible for cognition and behavior. Devices that are used to interface with the brain allow for a more in-depth analysis of how neurons and these glia synergistically modulate brain activity. As projected by the BRAIN Initiative, technologies that acquire a high resolution and robust sampling of neural signals can provide a greater insight in both the healthy and diseased brain and support novel discoveries previously unobtainable with the current state of the art. However, a complex series of inflammatory events triggered during device insertion impede the potential applications of implanted biosensors. Characterizing the biological mechanisms responsible for the degradation of intracortical device performance will guide novel biomaterial and tissue regenerative approaches to rehabilitate the brain following injury. Glial subtypes which assist with neuronal survival and exchange of electrical signals, mainly oligodendrocytes, their precursors, and the insulating myelin membranes they produce, are sensitive to inflammation commonly induced from insults to the brain. This review explores essential physiological roles facilitated by oligodendroglia and their precursors and provides insight into their pathology following neurodegenerative injury and disease. From this knowledge, inferences can be made about the impact of device implantation on these supportive glia in order to engineer effective strategies that can attenuate their responses, enhance the efficacy of neural interfacing technology, and provide a greater understanding of the challenges that impede wound healing and tissue regeneration during pathology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, USA; NeuroTech Center, University of Pittsburgh Brain Institute, USA.
| |
Collapse
|
50
|
Susceptibility of the cerebral cortex to spreading depolarization in neurological disease states: The impact of aging. Neurochem Int 2018; 127:125-136. [PMID: 30336178 DOI: 10.1016/j.neuint.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
Abstract
Secondary injury following acute brain insults significantly contributes to poorer neurological outcome. The spontaneous, recurrent occurrence of spreading depolarization events (SD) has been recognized as a potent secondary injury mechanism in subarachnoid hemorrhage, malignant ischemic stroke and traumatic brain injury. In addition, SD is the underlying mechanism of the aura symptoms of migraineurs. The susceptibility of the nervous tissue to SD is subject to the metabolic status of the tissue, the ionic composition of the extracellular space, and the functional status of ion pumps, voltage-gated and other cation channels, glutamate receptors and excitatory amino acid transporters. All these mechanisms tune the excitability of the nervous tissue. Aging has also been found to alter SD susceptibility, which appears to be highest at young adulthood, and decline over the aging process. The lower susceptibility of the cerebral gray matter to SD in the old brain may be caused by the age-related impairment of mechanisms implicated in ion translocations between the intra- and extracellular compartments, glutamate signaling and surplus potassium and glutamate clearance. Even though the aging nervous tissue is thus less able to sustain SD, the consequences of SD recurrence in the old brain have proven to be graver, possibly leading to accelerated lesion maturation. Taken that recurrent SDs may pose an increased burden in the aging injured brain, the benefit of therapeutic approaches to restrict SD generation and propagation may be particularly relevant for elderly patients.
Collapse
|